
energies

Article

Classification of Renewable Sources of Electricity in
the Context of Sustainable Development of the
New EU Member States
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Abstract: Climate change and awareness of the need to care for the environment have resulted in a
global increase in the interest in renewable energy sources. The European Union (EU) is active in
this respect and requires Member States to fulfill specific plans in the transformation of their energy
systems. We employed hierarchical cluster analysis in an attempt to distinguish those countries
among the new EU Member States that increased their electrical capacity from renewable energy
sources to the greatest extent while paying attention to their energy intensity. The analyses were
conducted in two scenarios for both 2004 and 2016. The first scenario assumed an analysis of all
known renewable energy sources, whereas in the second scenario, only renewable energy sources
from wind and solar power plants were included. The division of analyses into these two variants
showed the importance of the differences in the energy assessment of individual countries, depending
on classification of renewable energy sources. We identified groups of countries where electrical
capacity from renewable energy sources increased the most. Conducting analyses using two variants
allowed distinguishing countries that based most of their renewable energy on modern renewable
energy sources, such as solar and wind power plants. The inclusion of gross domestic product in the
analyses allowed us to identify countries with the worst energy efficiency value.

Keywords: renewable energy; sustainable development; gross domestic product; GDP; electrical
capacity; energy intensity; hierarchical cluster analysis

JEL Classification: Q01; Q40; Q48; Q56; Q48; Q20; R11; O10

1. Introduction

Electricity is the basis for the functioning of the modern world, but its acquisition is often not
environmentally friendly. Nearly 200 years have passed since the beginning of the industrial revolution,
but many countries still base their energy on fossil fuels [1–3]. Along with an increase in ecological
awareness, many countries are aiming to reduce human interference in the natural environment and
obtain energy from renewable sources. Wind energy, solar radiation, precipitation, tides, sea waves,
and geothermal energy are considered renewable energy sources [4,5]. Biofuels, biomass, and biogas
are also considered renewable energy sources if their origin is ecological, but their conversion into
energy through combustion is not [6,7]. Similarly, the qualification of hydroelectric power plants as
renewable energy sources is controversial. Large hydroelectric plants have a negative impact on the
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environment [8–16], and for this reason, as in case of biofuels, they are often not included in studies on
renewable energy sources [17–22].

Many factors impact the introduction of pro-ecological solutions into the energy policy of states.
Apart from the most obvious, such as the level of economic development and the volume of energy
production, there are also important geographical determinants [23,24] or social acceptance factors of
renewable energy prices must be considered [25–27]. In the literature, these factors are often analyzed
in pairs or groups, e.g., gross domestic product (GDP) and CO2 emissions [28–33].

Regardless of the region of the world, the majority of energy demand forecasts show that demand
will grow in the within several years or even a few decades [3,34–42]. Various studies show a relationship
between economic development and energy demand. Most of the papers indicate that economic
growth determines energy demand, which is referred to as the “conservation hypothesis” [43–49].
The “growth hypothesis” states that economic growth depends on energy production, but, as research
shows, economic growth happens when a government policy leads to an excessive reduction of energy
consumption [38,50–53]. Regardless of which of the listed factors is a determinant, individual countries
need to implement a sustainable growth policy that maintains a balance between the development of
countries and regions and the demand for energy [24,54–60]. International commitments and growing
environmental awareness result in the same countries often deciding to subsidize investments in
renewable energy sources to ensure uninterrupted energy supply to customers, and to simultaneously
to provide green energy [2,61–65]. Notably, subsidies do not include hydroelectric power plants
because they cannot always be considered environmentally friendly and, due to the need to diversify
energy sources, do not fit into sustainable development policy [10,17,18,66].

In Europe, the need to reduce energy consumption and care for the environment started being
widely discussed in the late 1960s [67–69]. The oil crises of 1973–1974 and 1979–1982 contributed
to discussions on the common energy market, which was reflected in the Treaty of Lisbon in 1992.
The four main assumptions of the common energy policy were contained in Article 194 of the Treaty on
the Functioning of the European Union (TFEU) and they concerned: guaranteeing the functioning of
the energy market; guaranteeing energy supplies to European Union (EU) countries; promoting energy
efficiency and development of new, renewable energy sources of energy; and promoting inter-state
energy connections.

In subsequent years, further documents and directives were published, e.g., Green Paper, White
Paper, and Directives 96/92/EC and 98/30/EC, aimed at regulating the common energy market in the
EU, considering the specific energy markets of individual Member States. The low effectiveness in the
implementation of new laws in the Member States and the largest enlargement of the EU in history
in 2004 created a need to develop a new law that would effectively regulate the common energy
market. The Directive of 2009 imposed an obligation on Member States to reduce greenhouse gas
emissions considering the structure of energy systems of individual countries and the level of their
economic development.

The presented legal regulations are reflected in data on renewable energy sources in EU. The data
show that at the beginning of the 21st century, the energy infrastructure was modernized to a greater
extent so that it would be less harmful to the environment [1]. This is visible for the entire EU and
even more so among its new Member States, as shown in Figure 1. This chart includes the aggregated
capacity of renewable energy sources from wind and solar power plants.
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Figure 1. Joint electrical capacity in the European Union (EU). Source: Own visualizations based on 
[70]. 

As mentioned above, the EU, while regulating the common energy market, pays special 
attention to caring for the natural environment, but simultaneously understands that the energy 
markets and economies of individual countries differ. It is important to consider these differences in 
requirements for individual countries as, for example, in Central and Eastern European countries, 
(CEECs) rapid growth of energy production from renewable sources to the level in richer countries 
of Western Europe cannot be expected. Germany, for example, produces 42% of electricity from 
renewable sources [25]. Not only is the level of wealth of a given country significant, as measured by 
GDP, but also the initial structure of renewable energy shares in all types of energy sources. The ratio 
of energy to gross domestic product (E/GDP), i.e., energy intensity, is also important [35,54,71–76]. 
This factor describes the energy efficiency of the state's economy and indicates the cost of converting 
energy to GDP. The values of these factors differ significantly between the countries of Western 
Europe and Central and Eastern Europe and change dynamically over time. The best example for 
comparison is Germany and Romania. In 1992, energy intensity in Romania was four times higher 
than in Germany, and in 2013, it was only twice as much [35]. Countries that joined the EU in 2004 
and subsequent years [77,78] are significantly different from the older Member States of the EU. 
Differences are related to many aspects, among which the most important from the point of view of 
this paper are the level of economic development and the structure of energy sources. The GDP of 
new Member States of the EU was much lower than that of the Member States of the EU from Western 
Europe [79,80], and with few exceptions, combustible fuels were the main sources of energy for new 
EU Member States [81–83]. For this reason, we focused on analyzing renewable energy sources 
against the background of economic growth only among new Member States of the EU. The sources 
of renewable energy were analyzed using two variants. In the first, all officially recognized renewable 
energy sources were considered as renewable energy sources. In the second variant, to remove the 
impact of the hydroelectric power stations built several dozens of years ago, only wind and solar 
power plants were accepted as renewable sources. Both options for the classification of renewable 
energy sources were analyzed for 2004 and 2016 to determine the level of change. The tests were 
performed with an application of cluster analysis [84–87], enabling us to create groups of countries 
similar to each other in terms of renewable energy sources and GDP in 2004 and 2016. 

In the literature, many publications have separately analyzed renewable energy sources as a 
whole or individually. A novelty in our article is a comparative analysis that considered the different 
classifications of renewable energy sources. As such, we were able to determine the differences in the 
energy assessment of individual countries, depending on the classification of renewable energy 
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Figure 1. Joint electrical capacity in the European Union (EU). Source: Own visualizations based on [70].

As mentioned above, the EU, while regulating the common energy market, pays special attention
to caring for the natural environment, but simultaneously understands that the energy markets and
economies of individual countries differ. It is important to consider these differences in requirements for
individual countries as, for example, in Central and Eastern European countries, (CEECs) rapid growth
of energy production from renewable sources to the level in richer countries of Western Europe cannot
be expected. Germany, for example, produces 42% of electricity from renewable sources [25]. Not only
is the level of wealth of a given country significant, as measured by GDP, but also the initial structure
of renewable energy shares in all types of energy sources. The ratio of energy to gross domestic
product (E/GDP), i.e., energy intensity, is also important [35,54,71–76]. This factor describes the energy
efficiency of the state’s economy and indicates the cost of converting energy to GDP. The values of
these factors differ significantly between the countries of Western Europe and Central and Eastern
Europe and change dynamically over time. The best example for comparison is Germany and Romania.
In 1992, energy intensity in Romania was four times higher than in Germany, and in 2013, it was only
twice as much [35]. Countries that joined the EU in 2004 and subsequent years [77,78] are significantly
different from the older Member States of the EU. Differences are related to many aspects, among which
the most important from the point of view of this paper are the level of economic development and the
structure of energy sources. The GDP of new Member States of the EU was much lower than that of
the Member States of the EU from Western Europe [79,80], and with few exceptions, combustible fuels
were the main sources of energy for new EU Member States [81–83]. For this reason, we focused on
analyzing renewable energy sources against the background of economic growth only among new
Member States of the EU. The sources of renewable energy were analyzed using two variants. In the
first, all officially recognized renewable energy sources were considered as renewable energy sources.
In the second variant, to remove the impact of the hydroelectric power stations built several dozens of
years ago, only wind and solar power plants were accepted as renewable sources. Both options for
the classification of renewable energy sources were analyzed for 2004 and 2016 to determine the level
of change. The tests were performed with an application of cluster analysis [84–87], enabling us to
create groups of countries similar to each other in terms of renewable energy sources and GDP in 2004
and 2016.

In the literature, many publications have separately analyzed renewable energy sources as a
whole or individually. A novelty in our article is a comparative analysis that considered the different
classifications of renewable energy sources. As such, we were able to determine the differences in
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the energy assessment of individual countries, depending on the classification of renewable energy
sources. Separation of modern energy sources from all energy sources in comparison with the GDP
also enabled an assessment of the energy efficiency from these renewable energy sources.

2. Materials and Methods

2.1. Data

We analyzed the changes in the capacity of the electrical infrastructure with a special focus on
renewable energy sources and their relationship with GDP. The analysis included countries that have
been Member States of the EU since 2004. The largest number of countries joined the EU on May 1,
2004: Cyprus, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia,
and Slovenia. On January 1, 2007, Bulgaria and Romania joined, as did Croatia on July 1, 2013.
Since 2004, the EU expanded by 13 countries; the main ones were from Central and Eastern Europe,
as presented in Figure 2.
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Figure 2. Map of the studied countries with the year they joined the EU.

The analyzed data included the capacity of the electrical infrastructure and the GDP of the
aforementioned countries, and they were collected from Eurostat websites [70,88]. We are aware of
possible errors during the process of data sampling [89]; therefore, the data were collected and verified
again after a few weeks. The data have annual periodicity. Recent data on electrical infrastructure
(accessed on June 14, 2018) were from 2016, and GDP data were from 2017. Therefore, the surveys
included a 13-year period from 2004 to 2016. The data on the capacity of the electrical infrastructure
are expressed in megawatts (MW), and GDP at current prices in million euro.
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2.2. Methodology

For data sets that contain different features, clustering can be used to compare them [84].
A taxonomic analysis was used to designate groups of countries similar in terms of the capacity of
the electrical infrastructure and share in the GDP [85] using Ward’s clustering, which is a hierarchical
method [86]. This method, which is an agglomerative clustering method, is one of the best, through
which homogeneous aggregates can be obtained.

In this method, at the beginning, it is assumed that each observation vector is a separate cluster.
Then, between all pairs of vectors in Equations (1) and (2), using the squared Euclidean distance (SED)
in Equation (3), a distance matrix is determined, using Equation (4), which describes their similarity.

a = [a1, . . . , ai] (1)

b = [b1, . . . , bi] (2)

where a and b are the observation vector

d(a, b) =

√√√ p∑
i=1

(ai − bi)
2 (3)

where p denotes the number of variables (vector length).

d(a, b) =


0 d12 · · · d1n

d21 0 · · · d2n
...

...
. . .

...
dn1 dn2 · · · 0

 (4)

where dij is the distance between the ith and the jth observation
The above distance matrix is based on physical space. This is reminiscent of the topological

distance matrix based on network structures [90,91]. Clusters (groups) are created by applying one of
several available grouping methods on the distance matrix [92–94]. In Ward’s method, the distance
between clusters is estimated by an analysis of variance. It is assumed that each cluster is represented
by a centroid, as shown in Figure 3.
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At each stage of the agglomeration hierarchical grouping process into a new cluster, the two most
similar clusters are combined, e.g., A and B (Figure 4), for which there is the smallest increase in the
sum of the squared error (SSE):

d(A, B) = SSEA∪B − (SSEA + SSEB) (5)

SSEA∪B =

nAB∑
i=1

(yi − yAB)
′(yi − yAB) (6)
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SSEA =

nA∑
i=1

(ai − a)′(ai − a) (7)

SSEB =

nB∑
i=1

(
bi − b

)
′
(
bi − b

)
(8)

where ai represents the ith observation vector in cluster A, a is the centroid of cluster A, bi represents
the ith observation vector in cluster B, b the centroid of cluster B, yi represents the ith observation
vector in cluster AB, and yAB the centroid of newly formed cluster AB.
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The minimize function using the Ward minimal variance method can also be written as:

d(A, B) =
nAnB

nA + nB

(
a− b

)
′
(
a− b

)
(9)

where a and b represent the centroids of clusters A and B, respectively.
The process of determining the distance between clusters and joining them ends when all clusters

are combined into one large cluster, e.g., ABCDEF in Figure 4.
Variables analyzed with the use of the Ward’s method should have a coefficient of variation

greater than 10% and should not be very strongly correlated. However, leaving variables out that do
not meet these criteria for an analysis is allowed if these variables are significant from the point of view
of the studied phenomenon.

3. Results

3.1. Cluster Analysis

As mentioned above, the data used for the analyses included the electrical capacity and GDP in the
new EU Member States. Their short forms are introduced for the analysis: EC is the Electrical Capacity,
which is the sum of the capacity of all types of electricity sources; ECR is the Electrical Capacity
Renewable, which is the total capacity of the renewable energy sources by the most commonly used
divisions, i.e., hydro, geothermal, wind, and solar; and ECRN denotes Electrical Capacity Renewable
New, which is the total capacity of only new types of renewable energy sources, i.e., wind and solar.

Cluster analysis was conducted for the data from the beginning and end of the analyzed period,
i.e., 2004 and 2016. For this purpose, the variable designations introduced above were additionally
determined for the relevant year: EC2004, ECR2004, ECRN2004, GDP2004, EC2016, ECR2016, ECRN2016,
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and GDP2016. These variables were used to create indicators describing the ratio of electrical capacity
from renewable sources to total electric capacity and the ratio of electrical capacity from renewable
sources and all sources in the ratio of GDP, which is referred to in the literature as energy intensity.
The developed indicators were divided into those concerning the analysis of all renewable energy
sources (indicators renewable energy; IRE) and those that concern only renewable energy sources of new
type (indicators renewable energy new; IREN) for both 2004 and 2016, as presented in Tables 1 and 2.

Table 1. Indicators of renewable energy.

IRE 2004 IRE 2016

ECR2004/EC2004 ECR2016/EC2016
EC2004/GDP2004 EC2016/GDP2016

ECR2004/GDP2004 ECR2016/GDP2016

Table 2. Indicators of new renewable energy.

IREN 2004 IREN 2016

ECRN2004/EC2004 ECRN2016/EC2016
EC2004/GDP2004 EC2016/GDP2016

ECRN2004/GDP2004 ECRN2016/GDP2016

The above division of indicators allowed us to perform four cluster analyses (two for each of the
analyzed years) to check how these groups changed over the period, but also to determine how the
type of selected energy influenced the formation of these groups. The coefficients of variation of all
indicators presented in Table 3 are 10% above the criterion, which means that they could be used for
the cluster analysis.

Table 3. Coefficients of variation of the indicators.

Indicator Coefficient of Variation (%)

ECR2004/EC2004 104.3
ECR2010/EC2010 78.8
ECR2016/EC2016 54.0

ECRN2004/EC2004 240.0
ECRN2010/EC2010 85.4
ECRN2016/EC2016 41.9
EC2004/GDP2004 65.2
EC2010/GDP2010 40.8
EC2016/GDP2016 36.8

ECR2004/GDP2004 104.4
ECR2010/GDP2010 90.4
ECR2016/GDP2016 74.7

ECRN2004/GDP2004 227.0
ECRN2010/GDP2010 100.7
ECRN2016/GDP2016 67.8

Correlation coefficients between indicators are presented in Table 4.
The coefficient of correlation only exceeded 90% for the pairs of ECRN2004/GDP2004—ECRN2004/

EC2004. However, due to the high volatility of ECRN2004/GDP2004 of 227.0%, ECRN2004/EC2004 of
240.0%, and the need to examine this indicator, it was not rejected. The need to maintain the same set of
variables to ensure comparability of results was also an argument for including these indicators. When
analyzing the source data for 2004, we confirmed that the resulting correlation is apparent because
it resulted from the lack of renewable energy sources of a new type in almost all studied countries,
which further affected the almost zero value of the discussed factors. In subsequent years, the electrical
capacity from new types of renewable energy sources increased, which confirms the need to retain all
indicators to ensure the comparability of groups.
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Table 4. Coefficients of variation of indicators.

Indicator i—Indicator j Coefficient of Variation (%)

ECR2004/EC2004—EC2004/GDP2004 7.3
ECR2004/GDP2004—EC2004/GDP2004 63.0
ECR2004/GDP2004—ECR2004/EC2004 77.5
ECR2010/EC2010—EC2010/GDP2010 20.6

ECR2010/GDP2010—EC2010/GDP2010 62.2
ECR2010/GDP2010—ECR2010/EC2010 85.6
ECR2016/EC2016—EC2016/GDP2016 39.7

ECR2016/GDP2016—EC2016/GDP2016 80.9
ECR2016/GDP2016—ECR2016/EC2016 83.9
ECRN2004/EC2004—EC2004/GDP2004 −4.4

ECRN2004/GDP2004—EC2004/GDP2004 −0.8
ECRN2004/GDP2004—ECRN2004/EC2004 99.4

ECRN2010/EC2010—EC2010/GDP2010 25.4
ECRN2010/GDP2010—EC2010/GDP2010 69.5

ECRN2010/GDP2010—ECRN2010/EC2010 85.2
ECRN2016/EC2016—EC2016/GDP2016 23.9

ECRN2016/GDP2016—EC2016/GDP2016 82.3
ECRN2016/GDP2016—ECRN2016/EC2016 73.6

Countries were grouped separately for each year: once for the indicators including all renewable
energy sources (IRE), and the second for the indicators where only wind and solar power plants
(IRENs) were accepted as renewable energy sources. In total, four analyses were performed, where the
division of the optimal number of clusters was determined [40,41]. Statistica 12.5 (TIBCO Software
Inc., Palo Alto, CA, USA) was used as a tool to develop clusters.

3.1.1. Groups for IRE Indicators in 2004

In 2004 (and many years before), hydroelectric and geothermal power plants were the most
frequently used renewable sources of electricity in the world, and the main source of energy in the
Central and Eastern European countries (CEES) was hydroelectric power plants. While grouping such
data in 2004, a tree diagram was developed, as shown in Figure 5.
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Cutting off the tree diagram at a distance of 10 resulted in three clusters containing countries
(Table 5) with the averages of the groups shown in Table 6. The analysis of variance (ANOVA) for
the indicators from Table 6 was completed at the 0.05 significance level. The P-value for each of
the indicators is smaller than the assumed level of significance, which means statistically significant
differences exist between the groups of countries listed in Table 5.

Table 5. Clusters for IRE in 2004.

Group No. A B C

1 Cyprus Croatia Bulgaria
2 Czech Republic Latvia
3 Estonia Lithuania
4 Hungary Romania
5 Malta Slovakia
6 Poland Slovenia

Table 6. Group averages for IRE in 2004.

Group\Indicator ECR2004/EC2004 EC2004/GDP2004 ECR2004/GDP2004

A 0.034000 0.150845 0.005761
B 0.396833 0.210875 0.075654
C 0.232000 0.585706 0.136107

All groups 0.220944 0.212002 0.048046
p-value 0.000742 0.002187 0.005618

To compare groups, on the basis of Table 6, the values of indicators in each group were determined
in relation to the general average, as shown in Figure 6.
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Figure 6. Comparison of group averages for IRE in 2004.

When using cluster analysis for traditional renewable energy sources, three clusters were created
for the IRE data in 2004. In Table 5, groups A and B contain six countries, while group C only contains
Bulgaria. When analyzing Figure 6, in this group (and the only country in this group), renewable energy
sources (ECR2004/EC2004) mean that it is ranked in the middle of the surveyed countries. However,
high energy intensity (EC2004/GDP2004 and ECR2004/GDP2004) was the main reason for the creation
of this group, which means high energy costs are responsible for generating the GDP of Bulgaria.
Groups A and B are opposites in terms of traditional, renewable energy sources. Group A included
countries whose main sources of electricity were non-renewable energy sources, and renewable energy
sources accounted for only a small percentage of all electrical capacity or none at all, as shown in
Figure 7.
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Figure 8. Tree diagram for IRE in 2016.  
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Figure 7. Energy sources of the countries in group A in 2004.

In the countries from group B, traditional renewable energy sources accounted for for several
dozen percent of all electricity sources, and the cost of electricity converted into GDP was moderate.
This means that group B is the most ecological group of countries according to the assumed criterion
for 2004.

3.1.2. Groups for IRE Indicators in 2016

After joining the EU, new countries are obliged to implement a pro-ecological policy. For example,
the Directive 2009/29/EC obliged Member States to reduce greenhouse gas emissions. With the
increasing demand for electricity and restrictions resulting from EU directives, the most reasonable
solution was to increase the electrical infrastructure capacity through investments in renewable energy
sources. Treating all types of renewable energy sources in the same way and subjecting the countries
to a re-analysis of clusters for 2016, a tree diagram was produced, as shown in Figure 8.

1 

 

 

Figure 8. Tree diagram for IRE in 2016.

By cutting off the tree diagram at a distance of 10 for 2016 and 2004, three clusters re-emerged.
Countries belonging to individual groups and average values in these groups are listed in Tables 7 and 8.
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Table 7. Clusters for IRE in 2016.

Group No. A B C

1 Cyprus Croatia Bulgaria
2 Czech Republic Latvia
3 Estonia Lithuania
4 Hungary Romania
5 Malta Slovakia
6 Poland Slovenia

Table 8. Group averages for IRE in 2004.

Group Indicator ECR2016/EC2016 EC2016/GDP2016 ECR2016/GDP2016

A 0.153333 0.094233 0.014727
B 0.469833 0.106539 0.050602
C 0.461000 0.223131 0.102849

All Groups 0.323077 0.109828 0.038063
p-value 0.000027 0.001363 0.000042

The differences between groups are statistically significant, as demonstrated in the analysis of
variance (p-value in Table 8). The values of the indicators in the groups in relation to the average of all
groups are presented in Figure 9.
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Figure 9. Comparison of group averages for IRE in 2016.

When comparing the results of the clustering analysis for 2016 with previously obtained results
from 2004, no major changes are visible. The number of created groups is the same and their composition
is identical. When comparing Figure 9 with its counterpart for data from 13 years ago (Figure 6),
the similarities are noticeable. When analyzing Figure 9 more precisely, the biggest change is visible
in group A, where the share of electrical capacity from renewable energy sources increased the most,
both in relation to the total electrical capacity and the GDP. This conclusion is also confirmed by the
analysis of the distribution of types of energy sources in the countries of group A, which is presented
in Figure 10.

The traditional classification of renewable energy sources means that, as in the analyses presented
above, the actual investment of countries in switching their economies to greener and more modern
energy sources can be overlooked. This is due to the fact that hydroelectric power plants are also
renewable energy sources, which in some countries have been a large part of electricity capacity
for decades. This situation mean that with relatively young wind and solar energy infrastructure,
expenditure on their development may be unnoticeable or misinterpreted if their electrical capacity
in the analysis is included with the electric capacity from hydropower. Despite the classification of
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hydroelectric power plants as renewable energy sources, only small power plants with a capacity of up
to several megawatts are considered as such. Larger hydropower plants have a negative impact on the
environment, and thus should not be treated as renewable energy sources.
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Figure 10. Energy sources in the countries of group A in 2016.

3.1.3. Groups for IREN Indicators in 2004

In the last dozen or so years when writing about renewable energy, we were rather thinking of
dynamically developing wind and solar energy, not about hydroelectric power plants. This trend
resulted from the global energy policy, which assumes that renewable energy is not enough—it needs
to be sustainable. For this reason, the analyses for 2004 and 2016 were reconstructed for a comparison
with the assumption that only wind and solar power plants are renewable energy sources. These
analyses showed the extent to which the new type of renewable energy sources affect the classification
of countries and the ratio of electrical capacity only from this type of energy in relation to GDP. These
indicators designated for this type of energy were designated as IREN.

Assuming that only wind and solar power plants are renewable sources of energy, in 2004,
they constituted only 0.08% of the total electrical capacity. For comparison, the electrical capacity
of the hydroelectric plants alone was 18.60%. The introduced change fully altered the tree diagram
(Figure 11) resulting from cluster analysis for IREN indicators compared to that presented earlier for
IRE indicators in 2004.Energies 2019, 12, x FOR PEER REVIEW 13 of 22 
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Cutting off the tree diagram as in the previous analyses at a distance of 10 resulted in the creation 
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Cutting off the tree diagram as in the previous analyses at a distance of 10 resulted in the creation
of three groups, but other than the C group, the groups included different countries (Table 9).

Table 9. Clusters for IREN in 2004.

No. Group A B C

1 Latvia Croatia Bulgaria
2 Cyprus
3 Czech Republic
4 Estonia
5 Hungary
6 Lithuania
7 Malta
8 Poland
9 Romania
10 Slovakia
11 Slovenia

Group averages and their values in relation to the overall average are presented in Table 10 and
Figure 12. The analysis of variance at the significance level of 0.05 showed statistically significant
differences between the values of indicators in these groups, which means the groups have been
correctly created and are significantly different from each other.

Table 10. Group averages for IREN in 2004.

Group\Indicator ECRN2004/EC2004 EC2004/GDP2004 ECRN2004/GDP2004

A 0.012054 0.184781 0.002227
B 0.000520 0.180504 0.000115
C 0.000082 0.585706 0.000048

All Groups 0.001373 0.212002 0.000273
p-value 0.000000 0.000009 0.004595
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Figure 12. Comparison of group averages for IREN in 2004.

As mentioned above, the groups based on IREN indicators have different compositions, but,
as shown in Figure 12, their nature is also different. Group A only contains Latvia, which stands out
from the rest of the world in having the largest electrical capacity from wind energy. Group C, as in
previous analyses, contains only Bulgaria. Again, the main reason for this situation is the high cost of
energy in relation to GDP. The largest group B contains as many as 11 countries where the electrical
capacity from wind and solar plants in relation to the total electrical capacity of each of these countries
is negligible.



Energies 2019, 12, 2271 14 of 22

3.1.4. Groups for IREN Indicators in 2016

An increase in demand for electricity and the EU’s climate policy has forced the Member
States countries to invest in renewable energy sources. Wind and solar power plants belong to the
most frequently developed investments in recent years. In most countries, the construction of new
power plants for combustible fuels was practically discontinued due to their negative impact on the
environment and long construction time and high costs. Similarly, the construction of nuclear power
plants requires large financial outlays and building time. The security of these facilities and the use of
radioactive waste are also debatable. Hydroelectric plants, although they are classified as renewable
energy sources, but as mentioned before, have a negative impact on the natural environment if their
power generated is greater than a dozen or so megawatts, and the vast majority of hydroelectric power
plants in the studied countries produce much more power. The time required to design and build
such plants is also quite long. Wind and solar power plants have become a natural choice as their
construction time is shorter compared to power plants. The electrical capacity of wind and solar power
plants depends mainly on the space they occupy, meaning smaller investors can also build them and
create a dispersed network of small power plants. Considering only this type of power plants in
cluster analysis allowed us to eliminate data disturbances caused by hydroelectric plants, and thus to
more accurately group countries in terms of their investments in renewable energy sources. The tree
diagram created for IREN indicators for 2016 is presented in Figure 13.Energies 2019, 12, x FOR PEER REVIEW 15 of 22 
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Figure 13. Tree diagram for IREN in 2016.

By cutting off the tree diagram, as in previous analyses, at a distance of 10, three clusters ere
formed. Despite the same number of clusters as in the analysis for IRE 2016 indicators (Table 7),
the clusters for IREN 2016 contain other countries (Table 11).
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Table 11. Clusters for IREN in 2016.

No. Group A B C

1 Hungary Croatia Bulgaria
2 Latvia Cyprus Romania
3 Slovakia Czech Republic
4 Slovenia Estonia
5 Lithuania
6 Malta
7 Poland

Cluster averages were calculated to characterize clusters (Table 12) and the results are presented in
relation to the average of all figures in Figure 14. As in all previous clusters, the analysis of variance of
indicators in newly created groups was conducted. With the assumed significance level of 0.05, Table 12
shows that the p-value is always less than this value, indicating statistically significant differences
between the clusters.

Table 12. Group averages for IREN in 2016.

Group/Indicator ECRN2016/EC2016 EC2016/GDP2016 ECRN2016/GDP2016

A 0.055908 0.094332 0.005045
B 0.135949 0.098345 0.012990
C 0.173644 0.181012 0.030891

All Groups 0.117120 0.109828 0.013300
p-value 0.000154 0.000004 0.008662
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Figure 14. Comparison of group averages for IREN in 2016.

The average values in the groups of IREN indicators for 2016 (Figure 14) are similar for IRE
indicators for 2016 (Figure 9). However, this similarity is only accidental as the countries in particular
groups for IREN indicators (Table 11) only slightly overlap the countries in the groups for the IRE
indicators (Table 7). Groups A and B contain countries whose cost of obtaining energy is moderate
in relation to GDP, whereas Romania is also in group C in addition to Bulgaria. Group C, therefore,
contains the poorest countries of the EU, where the energy cost is highest in relation to GDP, but the
share of wind and solar power plants in the electrical capacity simultaneously increased the most in
these countries (Figure 15).
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Figure 15. Energy sources in the countries of group C in 2016.

The structure of the electrical capacity divided into wind and solar power plants (renewable
energy sources) and sum of non-renewable energy sources and hydro power is presented for groups A
and B in Figures 16 and 17, respectively.
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Figure 17. Energy sources in the countries of group B in 2016.

The exclusion of hydroelectric power plants from renewable energy sources led to the level
of investments of individual countries in ecological sources of electricity being more visible in the
conducted analyses. The countries of groups A and B in 2016 had a similar cost of energy conversion to
GDP, but the level of investment in renewable energy sources was significantly different. Four countries
from group A during the 13 years only slightly increased the production of electricity from wind and
solar power plants, which means that this group can be considered the least ecological. Group B
contains 7 of the 13 countries and is characterized by a much higher increase in energy production
from wind and solar farms than the B group with a similar cost of energy conversion to GDP.
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4. Discussion

In the context of the global development of renewable energy sources, we attempted to classify
new EU Member States in terms of their progress in this area, and presented energy costs against their
GDP. The electrical capacity selected for the analysis was divided into renewable and non-renewable
energy sources as well as GDP. In order to compare the progress in the implementation of EU directives
related to the reduction of greenhouse gas emissions through a change in the structure of energy
sources, two variants of a cluster analysis were conducted for 2004 and 2016. In the first variant,
the analyses were conducted for all known renewable energy sources. These analyses showed that all
new EU countries in the analyzed period implemented a policy of increasing the electrical capacities
from renewable sources to a similar level, which caused the groups of countries similar to each other
in 2004 and 2016 to be identical. The distinctive group was group C, which contained only Bulgaria.
Bulgaria is characterized by a large energy intensity, which is the cost of transforming energy into GDP.
However, the significant reduction in energy intensity over the considered period can be regarded as a
country success. In order to omit the influence of large hydropower plants on the results, analogous
cluster analyses of only renewable energy sources of a new type, i.e., wind and solar power plants,
were completed. The analysis for 2004 showed that the differences from previous analyses for 2004
were significant. The number of created groups was the same, but their characteristics and composition
were different. The only group that remained was C, containing Bulgaria, again due to its high energy
intensity. Group A only contained Latvia, which at the time was characterized by the possession of
wind energy sources. The remaining 11 countries were so similar to each other that all were categorized
into group B. This group was characterized in 2004 by zero electrical capacity from wind and solar
power plants. Another analysis for 2016 showed which groups of countries increased their electrical
capacity from modern renewable energy sources to the greatest extent. In this respect, the largest
changes occurred in Group C, which included Bulgaria and Romania. In the two poorest countries of
the EU, where the energy cost in relation to GDP was the highest, the electricity from hydropower
and solar plants was already nearly 20% of the total electrical capacity. Group B, consisting of seven
countries, where this type of energy constitute for over a dozen percent of electricity, can also be
positively assessed. The smallest increase in electrical capacity from hydro and solar power plants
occurred in group A, which included Hungary, Latvia, Slovakia, and Slovenia. It is particularly worth
paying attention to Latvia, which was already distinguished in 2004 by having wind energy sources,
and yet within 13 years it achieved the smallest increase (2%) in electrical capacity from wind and
solar plants among all the surveyed countries. The division of analyses into the two options discussed
above, apart from selecting groups of countries similar to each other in terms of electrical capacity and
GDP, also showed the importance of the differences in the energy assessment of individual countries in
the context of sustainable development, depending on whether their environmental achievements
included current, often dozens-of-years-old and large hydropower plants, or whether only modern
sources of energy from water and sun were analyzed.

By making analogous analyses, as in this article, the research can be extended to the entire EU.
This would allow assessing whether a similar increase in investments in new types of renewable energy
sources occurred countries that were members of the EU before 2004, as in the countries that joined
in 2004 and later. Conducting analyses for all EU Member States would allow us to determine the
differences between old and new members. Further questions could be posed about the composition of
the groups in 2004 and 2016: Is there a division between old and new Member States in 2004? Are there
any noticeable changes in the groups in 2016 among only old EU countries? Are there groups of mixed
old and new Member States in the 2016 groups?

Questions of this type could help determine whether, for example, the new Member States are
able to match the old EU Member States, or, despite investments in renewable energy sources, the old
Member States do it even more efficiently. An analysis for the entire EU would also show differences
in energy efficiency between old and new Member States.
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Subsequent research could include Eastern European countries that are not members of the EU.
Investigating the level of investments in various types of renewable energy sources in these countries,
their development in relation to EU countries could be determined. Depending on the results obtained,
it would be possible to analyze whether EU membership and legislation stimulates larger investments
in renewable energy sources. Would the new Member States have developed these branches of energy
if they did not become members of the EU?

In recent years, the high costs of producing energy from renewable sources have been widely
discussed. The proposed classification of renewable energy sources could also be used to assess their
impact on electricity prices, production costs, inflation, and consumer purchasing power, among others.
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