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Abstract: This paper reports on the optimum conditions for simultaneous hydrogen and butyric acid
production from microalgae (Chlorella sp.) using enriched anaerobic mixed cultures as inoculum.
The fermentation was objectively carried out under acidogenic conditions to achieve butyric acid
for further ABE fermentation in solventogenesis stage. The main effects of initial pH (5 and 7),
temperature (35 ◦C and 55 ◦C), and substrate concentration (40, 60, 80, and 100 g-VS/L) for hydrogen
and butyric acid production were evaluated by using batch fermentation experiment. The major
effects on hydrogen and butyric acid production are pH and temperature. The highest production of
hydrogen and butyric acid was observed at pH 7 and temperature 35 ◦C. Using initial Chlorella sp.
concentration of 80 g-VS/L or 100 g-VS/L at pH 7 and temperature 35 ◦C could produce hydrogen
with an average yield of 22 mL-H2/g-VS along with high butyric acid production yield of 0.05 g/g-VS,
suggesting that microalgae (Chlorella sp.) has potential to be converted directly to butyric acid by
using acidogenesis under above optimum conditions.
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1. Introduction

Currently, energy carriers or fuel derived from petroleum source have high requirements, while
the petroleum reserve has been reduced [1]. The use of energy from the above energy sources is the
cause of global warming. Nevertheless, demand for energy is likely to increase in the future, according
to the forecast of Energy Information Administration 2016 (EIA2016) [2]. Therefore, alternatives such
as hydrogen ethanol and butanol from biomass are used to resolve the petroleum-based energy crisis.
Bio-hydrogen is a renewable energy that provides high energy value and does not cause greenhouse
gas emissions during its combustion [3]. Bio-butanol as liquid fuel has high potential comparable
to ethanol and gasoline and 96 octane number similar to gasoline. However, butanol has an energy
content of 29.2 MJ/dm3, which is higher than the ethanol energy content (19.6 MJ/dm3) [4]. In addition,
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the evaporation and corrosion levels of butanol are less than those of ethanol, thus it is possible for
butanol to be directly used in gasoline engines without any engine modifications [5].

The Acetone-Butanol-Ethanol (ABE) fermentation process could potentially produce bio-butanol
as the product from biomass, while hydrogen and carbon dioxide are simultaneously produced [6],
with Clostridium sp. being the main bacterial group used for the production of butanol [7]. The ABE
fermentation process has two distinct two stages. In the first acidogenasis stage, carbohydrates are
majorly converted to butyric and acetic acids along with hydrogen and carbon dioxide. Subsequently,
during the second solventogenesis stage, acetone butanol and ethanol are formed from butyric acid
and acetic acid [7–9]. In addition, in general, when using mixed culture bacteria for fermentation,
volatile fatty acids are produced during anaerobic dark fermentation [10,11] as a precursor for ABE
fermentation. Therefore, volatile fatty acids can be produced with other types of microorganisms
along with the butanol producing bacteria in the first stage dark fermentation process, in which mixed
culture bacteria can be deployed instead [9,11–14].

The mixed-culture based bioprocess is better than pure bacteria, since organic biomass for
biodegradation is a complex mixture in the form of carbohydrates (such as lignocellulosic hydrolysates),
thus using mixed bacteria for the acidogenesis stage for anaerobic dark fermentation may be a superior
alternative to the pure culture [15]. The specific advantage of mixed cultures over pure culture-based
industrial biotechnology include no need for sterilization and can be adaptive due to microbial diversity,
and the capacity to use mixed substrates [16]. Furthermore, strict and expensive sterilization of the
fermenter and medium is not required for mixed-culture fermentation because the foreign bacteria
cannot establish due to effective competition by members of the microbial community in the mixed
culture [15]. Agler et al. [17] reviewed the capacity of a mixed-culture process for generating a mixture
of short-chain carboxylates as an intermediate platform to generate complex fuels. Angennent et
al. [10] and Agler et al. [17] reported that hydrogen partial pressure could thermodynamically direct
fermentation pathway. When hydrogen partial pressure is less than 60 Pa, one mole of glucose would
convert to two moles of acetic acid and four moles of hydrogen. In contrast, in a dark fermentation
process at hydrogen partial pressure greater than 60 Pa, the direction of production is in the form
of one mole of butyric acid and two moles of hydrogen. Thus, dark fermentation effluent normally
contains mostly butyrate, which is favored for enhancing butanol production in the second stage of
solventogenesis. Consequently, increasing butyric acid production during dark fermentation process
can help to increase butanol production. Al-Shorgani et al. [18] reported that the butyric acid has an
impact on butanol production, and butyric acid can increase butanol production with glucose addition
to promoting bacteria metabolism.

Chlorella sp., Scenedesmus sp., Chlorococum sp., Tetraselmis sp. and Chlamydomonas sp. are unicellular
microscopic algae that can grow easily in various water sources. They are mostly carbohydrates (starch
and cellulose), the main substrate for biofuel production when using microbial fermentation, up to
about 55% of dry weight [19]. Classified as the third-generation biomass for bio-fuel production,
microalgae have advantages over the first-generation biomasses such as flour and sugar derived from
food crops and the second-generation biomasses such as lignocelluloses in terms of biofuel production.
Microalgae do not compete for arable land, can be grown in saline or freshwater environments, and
can absorb CO2. Furthermore, microalgae can be practically cultivated in open raceway ponds cost
effectively [20]. Microalgae do not contain lignin and have fast growth potential [21,22]. Especially,
Chlorella sp. are considered promising feedstock for ABE production because they have cellulose and
hemicellulose of cell walls and accumulated starch as main carbohydrate sources (37–55% [23]). Most
of the cell wall and starch can be converted to sugars for acid and ABE production [24]. The novelty of
this research work was the investigation of the effects of three factors on the production of butyric
acid and hydrogen during dark fermentation with enriched mixed cultures. In addition, we aimed to
find the appropriate conditions for producing butyric acid and hydrogen from microalgae with mixed
culture bacteria taken from the CSTR fermentation tank. Different sources of hydrogenic bacteria
groups resulted in different productivities.
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In this research, the major objective was to optimize conditions of mixed-culture dark fermentation
for simultaneous hydrogen and butyric acid production from Chlorella sp. Effluents containing mainly
with butyric were further used as inoculum for acetone-butanol-ethanol (ABE) fermentation. The main
factors of initial pH (5 and 7), temperature (35 ◦C and 55 ◦C) and substrate concentration (40, 60, 80,
and 100 g-VS/L) were tested under batch anaerobic dark fermentation.

2. Materials and Methods

2.1. Substrate and Inoculum Preparation

Microalgae (Chlorella sp.) purchased from Cheng Yang Instrument Corp, Taiwan as a dry, green
powder. They were stored in a desiccator at room temperature prior to further use. The mixed cultures
used as inoculum for fermentation were taken from APEC Research Center for Advanced Biohydrogen
Technology (ACABT), Feng Chia University, Taichung, Taiwan. The inoculum was originally cultivated
in the CSTR dark fermentation tank at the mesophilic temperature (35 ◦C) for hydrogen and acid
production by feeding using sucrose at a concentration of 80 g-VS/L supplemented with Endo nutrients
(MnSO4•H2O 9.79 g/L, FeSO4•7H2O 25 g/L, CuSO4•5H2O 5 g/L and CoCl2•6H2O 0.125 g/L) [25]. The
inoculum was later adapted to two different temperatures (mesophilic and thermophilic conditions),
as have researchers demonstrated that mesophilic cultures can serve as sources for cultivation under
thermophilic as well as hyperthermophilic conditions [26]. The obtained inoculum was acclimatized
by adding 50 g-VS/L sucrose as a substrate without Endo nutrients and then leaving for three days at
150 rpm in an incubator shaker at mesophilic (35 ◦C) or thermophilic temperature (55 ◦C).

2.2. Bath Experiment for Acidogenesis Stage for Hydrogen and Butyric Acid Production

The batch experimental assay was first carried out to investigate the effect of either adding or
not Endo nutrients on hydrogen production from Chlorella sp. in batch fermentation at the initial
concentration of 80 g-VS/L and pH 7 with 15 mL total volume of serum bottle. The serum bottle
contained 80 g-VS/L of Chlorella sp. and 4 mL of mixed cultures with or without Endo nutrient
(the concentration of Endo nutrients: 9.79 g MnSO4•H2O, 25 g FeSO4•7H2O, 5 g CuSO4•5H2O
and 0.125 g CoCl2•6H2O in 1 L). The amount of nutrients used depended on the working volume
(g-nutrient /L-working volume). The initial pH 7 ± 0.1 was adjusted with 0.5 M phosphate buffer
(1.5 mL) followed by distilled water to 10 mL working volume. The serum bottles were capped with
tight rubber stoppers and aluminum, and the headspace was flushed with 5 min of nitrogen gas to
ensure anaerobic conditions. They were then placed in a batch incubator shaker at 150 rpm and 35 ◦C.
Gas production from anaerobic dark fermentation was measured using a 50 mL glass syringe drawing
from the headspace of the batch serum bottles for cumulative gas values and, for the composition
gas hydrogen production, 1 mL plastic syringes were drawn daily. Both were analyzed with gas
chromatography. For optimization of hydrogen and butyric acid production from Chlorella sp. using
mixed cultures as a substrate, it was carried out at temperatures of 35 ◦C and 55 ◦C (two levels), the
initial pHs of 5 and 7 (two levels) and the initial substrate concentrations of 40, 60, 80, and 100 g-VS/L
(four levels) to determine the optimum conditions in batch dark fermentation of Chlorella sp. by using
Taguchi method to aid experimental design.

The Taguchi method as a statistical tool for biotechnological applications is an easy and popular
method used for experimental design. As reviewed by Rao et al. [27], comparative studies between
response surface methodology (RSM) and the Taguchi techniques revealed that both techniques have
similar results, however Taguchi technique requires half the time as RSM technique. Thus, Taguchi
technique was selected for this investigation. Table 1 shows a set of experimental assays created using
Taguchi design method. Eight batch test sets were used for the Taguchi design. However, in the
experiment, there was one additional set of experiments (Batch Set 7), with the intensity of the substrate
with 80 g-VS/L, at pH 7 and temperature 35 ◦C to compare the same initial substrate concentration and
temperature with different pH. Thus, nine total batch test sets were performed. The batch fermentation
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was conducted in 235 mL serum bottles by adding 60 mL of enriched inoculum of the mixed culture.
The substrate was added at different initial concentrations of Chlorella sp. (40, 60, 80 and 100 g-VS/L)
with 63 mL distilled water. Sucrose was used as positive control assay, representing microalgae and
the blank assay was added with only distilled water, i.e., no substrate. 3N Hydrochloric acid and 3N
sodium hydroxide were added to adjust to the initial of pH 5 ± 0.1 and 7 ± 0.1, respectively. Then,
22 mL of 0.5 M phosphate buffer was used in each bottle, followed by distilled water to 150 mL working
volume. The bottles and microalgae were not sterilized before use and the fermentation was followed
above. The fermentation broth was taken from each bottle after batch fermentation finished to measure
pH and volatile fatty acids (VFAs).

Table 1. Experiment from apply of Taguchi design.

Batch Run Conc. (g-VS/L)
A

pH
B

Temp. (◦C)
C

1 40 5 35
2 60 5 35
3 80 7 35
4 100 7 35
5 40 7 55
6 60 7 55
7 80 7 55
8 80 5 55
9 100 5 55

2.3. Analysis Methods

Total solid (TS), volatile solid (VS), ash, total Kjeldahl nitrogen (TKN), chemical oxygen demand
(COD), and oil and grease were determined in accordance with standard methods described by APHA
1998 [28]. Total sugar was analyzed by Anthrone sulfuric acid method [29]. Components of microalgae
were analyzed using Ion Chromatography Plasma (ICP) (main minerals analyzed: Na, K, Fe, Mg,
Ca, As, Cr, Cd, Cu, Pb, Zn, and Mn). The suspensions were centrifuged at 10,000 rpm for 10 min
with control temperature of 4 ◦C and the supernatants were filtered through nylon membrane with
hole size of 0.45 µm into 2 mL vial bottle. Volatile fatty acids (VFAs) including acetic acid, propionic
acid and butyric acid were analyzed using high performance liquid chromatography equipped with
SphereCloneTM 5 µm ODS (2) 80 Å, LC Column 50 × 4.6 mm, Ea, with stationary phase: C18,
UV-detector WL 210 nm Hitachi L7400. The operating temperature was 25 ◦C with Solution A 90% of
0.5 mM H2SO4 and Solution B 10% of 99.9% methanol as mobile phase at a flow rate of 0.6 mL/min, and
the injection sample volume was 20 µL. The concentration of acetic acid, propionic acid and butyric
acid were calculated using the linear equation obtained from various concentrations (0.05, 0.1, 1, 5
and 10 g/L) of standard mixed acid solutions. The concentration of hydrogen gas, nitrogen gas and
carbon dioxide gas were analyzed by gas chromatography (GC) equipped with thermal conductivity
detector (China Chromatograph Personal GC 1000). Argon gas was used as a carrier gas flow into
1/8 mm ID × 4 m Steel column (Porapak Q 10%). The temperatures of injection, oven and detector
were 40, 28, and 40 ◦C, respectively.

The cumulative hydrogen was calculated from the linear equation of standard gas (hydrogen
gas, nitrogen gas, and carbon dioxide). Then, the gas concentration obtained was used to calculate
the hydrogen volume from total gas. The hydrogen gas on each day was combined to calculate the
cumulative hydrogen (unit: mL-H2). Hydrogen production yield was calculated from cumulative
hydrogen by dividing it by the volatile solid of initial substrate concentration (unit: mL-H2/g-VS).
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3. Results

3.1. Chlorella sp. Characterization and Batch Fermentation of Chlorella sp. with and without Endo Nutrients

The characterization of Chlorella sp. is shown in Table 2. TS of 97.7% consisted of VS of 91% and
ash of 6.7% (w/w). TKN, total sugar, oil and grease of 4.6%, 6.1%, and 2.6% (w/w), respectively, were
recorded. Chlorella sp. microalgae in powder form had high volatile solids and low ash, indicating
high organic matter suitable for biodegradation [30,31]. Essential elements for bacteria growth such as
Mg, Fe, Cu, K, and Co [32,33] was also found in Chlorella sp. Although Co was not analyzed in this
study, it was previously found as one of the main elements in Chlorella sp. [34].

Table 2. Characterizations of the Chlorella sp.

Character of Chlorella sp. Value Character of Chlorella sp. Value

TS % (w/w) 97.7 Mg (mg/kg) 2458.66
VS % (w/w TS) 91.0 Ca (mg/kg) 1919.06

Ash % (w/w TS) 6.7 As (mg/kg) ND
Total Sugar % (w/w) 6.1 Cr (mg/kg) 5.22
COD (g-COD/g-VS) 1.43 Cd (mg/kg) ND

Oil and grease % (w/w) 2.6 Cu (mg/kg) 7.4
TKN % (w/w) 4.6 Pb (mg/kg) 5.22

Na (mg/kg) 248.04 Zn (mg/kg) 110.1
K (mg/kg) 7267.19 Mn (mg/kg) 48.74
Fe (mg/kg) 574.41

ND, not detected.

Cumulative hydrogen generated from batch fermentation with and without Endo nutrients was
12 ± 1.0 and 14 ± 0.2 mL-H2, respectively, under mesophilic temperature (35 ◦C) and initial pH 7. The
compositions of gas production in this study is shown in Figure 1. Hydrogen represented around 46%
of total gas generated from batch without Endo nutrients. Meanwhile, the batch fermentation with
Endo nutrient had hydrogen content of 40% of total gas generated, i.e., slightly lower than that from the
batch fermentation adding Endo nutrient, demonstrating that Chlorella sp. itself contained sufficient
nutrients for bacteria growth [35]. In the fermentation process, microorganisms degrade complex
biomass prior to taking up nutrients and trace elements for microbial metabolism activities [36]. The
hydrogen production yields of anaerobic fermentation from Chlorella sp. with and without nutrient
were 14.66 ± 1.2 and 17.29 ± 0.2 mL-H2/g-VS, respectively. The effect of nutrients (FeSO4•7H2O,
Urea, and Na2HPO4) was previously studied by Yossan et al. [13]. They found FeSO4•7H2O Urea
and Na2HPO4 were important nutrients affecting hydrogen production at a proper amount, which
were sufficiently contained in the substrate used. Batch dark fermentation of Chlorella sp. with Endo
nutrients provided lower hydrogen yield than batch fermentation without Endo nutrients, indicating
too high amount of important minerals achieved by adding Endo nutrients could be toxic instead
of enhancing the microorganisms. Hydrogen yield obtained from the batch fermentation without
adding nutrient is in accordance with hydrogen yield result reported by Wieczorek et al. [34]. The
batch dark fermentation of Chlorella vulgaris at different initial concentrations of 5, 10, 20 and 30 g-VS/L
at 60 ◦C without adding nutrients could provide highest hydrogen yield of 19 mL-H2/g-VS at initial
concentration of 10 g-VS/L. Therefore, the fermentation of hydrogen production from Chlorella sp.
without Endo nutrient was selected to further optimize the conditions of pH, temperature and initial
concentration for batch anaerobic dark fermentation.
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Figure 1. Cumulative gas production (hydrogen and carbon dioxide) from Chlorella sp. in batch
fermentation with (A) and without (B) Endo nutrient.

3.2. Hydrogen Production

In dark fermentative system, hydrogen and carbon dioxide are simultaneously generated with
volatile fatty acids (VFAs). Butyric acid, a major VFAs generated from dark fermentation, can be
converted to butanol by pure culture-based ABE fermentation [37]. In this research, Chlorella sp. was
used as the main carbon source under various conditions during batch fermentation using mixed
acidogenic bacteria, resulting in different amounts of gases. Figure 2 shows the cumulative total gas
and hydrogen production as well as the concentration of hydrogen in the bio syngas for the nine batch
sets using Chlorella sp. as a substrate and sucrose for control batch fermentation set. The different
types of substrate affected the batch anaerobic dark fermentation [38]. Only Batch Sets 3 and 4 of
sucrose fermentation could produce hydrogen of 199 ± 17 mL-H2 (17 mL-H2/g-VS) and 170 ± 14 mL-H2

(10 mL-H2/g-VS), respectively, which were lower than Batch Sets 3 and 4 of Chlorella sp. fermentation.
As synthetic nutrients were not added for this optimization, higher hydrogen production obtained
from Chlorella sp. fermentation could be strong evident that nutrients contained in Chlorella sp. could
enhance hydrogen production. Therefore, not adding synthetic nutrients to the sucrose fermentation
led improper nutrient concentrations for bacteria growth metabolism. Nutrients are necessary for
enzymatic activities and cell growth in anaerobic digestion process [36]. Although nutrients were not
adequate, batch sucrose fermentation under condition of 35 ◦C and initial pH 7 might be suitable for
cell growth of microorganisms for hydrogen production [39]. The low initial pH 5 inhibited hydrogen
production [40]. The initial concentration of substrate is an important parameter affecting microbial
fermentation process [41]. The initial concentrations used in this study were 40, 60, 80, and 100 g-VS/L
and did not differ significantly (Pvalue > 0.05) for hydrogen production under initial pH 7 and operating
temperature of 35 ◦C or 55 ◦C. Cumulative gas production from Chlorella sp. was highest under Batch
Set 4 (initial concentration 100 g-VS/L, pH 7 and 35 ◦C) with total cumulative gas of 646 ± 48 mL
and cumulative hydrogen of 330 ± 32 mL-H2. The productions of cumulative gas and cumulative
hydrogen at Batch Set 3 were 592 ± 42 mL and 266 ± 25 mL-H2, respectively, obtained under conditions
of initial concentration 80 g-VS/L, pH 7 and 35 ◦C were insignificantly lower than those of Batch Set 4
(Pvalue > 0.05). However, higher initial concentration of substrate was more likely to result in more
hydrogen production. Yun et al. [39] reported the optimum conditions of initial pH 7.4 at 35 ◦C with
high initial concentration of Chlorella vulgaris 76 g/L could produce hydrogen yield of 31.2 mL-H2/g of
dry cell weight. Meanwhile, under thermophilic temperature (55 ◦C) and initial pH 7, the cumulative
gas production (hydrogen production) obtained from Chlorella sp. at different initial concentration of
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40, 60, and 80 g-VS/L (Batch Sets 5–7) were 349 ± 17 mL (107 ± 10 mL-H2), 347 ± 19 mL (141 ± 13 mL-H2)
and 352 ± 21 mL (118 ± 12 mL-H2), respectively. At the lower substrate concentrations, anaerobic
dark fermentation caused a lower hydrogen productivity [42]. Increasing the initial concentration to a
certain level can increase the hydrogen productivity [39]. Because the excess substrate concentration
caused accumulation of cell and VFAs concentration, low pH could inhibit acidogenic bacteria in the
fermentation process [39].
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Figure 2. Hydrogen production of batch fermentation from microalgae (Chlorella sp.) with sucrose as a
control set under different conditions for initial concentration, pH, and temperature (Batch Sets 1–9)
based on Taguchi design.

Two operating temperatures, mesophilic temperature (35 ◦C) and thermophilic temperature
(55 ◦C), were employed for fermentative hydrogen production under acidogenic anaerobic dark
fermentation in batch mode. Temperature is an essential factor for microbial biodegradation to produce
hydrogen and VFAs [43,44]. As demonstrated in Figure 3, at initial pH 7, hydrogen production yields
obtained from Chlorella sp. fermentation at initial concentrations of 80 g-VS/L (Batch assay No. 3) and
100 g-VS/L (Batch assay No. 4) at 35 ◦C were 22.2 ± 2.1 mL-H2/g-VS and 22.0 ± 2.2 mL-H2/g-VS, which
are higher than these obtained at 55 ◦C of 18.9 ± 1.6 mL-H2/g-VS (initial concentration: of 40 g-VS/L of
Batch Set 5), 15.9± 1.4 mL-H2/g-VS (60 g-VS/L of run 6) and 10.1± 1.0 mL-H2/g-VS (initial concentration:
80 g-VS/L of Batch Set 7). Those results demonstrate that the hydrogen production yields obtained from
fermentation conducted at mesophilic (35 ◦C) conditions were higher than those at thermophilic (55 ◦C)
conditions. Although the inoculum was brought from the mesophilic condition, in a mixed culture,
some bacteria can grow at high temperatures, in accordance with the research of Stein et al. [12] and
De la Rubia et al. [26] who used inoculum from a mesophilic condition for fermentation at thermophilic
or even hyperthermophilic temperature. However, Qui et al. [43] studied the effect of temperature,
finding that the mesophilic range of 35-40 ◦C yielded higher hydrogen production. They used active
sludge from sewage treatment plant and the mesophilic range was familiar for microbes. In addition,
the mesophilic condition (35 ◦C) was used by Yun et al. [39] for fermentation with Chlorella vulgaris at
31.2 mL-H2/g of dry cell weight. Yokoyama et al. [45] presented lower hydrogen production at the
temperature of 55 ◦C than at 35 ◦C, and the highest hydrogen production yield (392 mL-H2/L of slurry)
at 60 ◦C using cow waste slurry with anaerobic microflora. Thus, the production of hydrogen depends
on the microbes used as inoculum. In our research, as the anaerobic sludge used as inoculum was
taken from mesophilic operation conditions, operating at higher thermophilic temperature could lead
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to some of the microorganisms being inhibited, resulting in decreased microbial community diversity
and consequently reduced hydrogen productivity [43,45].Energies 2019, 12, x FOR PEER REVIEW 8 of 14 
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Figure 3. Cumulative hydrogen and hydrogen production yields from initial pH of 7 and 5 at different
initial concentrations (40–100 g-VS/L) and temperature (35 and 55 ◦C).

The initial pH is another crucial parameter affecting fermentation systems for hydrogen production.
It can affect the metabolism in anaerobic acidogenic fermentation pathway of microorganisms [46,47].
The effect of initial of pH 5 and 7 on hydrogen production yield of Chorella sp. was tests in various
conditions, as shown in Figure 3. The hydrogen production yield obtained when using pH 7 was
obviously different from when using pH 5. Hydrogen production from Chlorella sp. was successfully
obtained by fermentation at pH 7 only for both temperatures and all initial substrate concentrations.
Yun et al. [39] obtained the maximum hydrogen production of 30.74 mL-H2/g-dry cell at pH 7 and
35 ◦C. In addition, the optimum conditions in several studies on anaerobic digestion were different
for mixed culture including the pH range. For example, Yun et al. [39] found the optimum condition
to be pH 7.4 (after testing pH 4.2–9) at 35 ◦C, while the optimum condition was pH 6 (after testing
pH range 5.5–7.7) at 39 ◦C in the study by De Gioannis et al. [48]. Therefore, the optimal pH for dark
fermentation depends on inoculum sources, enrichment of inoculum and type of substrate [36,49].
However, using initial pH 5 in this research could not produce hydrogen at either 35 or 55 ◦C in
mixed-culture fermentation. Although the research of Fang and Liu [50] was studied the pH in the
range of 4–7 to produce hydrogen from glucose with a mixed culture, it is found that the pH range
4.5–5.5 can provide good hydrogen yield. On the other hand, this research low hydrogen yields when
using initial pH 5, possibly due to enzyme deactivation in the metabolic pathway favoring fermentative
hydrogen production [51]. Initial pH 5 inhibited hydrogen production, while high initial pH 9 declined
the lag phase but still yielded low hydrogen production [40,46]. During fermentation, the initial pH 7
at 35 ◦C was rapidly decreased to pH 5.4 in one day and then slightly increased to pH 5.6–6.2 by Day 6
of microalgae fermentation. The initial pH 7 at 35 ◦C of sucrose rapidly decreased in the first two days
to nearly pH 5 and then dropped to pH 4.5 in Day 6. Inconstant, low pH 4.1–4.3 on Day 6 from the
initial pH 5 was found for anaerobic fermentation of microalgae (Figure 4). The results indicate that
the control of pH is important for hydrogen production [51]. In addition, at 35 ◦C, the decrease in pH
from initial pH 5 and 7 was more rapid than fermentation at 55 ◦C. The reduction of pH was caused
by acid accumulation in the fermentation system from the decomposition process of acid-producing
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bacteria [12]. Especially, clostridia, one kind of acidogenic bacteria, can produce acid along with the
production of hydrogen [13]. The reduction of pH demonstrates that hydrogen production occurred in
the fermentation process. However, the decrease in low pH would greatly inhibit the metabolism of
bacterial growth and cause a decrease in hydrogen production [52].
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3.3. Butyric Acid Production

Butyric acid can be used as a precursor for butanol production [9,12]. The results indicate that
organic acid production from Chlorella sp. fermentation varied with the different initial concentrations,
pH and temperatures by acidogenic mixed cultures. Figure 5 shows the production of butyric acid,
propionic, and acetic acids at 35 ◦C and 55 ◦C. The fermentation process at the initial pH 5 showed
that VFAs production had relatively low amounts, corresponding to very low hydrogen yield for both
operating temperatures. On the other hand, fermentation at initial pH 7 and any concentration or
temperature can produce VFAs with higher yield.
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Acetic acid and butyric acid are the main products of the fermentation of microalgae at 35 ◦C,
similar to the main products in the study by Giang et al. [53] at the same temperature, while, at
operating temperature 55 ◦C, the main VFAs generated were acetic acid and propionic acid. High
butyric acid production in batch fermentation was obtained at initial concentration of 80 and 100 g-VS/L
at pH 7 with concentration of butyric acid production of 4.27 g/L (0.05 g/g-VS) and 3.81 g/L (0.04
g/g-VS), respectively (Table 3) .

Table 3. The hydrogen and VFAs product of Chlorella sp. fermentation by the Taguchi method.

Run Conc.
(g-VS/L) pH T

(◦C)

Acetic
â

(g/g-VS)

Propionic
â

(g/g-VS)

Butyric
â

(g/g-VS)

Total
â

(g/g-VS)

H2
Yield

(mL/g-VS)

%
COD

Removal

1 40 5 35 0.03 0.00 0.016 0.05 0.0 0.0
2 60 5 35 0.17 0.00 0.013 0.18 0.0 0.0
3 80 7 35 0.47 0.00 0.053 0.56 22.2 1.0
4 100 7 35 0.34 0.00 0.038 0.38 22.0 1.0
5 40 7 55 0.24 0.27 0.002 0.80 17.9 0.7
6 60 7 55 0.36 0.28 0.000 0.81 15.7 0.7
7 80 7 55 0.33 0.08 0.001 0.46 9.8 0.4
8 80 5 55 0.03 0.00 0.004 0.03 0.1 0.0
9 100 5 55 0.03 0.02 0.003 0.07 0.0 0.0

Butyric and acetic acids are obligatory produced along with hydrogen production. Carbohydrate
monomer in the form hexose was directed to volatile fatty acids along with carbon dioxide and/or
hydrogen, as shown in Reactions (1)–(3) [54]:

C6H12O6 + 2H2O —› 4H2 + 2CO2 + 2C2H4O2 (1)

C6H12O6 —› 2H2 + 2CO2 + 2C4H8O2 (2)

C6H12O6 + 2H2 —› 2C3H6O2 + 2H2O (3)

Reaction (1): One mole of glucose can be converted to two moles of acetic acid concurrently with
four moles of hydrogen production. Reaction (2): One mole of glucose can produce butyric acid along
with only two moles of hydrogen. Reactions (1) and (2) can simultaneous produce butyric and acetic
acids along with hydrogen. Reaction (3): Propionic acid production cannot occur simultaneously but
two moles of hydrogen with one mole of glucose can further produce two moles of propionic acid.
The temperature 55 ◦C produced high propionic acid yield in contrast with low hydrogen yield. The
reaction for propionic acid does not produce hydrogen. The temperature of 35 ◦C produced lower
total VFAs than 55 ◦C at initial pH 7, while yielding acetic acid and butyric acid as the main products.
According to Giang et al. [53], when the total acid production is increased, the hydrogen production
yield will decrease, as the hydrogen synthesis byproduct found in fermented solution contains mostly
acetic acid and butyric acid [36]. Thus, the temperature of 55 ◦C yielded not only the highest acetic acid
production but also propionic acid as a product, resulting in low hydrogen gas production because
propionic acid is produced through a hydrogen consuming reaction [55].

In addition, the production of hydrogen and butyric acid under different conditions was analyzed
by ANOVA in Minitab. The most significant (Pvalue < 0.05) factors for hydrogen and butyric acid
production are pH (Pvalue = 0.001) followed by temperature (Pvalue = 0.024). Therefore, the main factors
affecting butyric acid and hydrogen production in Chlorella sp. fermentation using mixed cultures
were operating temperature and initial pH (Figure 6). In accordance with the review in [36], pH and
temperature are the most crucial parameters for acidogenesis fermentation. In addition, the biomass
used in the fermentation process is decomposed by microorganisms, transforming into volatile fatty
acids, mixed carboxylate and cell mass, which remain in the system [17], but only COD contributed
to hydrogen production is removed from the fermentation system [11,16]. Therefore, the hydrogen
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yield obtained (Table 3) shows that there was a slight decrease in COD in the system. The hydrogen
production yield from microalgae of Batch Sets 3 and 4 could be eliminated, being only about 1%,
which represents that, after degradation, the decomposed matter remained in the system, especially in
a volatile fatty acid form that can be used as a potential substrate to produce butanol in pure-culture
ABE fermentation. Li et al. [9] used rice straw in the fermentation process to produce acids, which were
subsequently used to produce butanol in ABE fermentation of Clostridium beijerinckii NCIMB 8052.
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4. Conclusions

The main factors affecting butyric acid production and hydrogen production were temperature
and pH. The optimal conditions for production of hydrogen and butyric acid from Chlorella sp. using
mixed acidogenic bacteria were: 35 ◦C, pH 7 and concentration of 80–100 g-VS/L. The average hydrogen
production yield of 22 mL-H2/g-VS and butyric acid production yield of 0.05 g/g-VS were obtained,
suggesting that microalgae (Chlorella sp.) has potential to be converted directly to butyric acid by
using acidogenesis under above optimum conditions. Moreover, mixed cultures fermentation could be
helpful to produce potentially butyric acid from microalgae without any pretreatment and without
adding nutrients. Butyric acid could be valuable substrate for further ABE fermentation by pure
culture to produce butanol, an advanced biofuel.
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