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Abstract: Harmonic stability of double-fed induction generators (DFIGs) now has become a significant
topic because of its harmful impact on power quality issues of the system. Since the double pulse
width modulation (PWM) converter is one of the main harmonic sources in DFIGs, it may cause
harmonic instability with increasing harmonic contents. Thus, the modeling and stability analyses of
PWM converters in DFIGs are essential steps to assess the harmonic stability of DFIGs. Aiming at
dual PWM converters, which include the grid side converter (GSC) and the rotor side converter (RSC),
this paper divides converters into two parts: circuit modules and control modules. Closed-loop input
impedance models of each module are then derived by means of transfer functions. Hence, the stability
of the system can be readily predicted through Nyquist diagrams. The contributions of parameters to
the system’s harmonic stability are also identified. Finally, time-domain simulations are conducted
in a real-time digital simulation (RTDS) system. Simulation results confirm that the established
impedance model can effectively reveal the stability of the DFIG-based system and can give critical
conditions for the occurrence of harmonic instability.

Keywords: DFIG; PWM converter; impedance modeling; harmonic instability; RTDS

1. Introduction

When it comes to wind power generation, a double-fed induction generator (DFIG) is a more
advanced and ideal technology in wind generation development. Compared with other wind
generators, DFIGs have many advantages in performance such as their good stability when they are
connected to the grid and their decoupled control of active and reactive power [1–3]. These advantages
are based on double pulse width modulation (PWM) converters, which are widely used in DFIG systems
for their independent control of reactive power at both sides. However, double PWM converters are
the main harmonic sources in DFIGs and will inject a large number of harmonics into the grid current,
causing voltage fluctuation and distortions in the system [4,5]. With increasing harmonic currents,
the system faces great challenges in power quality and stability issues [6].

In recent years, the proportion of DFIGs in wind power systems has vividly increased due to the
rapid development of renewable power sources. As a consequence, the converter harmonic stability is
becoming an important issue that must be solved. In order to analyze the stability of a DFIG-based
system, two effective system-level methods have been proposed for stability analyses: a time-domain
eigenvalue analysis based on the state-space model and an impedance-based analysis based on the
transfer functions in the frequency domain [7–13]. The eigenvalue analysis usually involves the
derivation of system matrices, which leads to high computational complexity in modeling the system.
Different from an eigenvalue analysis approach, an impedance-based analysis can easily assess system
stability without prior knowledge of system parameters. This allows the modeling of converters to turn
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into black-box modeling, and this practice will significantly improve modeling efficiency. What is more,
an impedance-based approach can capture converter terminal dynamics at the point of connection
(PoC) and then translate them into an impedance representation [14]. So, because of the easy access
to converter terminal dynamics and the high modeling efficiency, the impedance-based analysis is
applied for rotor side converter (RSC) and grid side converter (GSC) impedance modeling, and the
equivalent closed-loop impedance of a DFIG-based system is given in this paper.

The impedance-based analysis is first developed for a dc power system and then expanded to
a three-phase ac system [15]. An impedance model based on transfer functions of inverters in a
three-phase power system was developed [16–19]. In [16,17], the parallel grid-connected converter
filter system was established by impedance modeling to study the harmonic resonances and dynamics
of converters. In [18], the general impedance model of converter terminals at the LCL filter was derived
to analyze the harmonic instability of wind farms. Xiao and Gole [19] derived a macro impedance
model and analyzed the dynamics of converters at the ac side by using frequency scanning; however,
this macro model did not reveal detailed contributions of each parameter to the system’s harmonic
stability. The difficulty of modeling RSC and GSC in DFIGs is their different control strategies and the
detailed power flow interactions between them [20]. However, previous works and papers lacked
focus on the macro modeling of DFIGs, which is useful for system-level analyses. Moreover, detailed
converter modeling that includes control systems with the phase lock loop (PLL) is often overlooked;
thus, specific parametric influences on harmonic stability cannot be predicted.

In order to fill this gap, this paper attempts to utilize an impedance-based approach in
DFIG-based systems and formulate detailed models of RSC and GSC with means of transfer functions.
Thus, harmonic stability of a DFIG-based system can be readily assessed. Figure 1 depicts the modeling
and analysis procedures in this paper. Impedance modeling procedures of RSC and GSC can be
respectively divided into two parts, where detailed small-signal models of main circuits and control
systems with PLL are formulated as transfer functions. The closed-loop impedance of the whole
DFIG-based system then can be obtained considering the electrical relationship between dc variables
and power grid parameters. At last, Nyquist stability criteria are applied to analyze the stability of the
system, and a real-time digital simulation (RTDS) is used to verify the theoretical analysis.
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Figure 1. The logic path of modeling and analysis procedures in this paper. Both rotor side convertor 
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The rest of this paper is organized as follows: In Sections 2 and 3 the small-signal models of RSC
and GSC in DFIG are derived by means of transfer functions. In Section 4, equivalent systems of
DFIG and closed-loop impedance are obtained, and then RTDS simulations are conducted to verify
the impedance model. In the last part, results of the whole impedance modeling and the analysis of
stability are summarized.

2. Small-Signal Modeling of the Rotor Side Convertor (RSC) in the Double-Fed Induction
Generator (DFIG)

Figure 2 gives the general architecture of the DFIG-based system, where RSC is connected to the
power grid via motors, and GSC is directly connected to the power grid [21]. The structure diagram of
RSC is given in Figure 3. According to Figure 1, the small-signal models of RSC, including the main
circuit and the control system with PLL, will be derived in this section.
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2.1. Small-Signal Modeling of the RSC Circuit

From Figure 3, the electromagnetic equation of the rotor and stator in DFIG in the dq frame can be
given by: 

usd = −Rsmisd +
dψsd

dt −ω1ψsq

usq = −Rsmisq +
dψsq

dt +ω1ψsd

urd = Rrmird +
dψrd

dt −ωslipψrq

urq = Rrmirq +
dψrq

dt +ωslipψrd

(1)

where usd and usq, respectively, mean the dq axis stator voltages; urd and urq, respectively, mean the
dq axis rotor voltages; Rsm and Rrm respectively mean the stator resistance and the rotor resistance;
isd,q means dq axis stator currents; and ird,q means dq axis rotor currents. ψsd and ψsq are the stator flux
vectors in the dq axis. ψrd and ψsq are the rotor flux vectors in the dq axis; ωslip = ω1 −ωr.

In fact, the equation of flux in Equation (1) is given as:
ψsd = −Lsmisd + Lmird
ψsq = −Lsmisq + Lmirq

ψrd = −Lmisd + Lrmird
ψrq = −Lmisq + Lrmirq

(2)

where Lsm is the self-inductance of the stator, Lrm is the self-inductance of the rotor, and Lm is the
mutual inductance.

Using Equation (2) in Equation (1), the small-signal transfer function from currents and voltages
can be obtained. The superscript and subscript x̂m means small-signal variables in the main circuit,
and the subscript xs,r,g represents the variables of the stator, rotor, and grid, respectively.

ûm
sd

ûm
sq

ûm
rd

ûm
rq

 =


−Rsm − sLsm ω1Lsm sLm −ω1Lm

−ω1Lsm −Rsm − sLsm ω1Lm sLm

−sLm ωslipLm Rr + sLrm −ωslipLrm

−ωslipLm − sLm ωslipLrm Rr + sLrm




îmsd
îmsq
îmrd
îmrq


=


Zssdd Zssdq Zsrdd Zsrdq
Zssqd Zssqq Zsrqd Zsrqq

Zrsdd Zrsdq Zrrdd Zrrdq
Zrsqd Zrsqq Zrrqd Zrrqq




îmsd
îmsq
îmrd
îmrq


=

[
GA GB

GC GD

]
îmsd
îmsq
îmrd
îmrq



(3)

The transfer function matrixes from rotor and stator currents to rotor and stator voltages are
defined in Equation (4), where GA means the module transfer function from stator currents to stator
voltages, GB means the module transfer function from rotor currents to stator voltages, GC means the
module transfer function from stator currents to rotor voltages, and GD is the module transfer function
from rotor currents to rotor voltages.

GA =

[
Zssdd Zssdq
Zssqd Zssqq

]
, GB =

[
Zsrdd Zsrdq
Zsrqd Zsrqq

]
GC =

[
Zrsdd Zrsdq
Zrsqd Zrsqq

]
, GD =

[
Zrrdd Zrrdq
Zrrqd Zrrqq

] (4)
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The structure diagram of RSC is shown in Figure 4. From this diagram, the relationship between
the DC voltage and rotor voltages can be given as: ucd = urd + Rrird + Lr

dird
dt −ωslipLrirq

ucq = urq + Rrirq + Lr
dirq
dt +ωslipLrird

(5)

Hence, the small-signal model between DC voltage and rotor voltage can be obtained from
Equation (5) as: {

d̂m
rdUdc = ûm

rd + Rr îmrd + sLr îmrd −ωslipLr îmrq
d̂m

rqUdc = ûm
rq + Rr îmrq + sLr îmrq +ωslipLr îmrd

(6)

Reorganizing Equation (6) in the form of matrixes, the small-signal model of the RSC main circuit
can be written as:

A


îmrd
îmrq
d̂m

rd
d̂m

rq

 = B
[

ûm
rd

ûm
rq

]
, C


ûm

rd
ûm

rq
d̂m

rd
d̂m

rq

 = D
[

îmrd
îmrq

]
, (7)

where

A =

[
Rr + sLr −ωslipLr −Udc 0
ωslipLr Rr + sLr 0 −Udc

]
, B =

[
−1 0
0 −1

]
(8)

C =

[
1 0 −Udc 0
0 1 0 −Udc

]
, D =

[
−Rr − sLr ωslipLr

−ωslipLr −Rr − sLr

]
(9)

Hence, using Equations (7), (8) and (9), the small-signal transfer relationship between the rotor
side variables and the duty cycle can be written as:{

GE = [0 0 1 1]A−1B
GF = [0 0 1 1]C−1D

, (10)

where GE and GF are transfer functions from the rotor voltage to the duty cycle and the rotor current
to the duty cycle, respectively. And then, combining the transfer functions in Equations (4) and (10),
the diagram of the small-signal transfer model of the RSC circuit is given as shown in Figure 5.
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2.2. Small-Signal Modeling of RSC Control with PLL

The RSC control in DFIG is designed for balancing the speed of motors, which fluctuates when the
wind speed is changing. According to Figures 1 and 3, the control system of RSC is a dual closed-loop
control, which includes the inner current controller and the outer speed controller [22], and then its
current control equation and speed control equation can be given as: urdre f = (kirP + kirI

s )(irdre f − ird) − δωslipLrirq +
ωslipLm

Lsω1
usd

urqre f = (kirP + kirI
s )(irqre f − irq)urq + δωslipLrird

; (11)

 ird = (kωrP + kωrI
s )(ωrre f −ωr)

irq = (kisP + kisI
s )(isdre f − isd)

; (12)

where urdre f and urqre f are the reference dq rotor voltages; irdre f and irqre f are the reference dq rotor
currents; kirP and kirI are, respectively, proportional (P) and integral (I) coefficients of the inner
rotor current control; kωrP and kωrI represent P and I coefficients of the outer rotor speed controller,
respectively; kisP and kisI are P and I coefficients of the outer stator current controller, respectively; and
δ is the magnetic flux leakage (MFL) coefficient of DFIG, δ = 1− L2

m/(LsLrm).
Hence, using Equations (11) and (12), the small-signal transfer functions of RSC control can be

obtained. The superscript and subscript x̂c means small-signal variables in the control system. ûc
rdre f

ûc
rqre f

 = GirPI

 îcrdre f − îcrd
îcrqre f − îcrq

+ GI

[
îcrd
îcrq

]
+ Grs

[
ûc

sd
ûc

sq

]
; (13)

 îcrdre f
îcrqre f

 = GωrPIω̂r + Gis

[
îcsd
îcsq

]
; (14)

where

GirPI =

 kirP + kirI
s 0

0 kirP + kirI
s

 , GI =

[
0 −δωslipLr

δωslipLr 0

]
, Grs =

 ωslipLm
Lsω1

0
0 0

 (15)

GωrPI =

 −kωrP −
kωrI

s
0

 , Gis =

 0 0
−kisP −

kisI
s 0

 (16)

By using Equations (13)–(16), the control diagram of RSC can be obtained as shown in Figure 6.
And according to Figure 3, the Park transformation in PLL covers three angular variables in the RSC
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control module. These variables are the rotor speed angle θr, the system phase angle θ1, and the
deviation between the previous angles, the slip angle θslip.Energies 2019, 12, x FOR PEER REVIEW 8 of 26 
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In order to obtain the model considering PLL small-signal perturbations, the electromagnetic
torque equation of DFIG needs to be given.

Te = npLm(isdirq − isqird). (17)

Combining Equations (2) and (17), the electromagnetic torque can be written as:

Te = −
npLmUs

Lsω1
ird (18)

Then, with the mechanical dynamic of wind turbines in Equation (19), the small-signal model of
the rotor speed angle can be obtained in Equation (20). Also, with the same method, the small-signal
model of the system phase angle through PLL can be obtained in Equation (21).

Tmech − Te =
J

np

dωr

dt
; (19)

θ̂r =
np

s2 J

npLmUs

Lsω1
îmrd; (20)

θ̂1 =
krppll +

kripll
s

s + (krppll +
kripll

s )Erd

ûm
sq; (21)

where J is the turbine moment of inertia.
Then according to the mathematical relationship in Figure 3 and the transfer path shown in

Figure 7, the small-signal transfer model with PLL from the RSC circuit module to the RSC control
module can be written as:

[
îcrd
îcrq

]
=

 1−
np

s2 J
npLmUs

Lsω1
Im
rq 0

np

s2 J
npLmUs

Lsω1
Im
rd 1


[

îmrd
îmrq

]
+


0

Im
rq(kppll+

kipll
s )

s+(kppll+
kipll

s )Erd

0 −
Im
rd(kppll+

kipll
s )

s+(kppll+
kipll

s )Erd


[

ûm
sd

ûm
sq

]

= GPLLi

[
îmrd
îmrq

]
+ GPLL1

[
ûm

sd
ûm

sq

] (22)
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Similarly, the small-signal transfer model of the duty cycle in RSC from the circuit module to the
control module through PLL and that of stator voltages and currents through PLL can also be obtained.

[
d̂m

rd
d̂m

rq

]
=

[
d̂c

rd
d̂c

rq

]
+


0 −

krppll+
kripll

s

s+(krppll+
kripll

s )Erd

Dm
rq

0
krppll+

kripll
s

s+(krppll+
kripll

s )Erd

Dm
rd


[

ûm
sd

ûm
sq

]
+


np

s2 J
npLmUs

Lsω1
Dm

rq 0

−
np

s2 J
npLmUs

Lsω1
Dm

rd 0


[

îmrd
îmrq

]

=

[
d̂c

rd
d̂c

rq

]
+ GPLL3

[
ûm

sd
ûm

sq

]
+ GPLL2

[
îmrd
îmrq

] (23)

[
ûc

sd
ûc

sq

]
=


1

krppll+
kripll

s

s+(krppll+
kripll

s )Erd

Em
rq

0 1−
krppll+

kripll
s

s+(krppll+
kripll

s )Erd

Em
rd


[

ûm
sd

ûm
sq

]
= GPLLu

[
ûm

sd
ûm

sq

]
(24)

[
îcsd
îcsq

]
=


îmsd + Im

sq
krppll+

kripll
s

s+(krppll+
kripll

s )Erd

ûm
sq

îmsq − Im
sd

krppll+
kripll

s

s+(krppll+
kripll

s )Erd

ûm
sq

 =
[

îmsd
îmsq

]
+ GPLL4

[
ûm

sd
ûm

sq

]
(25)

Hence, using Equations (22)–(25), the transfer diagram of RSC control with PLL can be obtained
in Figure 8.
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3. Small-Signal Modeling of the Grid Side Convertor (GSC) in DFIG

Similar to the modeling procedures of RSC in Section 2, the small-signal model of GSC in Figure 1
can also be divided into two parts: the main circuit module and the control module. However, the model
of GSC must take the dc variables into account because the control strategy of GSC contains the outer
voltage control loop where dc variables are in the dc link. Figure 9 depicts the structure diagram of
GSC including the main circuit and the control system.
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3.1. Small-Signal Modeling of the GSC Circuit

According to Figure 9, the small-signal model of the GSC circuit and the DC interconnection
between RSC and GSC can be written as: Ddûm

dc + d̂m
d Udc = ûm

gd −Rl îmgd − sLl îmgd +ω1Ll îmgq

Dqûm
dc + d̂m

q Udc = ûm
gq −Rl îmgq − sLl îmgq −ω1Ll îmgd

(26)

sCdûm
dc =

3
2

(
d̂m

d Igd + d̂m
q Igq + Dd îmgd + Dq îmgq − d̂m

rdIrd − d̂m
rqIrq −Drd îmrd −Drq îmrq

)
(27)

where Dd and Dq are stable GSC duty cycles in the dq frame, respectively; and Igd and Igq are GSC
output currents at a steady operation point in the dq frame. By rearranging Equations (26) and (27),
the small-signal transfer model can be obtained as:

H
[

îmgd îmgq ûm
dc ûm

gd ûm
gq d̂m

rd d̂m
rq îmrd îmrq

]T
= J

[
d̂m

d
d̂m

q

]
; (28)
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where

H =


Rl + sLl −ω1Ll Dd 1 0 0 0 0 0
ω1Ll Rl + sLl Dq 0 −1 0 0 0 0
−

3
2 Dd −

3
2 Dq sCd 0 0 3

2 Ird
3
2 Irq

3
2 Drd

3
2 Drq


J =


−Udc 0

0 −Udc
3
2 Igd

3
2 Igq


(29)

Then, using the same method in Equations (7)–(10), the small-signal transfer functions GH and
GM, which are the transfer matrixes from d̂m

dq to ûm
dc and from d̂m

dq to îmgdq, respectively, can be obtained
in Equation (30). Also, similar small-signal transfer functions of the other variables can be obtained:
GJ, the transfer function from ûm

gdq to ûm
dc; GN, the transfer function from ûm

gdq to îmgdq; GK, the transfer

function from d̂m
rdq to ûm

dc; GL, from d̂m
rdq to îmgdq; GO, from îmrdq to ûm

dc; and GP is the transfer function from

îmrdq to îmgdq. These transfer functions have mathematical forms similar to Equation (30).
GH =

[
0 0 1 0 0 0 0 0 0

]
H−1J

GM =

[
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

]
H−1J

. (30)

Then, a similar small-signal diagram of the GSC circuit, like Figure 5, can be drawn in Figure 10.
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3.2. Small-Signal Modeling of GSC Control with PLL

The control system of GSC is composed of the inner current controller and the outer voltage
controller, which can be written as follows [22]. Then, the GSC control small-signal diagram excluding
PLL can be obtained by Figure 11. ûc

edre f
ûc

eqre f

 = −GiPI

 îcgdre f − îcgd
îcgqre f − îcgq

+ Goi

 îcgd
îcgq

+ Guce

 ûc
gd

ûc
gq

; (31)

 îcgdre f
îcgqre f

 =
 −kUdcP −

kUdcI

s
0

Udc = G21Udc; (32)

where

GiPI =

 kigP +
kigI

s 0

0 kigP +
kigI

s

 , Goi =

[
0 ω1Ll
−ω1Ll 0

]
, Guce =

[
1 0
0 1

]
(33)
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The angular relationship between the GSC circuit module and the GSC control module with PLL
is displayed in Figure 12. From Figures 9 and 12, a transfer diagram of the GSC control system with
PLL can be drawn in Figure 13 by using the small-signal transfer models of the GSC control system
described by Equations (34)–(36). ûc
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îmgq

+ F22

 ûm
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where Gpi is the transfer function of the PI controller in PLL, Gpi = kppll + kipll/s.
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ĝdqi

ˆ
dqd

ˆgdqu

 
Figure 12. The angular transfer relationship between the circuit module and the control module in GSC.

Energies 2019, 12, x FOR PEER REVIEW 14 of 26 

 

Figure 12. The angular transfer relationship between the circuit module and the control module in 
GSC. 

22E

ˆm
gdqi

ˆm
gdqu

ˆc
dqd

+ +

ˆm
dqd

ˆc
dqu

22H

+

+22F ˆc
gdqi

 
Figure 13. The small-signal transfer diagram of PLL in GSC control, which shows the transfer 
relationship of variables from the circuit module to the control module. 

4. Analysis of Harmonic Stability and Real-Time Digital Simulation (RTDS) Verification 

4.1. Impedance Modeling of Equivalent Systems 

4.1.1. Input Impedance Modeling of RSC and GSC connected in DFIG 

With the small-signal transfer models of circuit modules and control modules derived in 
Sections 2 and 3, the whole equivalent architecture of the RSC and GSC in DFIGs can be obtained (the 
structure diagram is provided in Appendix A). Also, the schematic diagram of the whole closed-loop 
system can be easily obtained in Figure 14 considering the DC and grid-side AC variables relationship 
between RSC and GSC. 

RSC
Small-Signal Model
（closed-loop）

GSC
Small-Signal Model
（closed-loop）

ˆm
rdqd ˆm

rdqi

Transformer 
1

Transformer 
2

Grid

DC 
relationship

DC Link

 

Figure 14. The schematic diagram of RSC and GSC in DFIG. The RSC and GSC small-signal models 
are interconnected with their dc variables in a dc link, and these two kinds of converters are all 
connected with the power grid through transformers. The system is thus a closed-loop system. 

In Figure 14, the variables in the DC link are described in Equation (37) by using the RSC small-
signal model in Section 2. Substituting variables in Figures 10, 11 and 13 with Equation (37), the GSC 
small-signal models can be written as given in Equation (38). 

Figure 13. The small-signal transfer diagram of PLL in GSC control, which shows the transfer
relationship of variables from the circuit module to the control module.



Energies 2019, 12, 2500 12 of 23

4. Analysis of Harmonic Stability and Real-Time Digital Simulation (RTDS) Verification

4.1. Impedance Modeling of Equivalent Systems

4.1.1. Input Impedance Modeling of RSC and GSC connected in DFIG

With the small-signal transfer models of circuit modules and control modules derived in Sections 2
and 3, the whole equivalent architecture of the RSC and GSC in DFIGs can be obtained (the structure
diagram is provided in Appendix A). Also, the schematic diagram of the whole closed-loop system can
be easily obtained in Figure 14 considering the DC and grid-side AC variables relationship between
RSC and GSC.
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In Figure 14, the variables in the DC link are described in Equation (37) by using the RSC
small-signal model in Section 2. Substituting variables in Figures 10, 11 and 13 with Equation (37),
the GSC small-signal models can be written as given in Equation (38).

d̂m
rdq =

[
(GEGD + GF)(GEGD + GF −C22)

−1(B22 −GEGC) + GEGC
]
îmsdq

+(GEGD + GF)(GEGD + GF −C22)
−1A22ûm

sdq

îmrdq = (GEGD + GF −C22)
−1

[
(B22 −GEGC)îmsdq + A22ûm

sdq

] ; (37)



îmgdq = GNûm
gdq + GMd̂m

dq + GP(GEGD + GF −C22)
−1

[
(B22 −GEGC)îmsdq + A22ûm

sdq

]
+GL


[
(GEGD + GF)(GEGD + GF −C22)

−1(B22 −GEGC) + GEGC
]
îmsdq

+(GEGD + GF)(GEGD + GF −C22)
−1A22ûm

sdq


ûm

dc = GJûm
gdq + GHd̂m

dq + GO(GEGD + GF −C22)
−1

[
(B22 −GEGC)îmsdq + A22ûm

sdq

]
+GK


[
(GEGD + GF)(GEGD + GF −C22)

−1(B22 −GEGC) + GEGC
]
îmsdq

+(GEGD + GF)(GEGD + GF −C22)
−1A22ûm

sdq


d̂m

dq = GPWM

 Gq2
(
GipIK22 + GoiK22

)
îmgdq +

[
Gq2GoiF22K22 + Gq2GuceE22K22

+Gq2GipIF22K22 + H22K22

]
ûm

gdq

−Gq2GipIG21ûm
dc



; (38)

where GPWM is the time-delay function, and Gq and Gq2 are the normalized functions to normalize
the control signal. The detailed transfer matrixes in Equations (37) and (38) are also provided in
Appendix A.
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Furthermore, assuming that the transformer ratio k12 = 1 in this studied system, the equivalent
input impedance of RSC and GSC can be obtained in Equation (39). Also, the detailed transfer matrixes
are provided in Appendix B.

Zgdq =
ûm

gdq

îmgdq

=

 GM(D22G21GH + I)−1
·(O22P22 + R22P22 + GPWMGEGC −D22K22 −GPWMGqGoiK22)

+I− S22P22 −GLU22P22 −GEGC

 GM(D22G21GH + I)−1
·(O22 −D22G21GJ −O22A22 −R22A22)

+GN + S22A22 + GLU22A22


(39)

4.1.2. Impedance Modeling of the Grid-Connected System

Figure 15 depicts the equivalent DFIG-based system circuit. The power grid cable uses the
Π-section model, and then the impedance of grid in dq frame can be written as:

Zudq =

[
Ru + sLu −ω1Lu

ω1Lu Ru + sLu

]
, (40)

where Ru is the equivalent grid resistance and Lu is the equivalent grid inductance.
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Figure 15. The equivalent circuit of the DFIG-based system. (a) The system’s equivalent circuit based
on the grid output impedance and converter input impedance; (b) is the transfer diagram of the circuit
described in (a), and the feedback loop can be used to evaluate the system’s stability by applying the
Nyquist stability criterion.

Hence, the grid-connected impedance can be obtained using Equations (39) and (40) from Figure 15,
and the system closed-loop feedback gain can also be written as:

Ldq = ZudqZ−1
gdq =

[
Zudd Zudq
Zuqd Zuqq

][
Ygdd Ygdq
Ygqd Ygqq

]
. (41)

Based on this feedback loop gain, the stability of the system’s equivalent circuit can be assessed
through Nyquist diagrams.

4.2. Impedance-Based Stability Analysis

The system’s electrical parameters are listed in Table 1, which give the condition of the system
stable operating point. Table 2 gives the parameters of the control systems for both RSC and GSC, which
are also in the stable case. RSC and GSC are also designed with the same parameters considering the
simplicity. Both RSC and GSC are working at the stable operating point with the controller parameters
listed in Table 2. This provides a theoretical precondition for using the feedback loop in Figure 15
to evaluate the stability of the studied system. Since the impedance model of the studied system is
designed as single input single output (SISO) model, the Nyquist stability criterion can be directly
applied to analyze the system’s stability [23].
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Table 1. The electrical parameters of the DFIG-based system.

Electrical Parameter Value Electrical Parameter Value

f1 Fundamental frequency 50 Hz Lm RS mutual inductance 0.108 H
Ru Grid resistance 0.3 Ω Rr RSC resistance 0.15 Ω
Lu Grid inductance 0.03 H Lr RSC inductance 1.2 mH

Rsm Stator resistance 0.262 Ω Rl GSC resistance 0.15 Ω
Lsm Stator self-inductance 0.122 H Ll GSC inductance 1.2 mH
Rrm Rotor resistance 0.2 Ω Cd DC shunt capacitance 2.2 mF
Lrm Rotor self-inductance 0.119 H Udre f DC rated voltage 500 V

Table 2. The controller parameters of RSC and GSC.

Controller Parameters Value Controller Parameters Value

RSC stator current
controller

kisP 0.3 GSC outer voltage
controller

kugP 0.1
kisI 5 kugI 10

RSC outer speed controller kωrP 0.5

PLL controller

krppll 3
kωrI 10 kripll 1400

RSC inner current
controller

kirP 13.87 kppll 3
kirI 68 kipll 1400

GSC inner current
controller

kigP 5 Moment of inertia J 0.1425 kg·m2

kigI 100

To analyze the stability of the studied system, the Nyquist criterion can be applied to the
equivalent system [24]. Stability trends can be observed from the Nyquist diagrams by altering the
circuit electrical parameters or controller parameters [25]. Furthermore, according to the Nyquist
diagram, the parametric contributions to the system’s harmonic stability can be predicted, and then
the critical condition of the stable system can be given.

4.2.1. Circuit parameters stability assessment

Figure 16 depicts Nyquist plots of the feedback loop gain of the equivalent circuit. In this case,
it is obvious that when the GSC inductance increases (Ll increases from 3.7 to 3.8 mH), the system soon
turns unstable. Furthermore, the other circuit electrical parameters are also adjusted to obtain the
respective contributions to the system stability, and these parametric stability assessments are listed
in Table 3. The delta (∆) in Table 3 is a mark used to represent that the adjusted parameter has little
impact on the stability of the studied system.
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In fact, adjusting the inductance of RSC and GSC and the dc capacitance in the dc link will greatly 
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inductances of RSC and GSC decrease are omitted in Table 3. So, by choosing the optimal parameters 
of RSC and GSC, the wind farm manufacturer can improve stability of the system and better avoid 
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Figure 16. The Nyquist plots of the feedback loop gain: (a) Nyquist plots in the stable case (Ll = 3.7 mH),
the graphs on the right are the magnified parts in (−1, j0). The curve does not encircle the point (−1, j0),
which predicts the system is still stable; (b) Nyquist plots in the unstable case (Ll = 3.8 mH), the graphs
on the right are the magnified parts in (−1, j0). The curves finally enclose the point (−1, j0) and the
system becomes unstable.

Table 3. Circuit parameter influences and assessments on the system’s stability 1.

Parameters
(Stable Case)

Adjusted
Value

Stability
Assessment

Parameters
(Stable Case)

Adjusted
Value

Stability
Assessment

Ll,r (1.2 mH) 3.7 mH Stability ↓2
Lrm (0.119 H) 0.05 H ∆

3.8 mH Unstable 0.45 H ∆

Rl,r (0.15 Ω) 0.02 Ω ∆ 3
Rrm (0.2 Ω) 0.02 Ω ∆

0.5 Ω ∆ 0.5 Ω ∆

Lsm (0.122 H) 0.315 H Stability ↓ Lm (0.108 H) 0.025 H ∆
0.316 H Unstable 0.390 H ∆

Rsm (0.262 Ω) 0.105 Ω Stability ↓ Cd (2.2 mF) 4.3 mF Stability ↓
0.104 Ω Unstable 4.4 mF Unstable

1 Comparisons and assessments of stability are based on the stable case whose system parameters are given in
Tables 1 and 2. 2 Down-arrows mean that the system stability is degraded. 3 The mark ∆ represents that the adjusted
parameters have little effects on the stability of the studied system.

In fact, adjusting the inductance of RSC and GSC and the dc capacitance in the dc link will greatly
affect the system’s harmonic stability. The cases where harmonic stability will improve when the
inductances of RSC and GSC decrease are omitted in Table 3. So, by choosing the optimal parameters
of RSC and GSC, the wind farm manufacturer can improve stability of the system and better avoid the
occurrence of harmonic instability.

4.2.2. Controller parameters stability assessment

Figure 17 depicts Nyquist diagrams of the feedback loop gain. In this case, the P parameters of
the inner current controller in GSC are reduced (kigP decreases from 1 to 0.9). It is clear that the curve
encloses (−1, j0) which means the feedback loop gain becomes unstable and there might be harmonic
instability in the power grid. Similar conclusions can be found in Table 4 where assessments of other
controller parameters are listed.
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Figure 17. The Nyquist plots of the feedback loop gain: (a) Nyquist plots in the stable case (kigP = 1),
the graphs on the right are the magnified parts in (−1, j0). The point (−1, j0) is not enclosed by the
curve, and the system is still stable; (b) Nyquist plots in the unstable case (kigP = 0.9), the graphs on the
right are the magnified parts in (−1, j0). The curves enclose (−1, j0) and the system becomes unstable.

Table 4. Controller parameter 1 influences and assessments on the system’s stability.

Parameters
(Stable Case)

Adjusted
Value

Stability
Assessment

Parameters
(Stable Case)

Adjusted
Value

Stability
Assessment

kigP (5) 1 Stability ↓2
kirI (68) 107 Stability ↓

0.9 Unstable 108 Unstable

kigI (100) 145 Stability ↓ kωrP (0.5) 1.7 Stability ↓
146 Unstable 1.8 Unstable

kugP (0.1) 0.9 Stability ↓ kωrI (10) 3.2 Stability ↓
1 Unstable 3.1 Unstable

kugI (10) 36 Stability ↓ kisP (0.3) 1.1 Stability ↓
37 Unstable 1.2 Unstable

kirP (13.8) 7.3 Stability ↓ kisI (5) 1.6 Stability ↓
7.2 Unstable 1.5 Unstable

1 The controller parameters can be divided into the RSC controller (outer speed PI and inner current PI) and the
GSC controller (outer voltage PI and inner current PI). 2 Down-arrows mean that the system stability is degraded.



Energies 2019, 12, 2500 17 of 23

4.2.3. Mechanical parameters stability assessment

Figure 18 shows Nyquist plots of the feedback loop gain after the moment of inertia was reduced.
The diagram indicates that when the mechanical parameters of the wind turbine such as the moment
of inertia are changing, the system may become unstable because the inertia relates the wind speed to
fluctuation control. Actually, when the inertia increases, the control of the wind speed fluctuation will
get worse so the system will easily lean to instability. Under this situation, bad speed control may lead
to harmonic frequency oscillation in the power grid.
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Figure 18. Nyquist plots of the feedback loop gain: (a) Nyquist plots in the stable case ( J  = 
0.293kg∙m2), the graphs on the right are the magnified parts in (−1, j0). The point (−1, j0) is not enclosed 
by the curve, and the system is thus stable; (b) Nyquist plots in the unstable case ( J  = 0.294 kg∙m2), 
the graphs on the right are the magnified parts in (−1, j0), which is enclosed by the curve, and the 
system becomes unstable. 

4.3. RTDS Simulation Verification 

RTDS is a kind of commercial simulator that is widely used around the world. Compared with 
other simulation platforms, RTDS has many advantages such as its faster computing speed and real-
time interconnection with practical devices [26–29]. In order to validate a frequency-domain stability 
analysis of the equivalent model based on the impedance method, a time-domain DFIG-based system 

Figure 18. Nyquist plots of the feedback loop gain: (a) Nyquist plots in the stable case (J = 0.293 kg·m2),
the graphs on the right are the magnified parts in (−1, j0). The point (−1, j0) is not enclosed by
the curve, and the system is thus stable; (b) Nyquist plots in the unstable case (J = 0.294 kg·m2),
the graphs on the right are the magnified parts in (−1, j0), which is enclosed by the curve, and the
system becomes unstable.

4.3. RTDS Simulation Verification

RTDS is a kind of commercial simulator that is widely used around the world. Compared with
other simulation platforms, RTDS has many advantages such as its faster computing speed and real-time
interconnection with practical devices [26–29]. In order to validate a frequency-domain stability analysis
of the equivalent model based on the impedance method, a time-domain DFIG-based system is built
by the real-time simulator CAD (RSCAD), which is connected to RTDS. The simulated RSC and GSC
parameters and grid electrical constants are given in Tables 1 and 2. Then, parameters are adjusted to
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evaluate harmonic stability. Moreover, conclusions in Tables 3 and 4 are validated. In this paper, only the
case where GSC inductance is changed will be discussed (considering the paper length).

Figure 19 shows the simulated three-phase grid currents in GSC with the parameters given in
Tables 1 and 2. In this case, GSC inductance is adjusted (Ll = 3.7 mH). The system is still in a stable
status; however, there are many harmonic components in the grid currents. The system’s stability
is not that good, and this result coincides with conclusions in Table 3. In contrast, Figure 20 shows
the simulated grid currents after GSC inductance increased (Ll = 3.8 mH). It is obvious that there
is harmonic instability in the studied system and the system becomes unstable, which confirms the
conclusions in Table 3 and the frequency-domain analysis in Figure 16.
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Figure 19. The simulated three-phase grid output currents of GSC in the stable case (Ll = 3.7 mH).
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Figure 20. The simulated three-phase grid output currents of GSC in the unstable case (Ll = 3.8 mH):
(a) Full view of three phase simulated currents; (b) magnified view of the simulated current of phase b.
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Then, the fast Fourier transform (FFT) analysis of the simulated grid-side output currents in the
unstable case is accomplished using the output data of RTDS. Figure 21 shows the detailed harmonic
components in the simulated grid currents. It is clear that the main amplified harmonic components
are 250.1 (5th harmonic), 349.7 (7th harmonic), 1901 (38th harmonic), 2099.1 (42nd harmonic), 3951.6
(79th harmonic), and 4050.4 Hz (81st harmonic).
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In fact, 5th and 7th harmonic components mainly exist in RSC and 38th, 42nd, 79th and 81st
harmonic components exist both in RSC and GSC [30]. And when the system parameters are not
matched well, the existing harmonics both in RSC and GSC will be continuously amplified and interact
with each other through the DC link, thereby generating harmonic instability and jeopardizing the
power quality and stability of the entire system. Table 5 lists the values of parameters for the critical
stability case. The results shown in Table 5 confirm the theoretical analysis in the frequency domain
and, thus, verify the impedance model derived in this paper.

Table 5. The values of parameters for the critical stability case.

Parameter Simulated Value Deviation Parameter Simulated Value Deviation

Ll 3.8 mH 0 kugI 38.5 3.9%
Lr 3.8 mH 0 kirP 7.2 0

Lsm 0.315 mH 0.3% kirI 108 0
Rsm 0.104 Ω 0 kωrP 1.9 5.3%
Cd 4.5 mF 2.2% kωrI 3.3 6.1%

kigP 0.9 0 kisP 1.2 0
kigI 146 0 kisI 1.5 0
kugP 1.06 5.7% J 0.292 kg·m2 0.7%

5. Conclusions

This paper is presented and discussed based on impedance modeling and the steps of the harmonic
stability analysis of DFIG systems. Both the small-signal models of RSC and GSC are obtained as
transfer functions, which include circuits modules and controller modules with PLL perturbations.
The equivalent input impedances of RSC and GSC are obtained, and then Nyquist diagrams are applied
to analyze stability based on the impedance model. The assessment of contributions to the system
stability of each parameter is also accomplished. Finally, the studied system is built in RSCAD with
RTDS. The simulated results confirm the frequency-domain analysis, and, thus, the correctness of
the small-signal models of RSC and GSC are verified. The RTDS simulation shows that 5th and 7th
harmonics in RSC and 38th, 42nd, 79th, and 81st harmonics in both side converters are continuously
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amplified to cause the harmonic instability. And last, the critical conditions for harmonic instability are
given in this paper.

Based on the analysis results and simulations in this paper, it can be concluded that the causes of
the system’s harmonic instability include:

• The mismatch of the stator circuit parameters in the DFIG motor will gradually amplify the
existing harmonics, which will cause the system to be unstable.

• The mismatch between the inductance parameters and the capacitance parameters of the dual
PWM converter and its controller parameters will also amplify the harmonics and destabilize
the system.

• The moment of inertia of the system itself will directly affect the magnitude of fluctuations in the
wind speed, and thus will also affect the stability of the system’s harmonics.

Author Contributions: The individual contribution of each author are as follows: Conceptualization, X.C. and
Z.L.; Formal analysis, X.C.; Methodology, X.C. and Z.L.; Validation, X.C.; Writing—original draft, X.C. and Z.L.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The architecture of RSC and GSC based on the small-signal transfer functions can be obtained by
combining Figures 5, 6 and 8 in Section 2 and Figures 10, 11 and 13 in Section 3. The diagram of RSC
and GSC are respectively shown in Figures A1 and A2.
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• The moment of inertia of the system itself will directly affect the magnitude of fluctuations in 
the wind speed, and thus will also affect the stability of the system’s harmonics. 
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Appendix A 

The architecture of RSC and GSC based on the small-signal transfer functions can be obtained 
by combining Figures 5, 6 and 8 in Section 2 and Figures 10, 11 and 13 in Section 3. The diagram of 
RSC and GSC are respectively shown in Figures A1 and A2. 

CG

DG

FG

ˆm
rdqi ˆm

rdqu

ˆm
dqd

BG

ˆm
sdqu ˆm

sdqi
AG+

+

+

+

−

PLLiG

PLL1G

ˆc
rdqi

ˆc
sdqu

PLL4G

ˆc
sdqi

isG

ωrPIG

ˆrω
+

+ +
+

ˆc
rdqrefi+

−

irPIG

IG
rsG

+ +

+qGˆc
rdqd

PLL2G

PLL3G

+ +

+

+

-1
EG

rG

PWMG

usK

irK
isK

+
+

PLLuG

 
Figure A1. The small-signal transfer diagram of RSC with PLL. Figure A1. The small-signal transfer diagram of RSC with PLL.
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The detailed transfer matrixes in Equations (37) and (38) are given as follows: 

=
 + 

+  + −  

rs PLLu us I PLL1 us
22 PWM q PLL3 us

irPI is PLL4 us irPI PLL1 us

G G K G G K
A G G G K

G G G K G G K
; (A1) 

=22 PWM q irPI is isB G G G G K ; (A2) 

( )=  + − + 22 PWM q I PLLi ir irPI ωrPI r 22 irPI PLLi ir PLL2 irC G G G G K G G G K G G K G K ; (A3) 

Appendix B 

The detailed transfer matrixes of the equivalent input impedance of converters in Equation (39) 
are given as follows: 

=22 PWM q2 ipID G G G  (A4) 

= −22 22 E CP B G G  (A5) 

( )= + + +22 PWM q2 oi 22 22 q2 uce 22 22 q2 ipI 22 22 22 22O G G G F K G G E K G G F K H K  (A6) 

1( )−= + −22 PWM q ipI 21 O E D F 22Q G G G G G G G G C  (A7) 

1( )−= + −22 P E D F 22S G G G G C  (A8) 

1( )( )−= + + −22 PWM q ipI 21 K E D F E D F 22R G G G G G G G G G G G C  (A9) 
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The detailed transfer matrixes in Equations (37) and (38) are given as follows:
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Appendix B

The detailed transfer matrixes of the equivalent input impedance of converters in Equation (39)
are given as follows:
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