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Abstract: With the popularity of electric vehicles, lithium-ion batteries as a power source are an
important part of electric vehicles, and online identification of equivalent circuit model parameters
of a lithium-ion battery has gradually become a focus of research. A second-order RC equivalent
circuit model of a lithium-ion battery cell is modeled and analyzed in this paper. An adaptive
expression of the variable forgetting factor is constructed. An adaptive forgetting factor recursive
least square (AFFRLS) method for online identification of equivalent circuit model parameters is
proposed. The equivalent circuit model parameters are identified online on the basis of the dynamic
stress testing (DST) experiment. The online voltage prediction of the lithium-ion battery is carried
out by using the identified circuit parameters. Taking the measurable actual terminal voltage of
a single battery cell as a reference, by comparing the predicted battery terminal voltage with the
actual measured terminal voltage, it is shown that the proposed AFFRLS algorithm is superior to the
existing forgetting factor recursive least square (FFRLS) and variable forgetting factor recursive least
square (VFFRLS) algorithms in accuracy and rapidity, which proves the feasibility and correctness of
the proposed parameter identification algorithm.

Keywords: lithium-ion battery; equivalent circuit model; recursive least square; adaptive forgetting
factor; parameter identification

1. Introduction

Energy shortages and environmental pollution are becoming more and more prominent today.
Therefore, electric vehicles, with many advantages such as resource conservation and environmental
friendliness, have attracted more and more attention. With the rapid development of electric vehicles,
industry standards of lithium-ion batteries have also been formulated. Lithium-ion batteries and their
energy management have received more extensive attention [1]. An accurate state of charge (SOC)
estimation of lithium-ion batteries is required in the testing and practical use of lithium-ion batteries [2].
The equivalent circuit model of lithium-ion batteries is the crucial basis for most SOC estimation
algorithms, such as extended Kalman filter (EKF) [3], adaptive extended Kalman filter (AEKF) [4], etc.
Although the performance of lithium-ion batteries and lead-acid batteries is very different, the reaction
mechanism of the two batteries is basically the same, the conversion between chemical energy and
electric energy is realized by the oxidation-reduction reaction and there is a similar response trend
for the change of input current [5]. In addition, the equivalent circuit parameters are fitted to the
experimental data of lithium-ion battery and lead-acid battery, and it is found that the two batteries
can be characterized by a unified equivalent circuit [6]. Thus, the lithium-ion battery model can

Energies 2019, 12, 2242; doi:10.3390/en12122242 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-6654-7015
http://www.mdpi.com/1996-1073/12/12/2242?type=check_update&version=1
http://dx.doi.org/10.3390/en12122242
http://www.mdpi.com/journal/energies


Energies 2019, 12, 2242 2 of 15

usually be established by referring to that of the lead-acid batteries. At present, the battery equivalent
circuit model mainly includes Rint model [7], PNGV (Partnership for a New Generation of Vehicles)
model [8], Thevenin model [9], and n-order RC equivalent circuit model [10]. The Rint model is an
internal resistance model consisting of a DC source and an internal resistance. Although the model
is simple, it does not take into account the internal state of the battery. Hence, the circuit structure
has more defects. It is such an ideal model that it is generally only used in simple circuit simulation.
The PNGV model considering capacitance characteristics accurately reflects the discharge process,
but the equivalent circuit model of the charging process is not discussed. The n-order RC dynamic
equivalent model can reflect the relationship between the internal parameters of the battery and the
temperature or current. However, as the order increases, the complexity of the model increases, which
is not conducive to real-time online calculation of the micro-controller. Therefore, the second-order RC
equivalent circuit model is usually chosen, which not only has good accuracy and dynamic simulation
characteristics, but also has the advantage of lower complexity [11–13].

In view of the complex chemical reaction and physical structure inside the lithium-ion battery,
when the battery is actually used, the internal state of the battery will be affected by the factors
such as ambient temperature, operating conditions, and battery aging degree. Some parameters
in the battery equivalent model also change when the working conditions change. Therefore, it is
necessary to accurately identify the parameters in the battery equivalent model in real time. The
recursive least square (RLS) method is most commonly used for system parameter identification [14].
The RLS is simple and stable, but with the increase of data in the recursive process, the generation
of new data will be affected by the old data, which will lead to large errors. In order to solve the
above problems, reference [15] studies the forgetting factor recursive least square (FFRLS) method.
The proportion of old and new data is adjusted by introducing a forgetting factor into the RLS, so that
the proportion of old data is reduced when new data is available, and the algorithm can converge to
the actual value more quickly. Since the forgetting factor is constant, the dynamic identification ability
and accuracy of circuit parameters using FFRLS will be affected when the charging and discharging
currents change frequently. Therefore, the variable forgetting factor least square (VFFRLS) method
appears [16–18]. The forgetting factor is adjusted according to the square of a time-averaging estimation
of the auto-correlation of a priori and a posteriori error [16]. Reference [17] analyzes the dynamic
equation of the mean square error that can be used to derive a dynamic equation of the gradient of
the mean square error to control the forgetting factor. Since the forgetting factor converges slowly,
the tracking speed of the mutation parameter may decrease. In reference [18], the average input
power estimation and exponential window size expression are introduced to update the forgetting
factor. It is applied to the state regularization QR decomposition RLS method, which improves the
tracking performance, steady-state mean square error, and the robustness to the input power variation.
The calculation of the variable forgetting factor in the references mentioned above is rather complicated
and the computational burden is heavy, which is not conducive to the real-time operation of the
micro-controller. Therefore, an adaptive expression for calculating the forgetting factor relatively easily
is proposed in this paper. Based on the second-order RC equivalent circuit model, it is applied to the
adaptive forgetting factor recursive least square (AFFRLS) method to identify the equivalent circuit
model parameters online. Experiments including the dynamic stress test (DST) are implemented to
verify the real-time performance and accuracy of the AFFRLS algorithm.

2. Lithium-Ion Battery Modeling

The second-order RC equivalent circuit model of a lithium-ion battery is shown in Figure 1.
It consists of an ideal voltage source Uoc, ohmic resistor R0, and two RC parallel circuits. Uoc represents
the open circuit voltage of the lithium battery. R0 indicates the internal resistance of the battery. The two
RC parallel circuits represent the electrochemical polarization and concentration polarization effects in
the battery reactions. UL is the battery terminal voltage. The following is the analysis process of the
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equivalent circuit model shown in Figure 1 [13–15]. According to Kirchhoff’s voltage law and current
law, the electrical characteristic equation of the model is expressed by (1).

UL = Uoc[SOC(t)] −U1 −U2 − I(t) ·R0

C1 ·
dU1
dt = I(t) − U1

R1

C2 ·
dU2
dt = I(t) − U2

R2

(1)
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Equation (1) is written as a frequency domain expression.

E = UL(s) −Uoc(s) = −I(s)
(
R0 +

R1

1 + R1C1s
+

R2

1 + R2C2s

)
(2)

Equation (2) is rewritten to (3).

G(s) =
E(s)
I(s)

= −
R0s2 + R0R1C1+R0R2C2+R2R1C1+R1R2C2

R1C1R2C2
s + R0+R1+R2

R1C1R2C2

s2 + R1C1+R2C2
R1C1R2C2

s + 1
R1C1R2C2

(3)

Bilinear transformation s = 2
T ·

1−z−1

1+z−1 is brought into (3), and Equations (4) and (5) are obtained.

G(z−1) =
E(k)
I(k)

=
θ3 + θ4z−1 + θ5z−2

1− θ1z−1 − θ2z−2
(4)



θ1 = 2T2
−8R1C1R2C2

−T2−2T(R1C1+R2C2)−4R1C1R2C2

θ2 =
T2
−2T(R1C1+R2C2)+4R1C1R2C2

−T2−2T(R1C1+R2C2)−4R1C1R2C2

θ3 =
T2(R0+R1+R2)+2T(R0R1C1+R0R2C2+R1R2C2+R2R1C1)+4R0R1C1R2C2

−T2−2T(R1C1+R2C2)−4R1C1R2C2

θ4 =
2T2(R0+R1+R2)−8R0R1C1R2C2
−T2−2T(R1C1+R2C2)−4R1C1R2C2

θ5 =
T2(R0+R1+R2)−2T(R0R1C1+R0R2C2+R1R2C2+R2R1C1)+4R0R1C1R2C2

−T2−2T(R1C1+R2C2)−4R1C1R2C2

(5)

Therefore, the recursive Equation (6) is obtained by (4).

E(k) = θ1E(k− 1) + θ2E(k− 2) + θ3I(k) + θ4I(k− 1) + θ5I(k− 2) (6)

where E(k − 1) and E(k − 2) are the difference between the terminal voltage and the open circuit voltage
at the time of k − 1 and k − 2. I(k), I(k − 1), and I(k − 2) are input currents at the time of k, k − 1, and k − 2.
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Suppose that a, b, c, d, f are represented by (7).

a = R0

b = R1C1R2C2

c = R1C1 + R2C2

d = R0 + R1 + R2

f = R0R1C1 + R0R2C2 + R1R2C2 + R2R1C1

(7)

Equation (7) is brought into (5) and simplified to (8).

θ1 = 8b−2T2

4b+2cT+T2

θ2 = 4cT
4b+2cT+T2 − 1

θ3 = − 4ab+2eT+dT2

4b+2cT+T2

θ4 = 8ab−2dT2

4b+2cT+T2

θ5 = − 4ab−2eT+dT2

4b+2cT+T2

(8)

Therefore, Equation (9) is obtained by (8).

a = θ4−θ3−θ5
1+θ1−θ2

b =
T2(1+θ1−θ2)
4(1−θ1−θ2)

c = T(1+θ2)
1−θ1−θ2

d = −θ3−θ4−θ5
1−θ1−θ2

f = T(θ5−θ3)
1−θ1−θ2

(9)

where T is the sampling time.

Suppose τ1 = c+
√

c2−4b
2 , τ2 = c−

√

c2−4b
2 . Thus, the resistance and capacitance parameters R0, R1,

R2, C1, and C2 can be obtained by (10).

R0 = a
R1 = [τ1(d− a) + ac− f ]/(τ1 − τ2)

R2 = d− a−R1

C1 = τ1/R1

C2 = τ2/R2

(10)

3. Online Parameter Identification Principle

3.1. Forgetting Factor Recursive Least Square Method

The RLS method is the most commonly used method for system parameter identification [19].
This method uses the square norm of the discrete function as a metric to get the identification parameters.
Equation (11) can be obtained from (6) when the system error is considered. It is a discrete expression
of the system to be identified.

E(k) = θ1E(k− 1) + θ2E(k− 2) + θ3I(k) + θ4I(k− 1) + θ5I(k− 2) + e(k) (11)

Define the parameter vector θ and the observation data matrixϕ as follows:

θ = [θ1θ2θ3θ4θ5]
T (12)



Energies 2019, 12, 2242 5 of 15

ϕ =


E(k− 1) E(k− 2) I(k) I(k− 1) I(k− 2)
E(k− 2) E(k− 3) I(k− 1) I(k− 2) I(k− 3)

...
E(k−m− 1) E(k−m− 2) I(k−m) I(k−m− 1) I(k−m− 2)

 (13)

where k denotes the current moment. m is the observation times. ϕ is the known observation data
matrix. θ is the parameter vector to be estimated. The matrix form of (11) can be expressed from (12)
and (13).

E = ϕθ+ e (14)

where e is the systematic error vector e = [e(k)e(k− 1) · · · e(k−m)]T. E is the system output vector,
and its data is the observation value of system output E = [E(k)E(k− 1) · · ·E(k−m)]T. The evaluation
function of the RLS method is given by (15).

J =
m∑

t=0

[e(k− t)]2 = eTe (15)

If the derivative of J is zero, the parameter vector θ′ can be obtained in the smallest case of (14).

∂J
∂θ

∣∣∣∣
θ=θ′

=
∂J
∂θ

[
(E−ϕθ)T(E−ϕθ)

]
= 0

ϕTE = ϕTϕθ
′

(16)

WhenϕTϕ is a full rank matrix, the parameter estimation of the RLS method is expressed by (17).

θ′ = (ϕTϕ)
−1
ϕTE (17)

On the basis of the RLS method, the FFRLS method is to add the forgetting factor λ as a coefficient
in the observed data matrix ϕ and the system output vector E, they are expressed by (18) and (19).
When each observation obtains new data, the proportion of new and old data is adjusted by exponential
weighting, and then the last obtained identification parameter is corrected. Thus, when the input
variables change, the FFRLS method can respond quickly and obtain better identification parameters
as the system observation data increase.

E = [E(k)λE(k− 1) · · ·λmE(k−m)]T (18)

ϕ =


E(k− 1) E(k− 2) I(k) I(k− 1) I(k− 2)
λE(k− 2) λE(k− 3) λI(k− 1) λI(k− 2) λI(k− 3)

...
λmE(k−m− 1) λmE(k−m− 2) λmI(k−m) λmI(k−m− 1) λmI(k−m− 2)

 (19)

3.2. Adaptive Forgetting Factor Analysis

λ allocates the weights of old and new data, and usually takes a constant of 0.98. When λ = 1,
the FFRLS method degenerates into the RLS method. Since the forgetting factor is constant, when
the online identification parameter error is very small, the introduction of the forgetting factor may
increase the online identification parameter error. When the online identification parameter error is
very large, it is desirable to optimize the forgetting factor to make the online identification have faster
convergence speed and reduce the identification error. Therefore, it is expected that the forgetting
factor can vary adaptively with the identification parameter error.

The most critical part of the variable forgetting factor least squares algorithm (VFFRLS) is how to
make the forgetting factor adaptively change. In the steady state, the forgetting factor λ is close to
or equal to 1. On the contrary, the forgetting factor λ tends to be a suitable value, which only affects



Energies 2019, 12, 2242 6 of 15

the error of the nearby moment, so that the online identification parameter can be quickly tracked to
the actual value, and λ is gradually increased to the optimum value at steady state. An equation for
calculating the adaptive forgetting factor is proposed to achieve the above purpose, it is expressed
by (20).

λ(k) = λmin + (1− λmin) · hε(k)

ε(k) = round(( e(k)
ebase

)
2
)

(20)

where λmin is the minimum value of the forgetting factor. Usually, the range of forgetting factor is
0.95~1 [15,20] and it is found by the experimental data that the equivalent circuit model parameters
identified by the AFFRLS algorithm are accurate and fast as the range of forgetting factor is selected
as 0.98~1, and, therefore, λmin is 0.98. h is the sensitivity coefficient. h may be selected as any value
between 0 and 1, which indicates the sensitivity of forgetting factor to the errors. When h is close to
1 (e.g., 0.99), the forgetting factor changes slowly from 1 to 0.98, which leads to the slow response
speed of parameter identification. Conversely, when h is close to 0 (e.g., 0.01), the forgetting factor
quickly changes from 1 to 0.98, which results in the response speed of parameter identification too
fast and reduces the accuracy. Therefore, h is generally chosen to be 0.9, which takes into account the
balance between the rapidity and accuracy of identification parameters. e(k) is the error at k time and
ebase is the allowable error reference. Equation (20) shows that the forgetting factor λ decreases rapidly
when the kth error e(k) exceeds ebase; hence, ebase is usually chosen according to the magnitude of the
expected error. When the identification parameter error is less than ebase, the identification parameters
are considered stable and λ changes to a larger value. When the error of identification parameters
is greater than ebase, the identification parameters are considered unstable and the change of ebase is
smaller. The function round(n) represents the integer closest to n. It can be seen from (20) that the
larger the error value, the smaller the forgetting factor ebase, and its variation range is between 0.98 and
1; thus, the forgetting factor can be adaptively changed with the error of identification parameters.

3.3. Implementation of Online Parameter Identification Algorithm Based on AFFRLS

It is seen from the above analysis that each parameter in the second-order RC equivalent circuit
model of the lithium-ion battery can be calculated by (10) as long as θ1, θ2, θ3, θ4, and θ5 in (4) are
estimated. Therefore, it is necessary to identify θ1, θ2, θ3, θ4, and θ5 by using the online parameter
identification algorithm based on AFFRLS. The overall block diagram is shown in Figure 2. The specific
implementation flow chart of AFFRLS is shown in Figure 3.

Energies 2019, 11, x FOR PEER REVIEW  6 of 18 

 

λ(k)=λmin + (1-λmin ) hε(k)

ε(k)=round((
e(k)
ebase

)2)
ሺ20ሻ 

where λmin is the minimum value of the forgetting factor. Usually, the range of forgetting factor is 
0.95~1 [15,20] and it is found by the experimental data that the equivalent circuit model parameters 
identified by the AFFRLS algorithm are accurate and fast as the range of forgetting factor is selected 
as 0.98~1, and, therefore, λmin is 0.98. h is the sensitivity coefficient. h may be selected as any value 
between 0 and 1, which indicates the sensitivity of forgetting factor to the errors. When h is close to 1 
(e.g., 0.99), the forgetting factor changes slowly from 1 to 0.98, which leads to the slow response speed 
of parameter identification. Conversely, when h is close to 0 (e.g., 0.01), the forgetting factor quickly 
changes from 1 to 0.98, which results in the response speed of parameter identification too fast and 
reduces the accuracy. Therefore, h is generally chosen to be 0.9, which takes into account the balance 
between the rapidity and accuracy of identification parameters. e(k) is the error at k time and ebase is 
the allowable error reference. Equation (20) shows that the forgetting factor λ decreases rapidly 
when the kth error e(k) exceeds ebase; hence, ebase is usually chosen according to the magnitude of the 
expected error. When the identification parameter error is less than ebase , the identification 
parameters are considered stable and λ changes to a larger value. When the error of identification 
parameters is greater than ebase, the identification parameters are considered unstable and the change 
of ebase is smaller. The function round(n) represents the integer closest to n. It can be seen from (20) 
that the larger the error value, the smaller the forgetting factor ebase, and its variation range is between 
0.98 and 1; thus, the forgetting factor can be adaptively changed with the error of identification 
parameters. 

3.3. Implementation of Online Parameter Identification Algorithm Based on AFFRLS 

It is seen from the above analysis that each parameter in the second-order RC equivalent circuit 
model of the lithium-ion battery can be calculated by (10) as long as θ1, θ2, θ3, θ4, and θ5 in (4) are 
estimated. Therefore, it is necessary to identify θ1, θ2, θ3, θ4, and θ5 by using the online parameter 
identification algorithm based on AFFRLS. The overall block diagram is shown in Figure 2. The 
specific implementation flow chart of AFFRLS is shown in Figure 3. 

U1

C1 C2

R1 R2R0

Second-order RC model

QI

UQ=SOC

Uoc
U2

I

UL

Uoc is calculated based on (24) 
UL
^

Online model parameter 
identification based on 

AFFRLS algorithm

Uoc
^

θ^

SOC
^

UL
^

 
Figure 2. Overall block diagram of the online identification parameters. 
Figure 2. Overall block diagram of the online identification parameters.



Energies 2019, 12, 2242 7 of 15
Energies 2019, 11, x FOR PEER REVIEW  7 of 18 

 

Initialize λ, h, ebase, E(-1), 
E(-2), θ(0) and Po(0)

Update estimation parameter θ(k)
)()()1()( kekKkk o+−= θθ

Calculate model parameters
R0、R1、R2、C1、C2

Is the  estimation completed?

Data input matrix
TkIkIkIkEkEk )]2()1()()2()1([)( −−−−=ϕ

Calculate output prediction and error

)()1()()()(
)()1()(

kkkUkUke
kkkE

T
ocL

T

ϕθ
ϕθ

−−−=

−=

Calculate gain Ko

)()()(
)()(

kkPk
kkPK

o
T

o
o ϕϕλ

ϕ
+

=

Update covariance matrix
)(])()([1)1( kPkkKIkP o

T
oo ϕ

λ
−=+

End

Update forgetting factor

)))((()(

)1()(

2

base

)(
minmin

e
keroundk

hk k

=

⋅−+=

ε

λλλ ε

k=k+1

No

Yes

 
Figure 3. Flow chart of the adaptive forgetting factor recursive least square (AFFRLS) algorithm. 

The online parameter identification algorithm is performed by the AFFRLS. It is known from 
(12) and (13) that θ(k)=[θ1 θ2 θ3 θ4 θ5]T  and ϕ(k)=[E(k-1) E(k-2) I(k) I(k-1) I(k-2)]T . Where ϕ(k)  is 
the known data at time k, and θ(k) is the parameter to be estimated at time k. 

The given initial value θ(0) generally is a sufficiently small real matrix. At the two moments 
before the start of the algorithm, the input current is zero, and the open circuit voltage Uoc is equal to 
the terminal voltage UL, so E(-1)=E(-2)=0, and the initial ϕ(0) value is [0 0 0 0 0]. The gain matrix Ko 
is calculated by (21) [14]. 

Ko=
Po(k-1)ϕ(k)

λ+ϕ(k)TPo(k-1)ϕ(k)
ሺ21ሻ 

where Po(k) is the covariance matrix at time k and its initial value is an identity matrix. 

Figure 3. Flow chart of the adaptive forgetting factor recursive least square (AFFRLS) algorithm.

The online parameter identification algorithm is performed by the AFFRLS. It is known from (12)
and (13) that θ(k) = [θ1θ2θ3θ4θ5]

T and ϕ(k) = [E(k− 1)E(k− 2)I(k)I(k− 1)I(k− 2)]T. Where ϕ(k) is
the known data at time k, and θ(k) is the parameter to be estimated at time k.

The given initial value θ(0) generally is a sufficiently small real matrix. At the two moments
before the start of the algorithm, the input current is zero, and the open circuit voltage Uoc is equal to
the terminal voltage UL, so E(−1) = E(−2) = 0, and the initial φ(0) value is [0 0 0 0 0]. The gain matrix
Ko is calculated by (21) [14].

Ko =
Po(k− 1)ϕ(k)

λ+ ϕ(k)TPo(k− 1)ϕ(k)
(21)

where Po(k) is the covariance matrix at time k and its initial value is an identity matrix.
Hence, the estimated parameter θ(k) is updated by (22).

θ(k) = θ(k− 1) + Ko(k)[UL(k) −Uoc(k) − θ(k− 1)Tϕ(k)] (22)
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where the open circuit voltage Uoc(k) at time k is given by the polynomial between the open circuit
voltage (OCV) and the SOC.

λ is obtained from (20) and taken into (21) to obtain the gain matrix Ko. Bringing Ko into (22) and
θ1, θ2, θ3, θ4, and θ5 are obtained. The estimated values of R0, R1, R2, C1, and C2 at time k can then be
obtained by (9) and (10).

According to (23), the covariance matrix Po(k) is updated by the obtained gain matrix Ko.
The parameter identification at the next moment is performed again. Where I is an identity matrix.

Po(k) =
1
λ
[I −Ko(k)ϕ(k)

T]Po(k− 1) (23)

4. Experimental Verification and Analysis

The special power supply is used to charge and discharge the 3.2 V/36 Ah lithium iron phosphate
battery produced by Shandong Wina Green Power Co., Ltd in Weifang, China. The sampling time is T
= 10 s and the environment temperature is 25 ◦C. The experimental platform and the specification of
the battery are shown in Figure 4 and Table 1, respectively.
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Table 1. The battery specifications.

Parameter Value

Rated capacity (Ah) 36
Nominal voltage (V) 3.2

Standard charging/discharging current (A) 12
Charging cut-off voltage (V) 3.7

Discharging cut-off voltage (V) 2.5
Maximum continuous discharging current (A) 108
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4.1. OCV-SOC Curve

Intermittent constant current charging and discharging experiments with 0.33 C standard rate
current recommended by a company are carried out. The charging and discharging experimental
curves are shown in Figure 5, and the obtained SOC-OCV data are given by Table 2. Polynomial fitting
of the experimental data is performed by using Matlab software, Equation (24) is obtained, which
provides an open circuit voltage Uoc for the FFRLS or AFFRLS algorithm. The OCV-SOC relationship
curve under this condition is shown in Figure 6. It is seen from Figure 6 that the OCV-SOC curve of the
entire charging and discharging process is approximately a hysteresis curve. Therefore, the influence
of the charging and discharging current direction on the open circuit voltage needs to be considered
during the online parameter identification.

UocDis = 1813.4∗SOC9
−8629.9∗SOC8 + 17470∗SOC7

−19595∗SOC6

+13285∗SOC5
−5570.7∗SOC4 + 1419.9∗SOC3

−208.1∗SOC2

+15.953 ∗ SOC + 2.7228
UocCha = 3060.5 ∗ SOC9

−13713∗SOC8 + 25909∗SOC7
−26862∗SOC6

+16655∗SOC5
−6310.9∗SOC4 + 1434.4 ∗ SOC3

−185.1∗SOC2

+12.471 ∗ SOC + 2.9002

(24)
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Figure 5. Voltage and current curves of the intermittent constant current charging and discharging
experiments: (a) Charging process; (b) Discharging process.

Table 2. The state of charge (SOC)-open circuit voltage (OCV) data.

Item 1 2 3 4 5 6 7 8 9 10 11 12 13

Intermittent constant current charging experiments with 0.33 C standard current

SOC/% 0 8.96 17.92 26.88 35.84 44.80 53.76 62.72 71.68 80.64 89.60 98.56 100

OCV/V 2.902 3.233 3.270 3.304 3.311 3.311 3.311 3.326 3.344 3.348 3.344 3.341 3.615

Intermittent constant current discharging experiments with 0.33 C standard current

SOC/% 0 1.49 10.45 19.40 28.36 37.31 46.27 55.22 64.18 73.13 82.09 91.04 100

OCV/V 2.683 2.939 3.214 3.244 3.270 3.289 3.292 3.300 3.307 3.330 3.333 3.333 3.393
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4.2. Online Parameter Identification of Lithium-Ion Battery Equivalent Model

The dynamic stress test (DST) experiment has a strict charge and discharge process, it is shown in
Figure 7. The cyclic charge current rates are 0.22 C, 0.33 C, and 0.5 C, and the cyclic discharge current
rates are 0.22 C and 0.33 C, respectively. Under these conditions, the validity of the online parameter
identification algorithm can be more rigorously verified.
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Figure 7. Charge and discharge current waveform of dynamic stress testing (DST) experiment.

Figures 8 and 9 are the identified parameter curves of the FFRLS algorithm and the AFFRLS
algorithm under the DST conditions, respectively. Comparing Figures 8 and 9, it can be seen that the
parameters identified by the FFRLS algorithm are relatively stable, but the identification ability of
dynamic parameter change is insufficient. The parameters identified by the AFFRLS algorithm have
obvious fluctuations, which more accurately reflect the complex characteristics of real-time variation of
each parameter with the change of charging and discharging current. The dynamic parameters also
have more spikes, which fully highlights the identification ability when charging and discharging
currents are frequently switched. Figure 10 shows the adaptive forgetting factor λ. It can be seen that
the forgetting factor λ has many spikes. And it is adaptively varied with the change of charging and
discharging current, which is beneficial to enhance the dynamic parameter identification ability of the
AFFRLS algorithm.
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Figure 8. Parameter identification results of the forgetting factor recursive least square (FFRLS)
algorithm: (a) Identification curve of R0; (b) Identification curve of R1; (c) Identification curve of R2;
(d) Identification curve of C1; (e) Identification curve of C2.
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Figure 9. Parameter identification results of the AFFRLS algorithm: (a) Identification curve of R0;
(b) Identification curve of R1; (c) Identification curve of R2; (d) Identification curve of C1; (e) Identification
curve of C2.
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4.3. Comparative Analysis of the Prediction Effect of the Lithium-Ion Battery Terminal Voltage

The experimental conditions in Figures 11 and 12 are the same as those in Figure 7. The FFRLS
algorithm and the AFFRLS algorithm are used to predict the lithium-ion battery terminal voltage
respectively on the basis of the identification parameters shown in Figures 8 and 9, and Figure 11 is a
comparison of the measured terminal voltage and the terminal voltage identified by the FFRLS and
AFFRLS algorithms. Figure 12 is a comparison of the measured terminal voltage and the terminal
voltage identified by the VFFRLS algorithm of literature [16] with a certain weight coefficient. It may be
determined from Figures 11 and 12 which algorithm identifies the circuit parameters more accurately
and responds faster.
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errors; (c) Distribution statistics of relative errors.
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Figure 12. Comparison of the measured terminal voltage and the terminal voltage identified by
the VFFRLS algorithm of the literature [16] with a certain weight coefficient: (a) Terminal voltage
comparison curve; (b) Relative error of terminal voltages.

Figure 11a is the measured terminal voltage and the terminal voltage identified by the FFRLS
and AFFRLS algorithms. Figure 11b shows the scatter plot of relative error for FFRLS and AFFRLS
algorithms. The range of absolute value of relative errors in Figure 11b is divided into 10 intervals, and
the points of relative errors falling into each interval are counted, and Figure 11c is obtained. As can be
seen from Figure 11c, the relative error distribution of AFFRLS in the range of (±0.5%) is significantly
higher than that of FFRLS, while the relative error distribution in other ranges is mostly lower than
that of FFRLS.

From the aspect of the sample average and standard deviation, sample average value of the relative
errors is 0.372% and sample standard deviation of the relative errors is 0.947 for FFRLS. The AFFRLS
sample average value is 0.136%, and the sample standard deviation is 0.526. The sample average and
standard deviation of AFFRLS algorithm are smaller than those of FFRLS algorithm.

The FFRLS algorithm and AFFRLS algorithm are tested by F-test. Assume H0: There is no
significant difference in the total variance between the two algorithms. H1: There is a significant
difference in the total variance between the two algorithms. Significance level is set to 0.05 and tail
type is bilateral, H = 1, p = 3.9233 × 10−109 is obtained. The confidence interval of mean difference is
[2.9293, 3.5856], and we can see from H = 1, p = 3.9233 × 10−109 < 0.05 that the original hypothesis is
not accepted, i.e., there is a significant difference in variance between the two algorithms.

The FFRLS algorithm and AFFRLS algorithm are tested by t-test. Assume H0: There is no
significant difference in the average value of the two algorithms. H1: There is a significant difference in
the average value of the two algorithms. The significance level is 0.05, the tail type is bilateral, and
the variance type is unequal. H = 1, p = 3.9716 × 10−17 is obtained, the confidence interval of mean
difference is [0.18189, 0.29135]. We can see from H = 1, p = 3.9716 × 10−17 < 0.05 that the original
hypothesis is not accepted, i.e., there is a significant difference in the average value between the
two algorithms.

In summary, the average value of AFFRLS algorithm is closer to zero than that of FFRLS algorithm,
and the variance is smaller, which shows that the parameter identification result of AFFRLS algorithm
is more accurate than that of FFRLS algorithm.

Figure 13 is a real-time variation curve of the forgetting factor obtained by the algorithm of
literature [16] under a certain weight coefficient. It can be seen from Figure 12 that this algorithm also
has a good terminal voltage prediction capability, but it is more demanding on the weight coefficient.
When the weight coefficient is not appropriate, the forgetting factor will be too small and the parameter
changes drastically, which may lead to the divergence of the algorithm. While the AFFRLS algorithm
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in this paper limits the variation range of the forgetting factor, it has better stability and the range of
correlation coefficients is more relaxed.Energies 2019, 11, x FOR PEER REVIEW  14 of 15 
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The VFFRLS algorithm of the literature [16] to be compared is written into the same program
together with the AFFRLS algorithm proposed in this paper. The two algorithms run in parallel and
measure the computing time corresponding to each experimental data respectively. Last, the total
computing time of the two algorithms is obtained by accumulating the computing time, respectively.
The average calculation time of the AFFRLS algorithm in this paper is 17.65 ms, and that of the
literature [16] is 26.05 ms. The average calculation time is saved by 32.25%. This indicates that the
adaptive algorithm of this paper is simpler, the operation time is shorter, and the real-time performance
is better, which is beneficial to the practical application of the algorithm in the micro-controller such as
digital signal processor (DSP).

5. Conclusions

In this paper, the second-order RC equivalent circuit model of the lithium-ion battery is analyzed,
and the online identification algorithm of the equivalent circuit model parameters based on the AFFRLS
is studied. The correctness of the equivalent circuit model parameter identification in the case of
charging and discharging is verified by the DST experiment, and the prediction terminal voltage
obtained by the model parameters are compared with the actual terminal voltage. The experimental
results show that the proposed AFFRLS algorithm has a more accurate parameter identification ability
than the original FFRLS algorithm. Compared with other VFFRLS algorithms, it has better stability of
parameter identification and shorter operation time.
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