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Abstract: Although three-phase induction motors are the most common motor type in industry, a
growing interest has arisen in emerging electric motor technologies like synchronous reluctance
motors and permanent magnet motors. Synchronous reluctance motors are a step forward compared
to permanent magnet motors when the cost of the system is considered. The main focus of this study
is low-power industrial applications, which generally use three-phase induction motors. In this study,
the synchronous reluctance motor family is compared at three different power levels: 2.2 kW, 4 kW,
and 5.5 kW. The aim of this study is to design and compare synchronous reluctance motors, which can
be alternative to the reference induction motors. Finite element analysis is performed for the reference
induction motors initially. Their stators are kept the same and the rotors are redesigned to satisfy
output power requirements of the induction motors. Detailed design, analysis, and optimization
processes are applied to the synchronous reluctance motors considering efficiency, power density,
and manufacturing. The results are evaluated, and the optimized designs are chosen for each power
level. They are prototyped and tested to measure their performance.

Keywords: synchronous reluctance motor; induction motor; finite element method; synchronous
motor; reluctance motor

1. Introduction

Increasing attention to energy efficiency makes electric motor technology important when
considering the percentage of their energy consumption. Different types of electric motors are used in
low-power industrial applications dependent on the needs of the system. However, market research
shows that a great majority of industrial motors are still induction motors. Permanent magnet motors
and synchronous reluctance motors are becoming an alternative solution for low-power industrial
applications. Even though permanent magnet motors are more efficient compared to induction motors,
their cost is still higher because of the permanent magnet. Demagnetization is another drawback of
permanent magnet machines. Synchronous reluctance motors (SynRMs) have become prominent since
the rotor does not have any conductor or any permanent magnet. It costs almost the same as the
induction motor, and its efficiency is higher at the same power ratings.

There are many studies on synchronous reluctance machines in the literature. Kostko published
the first paper titled “Polyphase Reaction Synchronous Motors” in 1923 [1]. The theory of synchronous
reluctance machine was established the first time in this paper. However, SynRM was not an alternative
to industrial induction machines in those days due to the lack of starting capacities and relatively low
efficiencies. Cruickshank et al. published a paper titled “Axially Laminated Anisotropic Rotors for
Reluctance Motors” and they proposed the axially laminated SynRM structure [2]. This motor was
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more efficient than Kostko’s first design and became popular between the 1960s and 1970s because of
its increased capabilities. The axial alignment of laminations required new special production lines, so
this type of motor was not industrially viable in terms of manufacturing. Cruickshank et al. formed
the mathematical theory of the axially laminated SynRM in another study [3]. In this work, it is shown
that axially laminated SynRMs are still a little behind the induction machines even though they have
higher saliency ratios than the transverse laminated SynRM. Honsinger formed the general analytical
model of SynRM in his paper titled “The Inductances Ld and Lq of Reluctance Machines” in 1971 [4]. A
new analytical method was proposed to calculate the axes inductances in this paper. Before this study,
obtaining high saliency ratios, and eventually, higher torque, were arbitrary. SynRM became popular
because of the developments in power electronics and manufacturing technologies in 1990s. Lipo
proposed the synchronous reluctance motor as a viable alternative for AC drive systems [5]. As Lipo
and Matsuo’s research focused on rotor design optimization [6], Miller et al. studied driver designs for
SynRM [7–9]. Vagati et al. had a paper on the design criteria of synchronous reluctance motors [10].
Vagati et al. had also a study on the experimental comparison of induction and synchronous reluctance
motors. They showed that a SynRM can produce 20% to 40% higher torque compared to an IM in
the case of the increased rated current for the same power loss or same temperature [11]. Another
comparison of these two motors for a traction application was evaluated by Kamper et al. [12]. There
are studies carried out only to maximize the saliency ratio [13]. Different optimization methodologies
were evaluated by researchers. Moghaddam et al. evaluated the optimization of barrier shapes [14–16],
Bianchi et al. focused on torque ripple reduction [17], and Lin et al. applied multi-objective optimization
algorithms to a six-phase synchronous reluctance machine to increase the efficiency [18]. A paper was
written by Kamper et al. which remarked on the importance of the finite element method (FEM) to
analyze the SynRM [19]. Another work focusing on the multi-objective optimization algorithm of
synchronous reluctance motors was published by Cupertino et al. [20]. Ergene et al. published a paper
on a permanent magnet assisted SynRM (PMaSynRM), which is designed and prototyped for home
appliance [21].

In this study, the rotors of the synchronous reluctance motors are designed for three different
frames: 2.2 kW, 4 kW, and 5.5 kW. The stators of the SynRMs are kept the same as those of the reference
induction motors at the same frames. The designed synchronous reluctance motors are prototyped
and compared to the reference induction motors in terms of efficiency, losses, power density, active
material, etc.

2. Torque Equations

The synchronous reluctance motor does not have a permanent magnet and conductor in its rotor
compared to the permanent magnet motor and induction motor. The torque is equal to the reluctance
torque, which is produced by saliency between d and q axes inductances. The ratio between d and q
axes inductances is defined as the saliency ratio. This ratio directly affects the torque production of the
synchronous reluctance motor. The general torque equation of this motor is in Equation (1) as [21]:

T =
3
2

p
2
(λqsids − λdsiqs) (1)

where p is the pole pair number, λds, λqs are d and q axis stator flux linkages, ids, iqs are d and q axis
stator currents. Rotor currents are zero at steady-state, so the flux linkages can be expressed as a
function of d-q axis inductances Ld and Lq, respectively, as given in Equations (2) and (3).

λds = Ldsids (2)

λqs = Lqsiqs (3)
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The reluctance torque in d-q inductances are given in Equation (4).

T =
3
2

p
2

(
Lds − Lqs

)
idsiqs (4)

The saliency ratio between the Ld and Lq inductances has a vital role in obtaining higher
torque values.

3. Design Methodology and Parameters

The design methodology consists of three main stages: Electromagnetic, structural, and thermal
designs. These design stages are given in Figure 1 as blocks, and each main block affects each
other. Design criteria block is the input for the electromagnetic design. The electromagnetic design
block includes motor sizing, optimizing, and finite element analysis of the optimized motor design.
Ergene et al proposed a multi-parameter chart, including rotor geometric parameters for 2.2 kW
motor [22]. At the end of the electromagnetic design procedure, a structural design procedure begins.
The procedure supplies feedback to previous design procedures and updates the design following the
same design steps, respectively.
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Figure 1. Electric motor design procedure.

In this study, the reference induction motors and the newly designed synchronous reluctance
motors are compared for three different power levels at 2.2 kW, 4 kW, and 5.5 kW for low-power
industrial applications. The stators and ampere-turns of the induction motors are kept the same
during synchronous reluctance motors design procedures to make a fair comparison. The rotors of
the induction motors are designed again considering the reluctance motor parameters. The design
procedure steps are given in Figure 2 schematically.
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Figure 2. Synchronous reluctance motor (SynRM) electromagnetic design parameters.
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In the design step, the rotor barrier effect is analyzed by considering a different number of
rotor barriers and shapes. The air gap is also a parameter, although the stator dimensions and the
ampere-turns are kept the same. Uniform and salient air gap structures with different radial air gap
lengths are considered for the design. Lastly, the insulation ratios of the synchronous reluctance motors
are evaluated. Efficiency, cost, and power density of each design are compared to those of the reference
induction motor to obtain the optimum design for low-power industrial applications, such as pumps
and fans.

4. Multi Parameter Design Steps of SynRMs

The parameters, such as barrier number, end bridge thickness, air gap dimension, and insulation
ratio, are used on the motor model in FEA to obtain an optimized motor in terms of cost, efficiency,
and serial production limits [22]. The rotor design parameters are shown in Figure 3.
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Some constraints are imposed on each step. The outer and inner stator diameter, the winding
distribution, the stator slot number, the stator, and rotor material are defined as constant in the analysis.
Specific constraints are only used on certain steps. The barrier number parameter is examined first.
The thickness effect of end bridges is analyzed for two flux barriers. The Ld/Lq ratio varies due to
both the flux barriers’ numbers and their shape. Another parameter analyzed is the flux barrier width
variation. It is gradually decreased in the outward radial direction. The air gap effect is evaluated in
three different models. Two of them are the uniform air gap in the radial direction, and the third model
is the cut-off. Each air gap model is employed on two different numbers of barriers and three different
flux barrier structure. The insulation ratio is the final parameter for the simulations. This ratio directly
influences the saliency ratio (Ld/Lq). Four different insulation ratios are examined on four different
flux barrier motor models with variable and constant width angular flux barriers.

5. Finite Element Analysis Results

5.1. Analysis of the Reference Induction Motors

The reference induction motors have 2.2 kW, 4 kW and 5.5 kW rated power values as listed in
Table 1. These induction motors are the mass production commercial type squirrel cage induction
motors. The rated voltage is 400 V (line-to-line) for 2.2 kW motor, while it is 690 V for the 4 kW and
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5.5 kW motors. The current must be increased to provide the same amount of power if the voltage is
400 V for 4.4 and 5.5 kW. The motor faces danger if the current exceeds the motor’s nameplate ratings.

Table 1. Reference Induction Motors’ Nameplate.

Power (kW) 5.5 4 2.2

Voltage (V) 400/690 400/690 230/400
Current (A) 11.1/6.4 8.3/4.8 8.5/4.9

Frequency (Hz) 50 50 50
Number of Poles 4 4 4

Speed (min−1) 1465 1455 1450
Slip 0.0233 0.03 0.033

Efficiency (%) 89.6 88.6 86.7

First, the numerical models of the motors are built using a two dimensional (2D) finite
element method (FEM) based commercial software (FLUX2D) with 2D time-stepping vector potential
formulation. The 3D effects like the end turns of stator winding are included using lumped circuit
parameters in the software. The lumped circuit parameters of the motors are calculated using
SIEMENS-SPEED software (V11.04.010, SPEED Laboratory, University of Glasgow, Glasgow, Scotland),
which is an analytical motor modelling tool. The outputs are injected to FEM. Whole motor geometries
are considered for numerical accuracy.

Both the rotor and stator laminations’ magnetic material are Cogent SURA M700 35A silicon steel
for these three motors, and its magnetic flux density and magnetic field intensity values are shown in
Figure 4a. Only the 5.5 kW induction motor has a double cage rotor, as the other two motors have deep
rotor bars. The mesh of the 4 kW reference induction motor is given in Figure 4b.
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The normal components of the air gap flux densities for a geometrical cycle at t = 0.5 s and the
torque profiles of the motors are presented in Figure 6 for the rated load at the rated voltage and speed
given in Table 1. Four pole distributions with the slotting from Figure 6a,c,e can be easily seen for
each motor.
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Figure 6. The normal component of the flux density in the air gap (a) 2.2 kW, (c) 4 kW, and (e) 5.5 kW
motors and torque variation of (b) 2.2 kW, (d) 4 kW, and (f) 5.5 kW motors.

The FEM analysis results of the motors are compared to the test results to validate the motor FEM
models. The test bed for the motor tests is given in Figure 7. The test bed has a reference induction
motor, hysteresis eddy current brake, and measurement system.

The no-load and rated load tests are performed due to the IEC standard 60034-2-1. The stator
resistances are obtained as given in Table 2. Eight different voltage (1.1, 1, 0.95, 0.9, 0.6, 0.5, 0.4, 0.3 times
of the rated voltage) are applied and measured for the no-load test. No-load stator current and no-load
input power are measured for each voltage. The first four voltages (1.1, 1.0, 0.95; 0.90 times of the rated
voltage) are used to calculate the iron losses (Pfe). The last four (0.60, 0.50, 0.40, 0.30 times of the rated
voltage) are used to calculate the friction and windage losses (Pfw). The no-load test measurements and
calculated loss terms are given in Tables 3–5 for 2.2 kW, 4 kW, and 5.5 kW reference motors, respectively.
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Temperature (◦C) Resistance (Ohms) Temperature (◦C) Resistance (Ohms)

2.2 kW 22 1.91 64.1 2.196
4 kW 22 2.35 72.8 3.159

5.5 kW 22 1.32 67 1.603

Table 3. No-Load Test results of 2.2 kW induction motor.

V (V) V2 I (A) P0 (W) Pcu0 (W) Pfe + Pfw0 (W)

120 14,400 0.86 43 4.9 38.1
160 25,600 1.13 55 8.5 46.5
200 40,000 1.43 70 13.5 56.5
240 57,600 1.73 88 19.6 68.4
305 93,025 2.28 124 34.1 89.9
370 136,900 3.02 178 60.2 117.8
400 160,000 3.49 210 80.1 129.9
435 189,225 4.22 271 117.5 153.5

Table 4. No-Load Test results of 4 kW induction motor.

V (V) V2 I (A) P0 (W) Pcu0 (W) Pfe + Pfw0 (W)

120 14,400 0.95 36 8.6 27.4
160 25,600 1.49 48 21 27
200 40,000 1.81 68 31 36.9
240 57,600 2.24 93 47.5 45.4
305 93,025 3.01 140 85.8 54.2
370 136,900 4.1 210 159.3 50.69
400 160,000 4.7 263 209.3 53.7
435 189,225 5.4 366 276.3 89.7
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Table 5. No-Load Test results of 5.5 kW induction motor.

V (V) V2 I (A) P0 (W) Pcu0 (W) Pfe + Pfw0 (W)

120 14,400 1.6 68 12.3 55.7
160 25,600 2.1 88 21 67
200 40,000 2.63 120 33.3 86.7
240 57,600 3.22 151 49.8 101.2
305 93,025 4.26 213 87 126
370 136,900 5.62 298 151.8 146.2
400 160,000 6.47 349 201.3 147.7
435 189,225 8.07 434 312.9 121.1

The load curve test is performed after the thermal regime of winding temperatures is achieved.
There are six operating points due to the standard: 1.25, 1.15, 1, 0.75, 0.5, 0.25 times of the rated load are
performed. The input power, Pin; output torque, Tout; stator line current, I1; phase-to-phase voltage, V;
and speed, n; measurements should be taken for each loading test. The load test results are given for
the reference motors in Tables 6–8, respectively. The output powers for the motors are calculated using
the measured output torque and speed.

Table 6. Load Test results of 2.2 kW IM.

Parameters 25% 50% 75% 100% 115% 125%

Voltage V (V) 402 401 401 401 400 401
Phase Current I1 (A) 3.5 3.82 4.37 4.92 5.83 6.72
Input Power Pin (W) 771 1336 1943 2560 3187 3822

Torque T (Nm) 3.6 7.3 10.9 14.6 18.2 21.9
Speed n (min−1) 1487 1473 1458 1445 1427 1410

Output Power Pout (W) 560 1126 1663 2208 2718 3232
Efficiency 72.7 84.2 85.6 86.3 85.3 84.6

Table 7. Load Test results of 4 kW IM.

Parameters 25% 50% 75% 100% 115% 125%

Voltage V (V) 402 400 401 401 400 401
Phase Current I1 (A) 5.19 5.88 6.91 8.22 9.73 11.41
Input Power Pin (W) 1264 2327 3415 4500 5655 6819

Torque T (Nm) 6.6 13.2 19.8 26.3 32.9 39.5
Speed n (min−1) 1491 1480 1466 1457 1439 1426

Output Power Pout (W) 1030 2045 3038 4011 4955 5896
Efficiency 81.5 88 89 89.1 87.6 86.5

Table 8. Load Test results of 5.5 kW IM.

Parameters 25% 50% 75% 100% 115% 125%

Voltage V (V) 402 400 399 400 401 400
Phase Current I1 (A) 6.74 7.77 9.27 11.1 13.11 15.24
Input Power Pin (W) 1701 3161 4632 6122 7652 9188

Torque T (Nm) 9.1 18.1 27.2 36.2 45.3 54.3
Speed n (min−1) 1491 1484 1476 1467 1455 1445

Output Power Pout (W) 1420 2814 4202 5558 6899 8213
Efficiency 83.5 89 90.7 90.8 90.2 89.4

The FEM and test results of the reference induction motors are given in Table 9 in terms of the
torque, current, power, and efficiency for the rated values. The difference between FEM and test results
are in a 10% range and are acceptable.
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Table 9. Induction Motors’ FEM and TEST results.

Parameter 2.2 kW FEM 2.2 kW Test 4 kW FEM 4 kW Test 5.5 kW FEM 5.5 kW Test

Torque (Nm) 14.6 14.5 26.26 26.3 36.1 36.2
Current (Arms) 4.8 4.95 8 8.22 11.1 11.7

Output Power (W) 2215 2203 3957 3984 5535 5482
Efficiency (%) 86 86.3 89.53 89.1 89.8 90.8

5.2. Analysis of Synchronous Reluctance Motors

After the analysis of the reference induction motors, synchronous reluctance motor models are
built in three power ratings for the multi-parameter analyses and their cross-effect analyses at the
same time. Complete motor models are used to obtain high precision during pre-modelling and
post-processing steps as in induction motor models.

Graphical illustrations of the rotor barrier numbers and barrier shapes considered for the numerical
analysis are given in Figure 8. The number of flux barriers is analyzed to evaluate the influence on the
performance of the motor. The finite element analysis is performed up to four flux barriers since flux
barriers saturate after six, and Ld-Lq inductances show no difference. Three flux barrier shapes are
evaluated. Rotor barrier number illustrations are given a to d for barrier number 1 to 4, accordingly,
at section (A) and barrier shape illustrations are given e to h for angular, round, angular-round, and
cut-off, accordingly, in Figure 8. The iron guides form an angle with the flux barriers at the angular
(A) barrier shape. Off-centered round pieces create iron flux guides at the round (R) flux barriers.
Angular-round (A-R) is the last design, which is a combination of the angular and round barriers.
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Figure 8. SynRM design parameters (A The number of rotor barriers per pole: (a) one barrier, (b) two
barriers, (c) three barriers, (d) four barriers, B Barrier Shape: (e) angular, (f) round, (g) angular-round,
(h) cut-off).

The torque characteristic results at rated load are given in Figure 9. The torque ripple due to the
number of flux barriers are listed in Table 10.

Table 10. Output Torques and their ripples due to the rotor barriers’ number for 2.2 kW SynRM motor.

Parameter 1 Barrier 2 Barriers 3 Barriers 4 Barriers

Torque (Nm) 15.1 17.9 19.1 24.4
Torque Ripple (%) 77 46 41 27
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Figure 9. Torque profiles of the 2.2 kW SynRM due to the number of rotor barriers (Data from [22]).

The rotor structure is not very strong mechanically due to the flux barriers. The tangential end
bridges are designed to reinforce the rotor as shown in Figure 3. Making end bridges very thin results
in problems for manufacturing processes. Increasing the end bridge thickness of the rotor causes
the torque decrease. The output torque graph for the six different structures is given in Figure 10.
The normal components of flux densities for end bridge thickness are given in Figure 11. Also, the
comparative torque and flux density results are given in Table 11.
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Figure 10. Torque outputs of 2.2 kW SynRM due to different end thicknesses for three and four barriers
(Data from [22]).

Table 11. Air Gap Flux Densities and average output torque of 2.2 kW SynRM due to different end
thicknesses for three and four barriers.

Parameter 3 Barriers 4 Barriers

Thickness (mm) 0.5 1 1.5 0.5 1 1.5
Flux Density (T) 0.78 0.78 0.78 0.79 0.78 0.78

Torque (Nm) 28.9 23.9 19 29.9 24.7 19.8
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Figure 11. Air gap flux density of 2.2 kW SynRM due to different end thicknesses (Data from [22]).

The radial air gap width should be proposed as small as possible by considering the mechanical
limitations. The air gap can be uniform or cut-off in the radial direction for the synchronous reluctance
motor designs. The flux density, average output torque, and torque ripple for different air gap values
are evaluated in detail in Figures 12 and 13, respectively.
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Figure 12. Flux density and average torque of 2.2 kW SynRM for different number of barriers and air
gap values.

The ratio of the sum of flux barrier widths to the sum of iron guide widths in the q-axis direction
is defined as ‘insulation ratio’, kq. If the rotor is completely made of iron without any saliency, the
kq would be equal to 0. If the total flux barrier width is equal to that of iron segment width, then kq

is equal to 1. Output torque characteristics of the synchronous reluctance motors are presented in
Figure 14. They are operated at the rated load with rated voltage and speed values given in Table 1.
The average values at steady state and torque ripples as percentage are summarized in Table 12.
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Table 12. Average Output Torques and their torque ripples for SynRM at different power ratings.

Parameter
4 Barriers

2.2 kW 4 kW 5.5 kW

Torque (Nm) 14.1 25.2 35.03
Torque Ripple (%) 18 17 22

Structural analysis of the newly designed motors is another important issue to be considered.
The stress analysis of the prototyped motors is simulated in ANSYS in order to satisfy the motor’s
mechanical integrity. The simulation is performed at 1500 min−1 and the mechanic characteristics of
the rotor are given in Table 13.
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Table 13. Mechanical Characteristics of Rotor Si-Steel.

Parameters M700

Mass Density (kg/m3) 7800
Young Modulus (GPa) 210

Poisson Coefficient 0.31
Tensile Yield Strength (MPa) 300

Tensile Ultimate Strength (MPa) 410

The mechanical analysis is performed to see the total deformation and the equivalent stress on
the rotor under the rated operation condition. The simulations and results for total deformation of
2.2 kW motor are given in Figure 15 and Table 14, respectively. The minimum total deformation and
maximum elastic strain values are listed for one and four barriers. A four-barrier structure is more
robust than a single barrier with the safety factor of 12.217.
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Table 14. Structural analysis results of 2.2 kW motor.

Parameter 1 Barrier 4 Barriers

Maximum Total Deformation (µm) 29.296 16.755
Maximum Elastic Strain (mm/mm) 1.942 × 10−4 1.1719 × 10−4

Maximum Stress (MPa) 25,424 24,555
Minimum Safety Factor 64.525 12.217
Maximum Safety Factor 15 15

6. Prototype Synchronous Reluctance Motors

The overall results are evaluated after the multi-parameter design process. The synchronous
reluctance models for prototyping are chosen considering technical parameters like efficiency, torque
ripple, production process, etc. The same stator, fan, and housing frames of the reference induction
motors are used for newly designed synchronous reluctance motors. Rotor laminations are produced
by using wire erosion cut. The lamination structure and motor views for three different power levels
are given in Figures 16 and 17a, accordingly.
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The ideal motor model achieved from multi-parametric FEM analyses is the angular four
variable-width barriers rotor that has kq = 1 insulation ratio. The 4-kW prototyped motor and its
test set are shown in Figure 17b. The test system has a generic variable frequency motor driver. The
inverter is supplied by a variable AC source. However, the input voltage of the inverter is fixed during
the test. In the inverter operating menu, the output power and speed level of the motors are set to
the required rated output. The inverter sets the speed and output power of the device under the
test. Two power analyzers are used for the measurements in the test systems. The first one is located
between the variable AC source and the inverter, and the second one is located between the inverter
and the motor. Thus, the motor efficiency, inverter efficiency, and system efficiency can be obtained
separately. As a result, SynRM efficiency is calculated by direct measurement of converter output
power, corresponding to motor input power (Pin) and the mechanical power output at the motor shaft
(Pmech). The test system has a torque sensor to measure the output torque of motor. The measurement
is performed due to the IEC standards 60034-2-3 loading test. Six operating points are performed
due to the standard: 1.25, 1.15, 1, 0.75, 0.5, and 25 times of the rated load at the rated speed. The
input power, Pin; output torque, Tout; stator line current; I1; phase-to-phase voltage, V; and speed, n;
measurements are taken for each loading. The load test results are given in Tables 15–17 for 2.2 kW,
4 kW, and 5.5 kW SynRMs, respectively.
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Table 15. Load Test results of 2.2 kW SynRM.

Parameters 25% 50% 75% 100% 115% 125%

Voltage V (V) 396.6 436.5 455.5 452.1 453.8 450.3
Phase Current I1 (A) 2.34 3.25 4.03 4.91 5.95 7.16
Input Power Pin (W) 651 1275 1887 2490 3159 3843

Torque T (Nm) 3.52 7.04 10.56 14.1 17.6 21.1
Speed n (min−1) 1500 1500 1500 1500 1500 1500

Output Power Pout (W) 553.1 1106 1659 2212 2765 3318
Efficiency 85 86.8 87.9 88.9 87.6 86.4

Table 16. Load Test results of 4 kW SynRM.

Parameters 25% 50% 75% 100% 115% 125%

Voltage V (V) 461 469 485 478 457 473
Phase Current I1 (A) 3.84 5.59 7.14 8.8 10.9 13.38
Input Power Pin (W) 1147 2240 3326 4413 5540 6745

Torque T (Nm) 6.38 12.75 19.13 25.5 31.88 38.26
Speed n (min−1) 1500 1500 1500 1500 1500 1500

Output Power Pout (W) 1001.5 2003 3004.6 4006.1 5007.7 6009.2
Efficiency 87.3 89.4 90.3 90.8 90.4 89.1

Table 17. Load Test results of 5.5 kW SynRM.

Parameters 25% 50% 75% 100% 115%

Voltage V (V) 485 457 469 469.4 462
Phase Current I1 (A) 5.34 7.61 9.59 11.8 13.79
Input Power Pin (W) 1580 3052 4571 6013 7067

Torque T (Nm) 8.83 17.64 26.46 35.3 42.56
Speed n (min−1) 1500 1500 1500 1500 1459

Output Power Pout (W) 1387 2770 4156 5550 6501
Efficiency 87.8 90.8 90.9 92.3 92

Since the rated output power levels have been desired to be constant, the input voltage of SynRMs
are obtained slightly higher than the rated values of IMs as given in Tables 15–17.

7. Comparative Results

In this section, the comparative results are given for the reference induction motors and newly
designed synchronous reluctance motors for three different power ranges.

7.1. Performance

Table 18 shows the general motor parameters for both induction motors and synchronous
reluctance motors at the rated speed and torque. The torque is slightly different since the output power
is the same and the speeds are naturally different.

Table 18. Comparative Measured Performance Results (Frame-Size-Power Range).

Parameter
2.2 kW (4 Pole)

100 Frame
4 kW (4 Pole)

112 Frame
5.5 kW (4 Pole)

132 Frame

IM SynRM IM SynRM IM SynRM

Voltage (V) 400 452.1 400 478 400 469.4
Current (A) 4.95 4.91 8.3 8.8 11.1 11.8

Speed (min−1) 1450 1500 1455 1500 1465 1500
Torque (Nm) 14.48 14 26.25 25.46 35.85 35.01

cos θ 0.78 0.647 0.79 0.6 0.79 0.6
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The reference IMs and newly designed SynRMs are forced to start with full load condition to
determine the starting capability of the motors. As a result, the motors can start at full load condition
for each power rating with no problems. The controller is not designed by the authors. The prototyped
SynRM motors are driven by a generic commercial controller. There were no problems either for
starting or operating.

Torque vs current graphs of IMs and SynRMs are given Figure 18. These data sets are evaluated
under 1500 min−1 for SynRMs and near 1500 min−1 for IMs.
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Figure 18. Comparison of Torque vs. Current for (a) 2.2 kW, (b) 4 kW, and (c) 5.5 kW.

IMs perform higher torque values at the same current values as given in Figure 18 since SynRMs
have lower power factors. Input power vs. Torque graphs are presented in Figure 19.
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Figure 19. Comparison of Input Power vs. Torque for (a) 2.2 kW, (b) 4 kW, and (c) 5.5 kW.

The torque vs. total losses of the motors are given in Figure 20. The total losses of the SynRMs are
less than those of the IMs for the same torque values.
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7.2. Active Material

The synchronous reluctance motors were designed while keeping the same stator design,
ampere-turns, and stack heights, with the reference induction motors for all three power ranges
in this study as indicated above sections. The main difference is the rotor frames between the reference
induction motors and the newly designed synchronous reluctance motors. All other active materials,
such as laminations and stator conductors, are kept the same, except for the rotor conductor. The rotor
of an induction motor includes magnetic steel and aluminum alloy as an active material. The rotor of a
synchronous reluctance motor includes only magnetic steel. Since the stator lamination and stator
windings are kept the same, the only difference between the IM and SynRM motors’ material cost is on
the rotor side. The active material usage is shown for both of the motors in Table 19. This will give an
idea about material costs of the motors.

Table 19. Rotor Materials of IM & SynRM (in pu).

Material
2.2 kW 4 kW 5.5 kW

IM SynRM IM SynRM IM SynRM

Magnetic steel 0.79 0.79 0.79 0.79 0.88 0.88
Aluminum conductor 0.21 - 0.21 - 0.11 -

Total active material at rotor 1 0.79 1 0.79 1 0.88

7.3. Thermal Performance

The thermal regime of the windings should be reached before applying the performance tests. The
thermal test is performed at the nominal load. The ambient and winding temperatures are measured
before starting the test. The motor should be operated at the rated load until the winding temperature
does not change at 1 ◦K or 1 ◦C in a half hour measurement period. The motor reaches the thermal
steady state regime if this condition is satisfied. All the electrical, mechanical, and thermal motor
parameters are recorded, such as input power Pin (W), output torque Tout (Nm), line current I1 (A),
phase-to-phase voltage V (V), speed n (min−1), frequency f (Hz), stator phase winding resistance
R1(ohms), and winding temperature (◦C).

The thermal analysis for the SynRMs is performed using MOTORCAD software (V10.2.3, Motor
Design Limited, Wrexham, UK). The geometry is applied with cooling types and the fin thicknesses
as input. The analytical thermal calculations are performed, and the results are compared to those
at the rated current values. The initial temperature of the winding for 2.2 kW SynRM is 22 ◦C and it
reaches 55 ◦C at the end. Similarly, the temperature test is performed for the 2.2 kW induction motor.
The induction motor reaches higher temperature values at the same ratings. The results are given in
Table 20.
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Table 20. Winding Temperatures of 2.2 kW motors.

SynRM IM

Parameter MOTORCAD Test Test

Temperature (◦C) 56.1 55 64.1

The MOTORCAD results are shown in Figure 21 for the 2.2 kW SynRM.
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7.4. Vibration and Comfort Performances

Since the torque ripple is an important parameter for motor design procedure, after producing
prototype SynRM motors, vibration tests are performed. Permitted vibration accelerations are given
in IEC 60034-14 standards. The upper limit is defined for the motor producers as 2.5 m/s2 for free
suspension between 56 and 132 frame motors [23]. The vibration and torque ripple comparison of
SynRM motors is presented for different power levels in Table 21. The torque ripple results are output
of the FEM analysis. It can be seen that the SynRM motors have higher vibration and torque ripple
values than those of reference IMs.

Table 21. Vibration and Torque Ripple Comparison.

Power
Vibration (m/s2) Torque Ripple (%)

IM SynRM IM SynRM

2.2 kW 0.267 1.43 13.5 18
4 kW 0.273 1.67 15.2 17

5.5 kW 0.316 1.82 20 22

8. Conclusions

In low-power industrial applications product groups, efficiency, cost, and power density play an
important role when system requirements are considered. In this study, three different power stage
induction motors (2.2 kW, 4 kW, and 5.5 kW) are taken as the reference motors. The main aim of this
study is to design and make a comparison of synchronous reluctance motors. The main difference
between the induction motors and the synchronous reluctance motors is the rotor structure. The stator
structure and radial air gap length are kept constant for both IMs and SynRMs. Different types of
rotor design parameters are considered to make a complementary design. After the selection of the
best models for each power level, the selected models are prototyped and tested for measuring their
performance. SynRM has slightly higher efficiency than IM since rotor losses are eliminated. Main
drawback of SynRMs are the low-power factors. IMs provides higher torque values at the same current
levels and requires lower input power for the same output power.

As a result, considering losses, cost, and power density, the newly designed synchronous reluctance
motor prototypes give an alternative compared to the reference induction motors. The stator winding
can also be designed for a future work to justify the input voltage levels of SynRMs. Increasing the stack
length would be another solution to decrease voltage levels. The reliability, torque ripple, vibration
improvements, and power factor optimization are worth investigating further.
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