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Abstract: Considering the manufacturing of automotive components, there exists a dilemma
around the substitution of traditional cast iron (CI) with lighter metals. Currently, aluminum alloys,
being lighter compared to traditional materials, are considered as a more environmentally friendly
solution. However, the energy required for the extraction of the primary materials and manufacturing
of components is usually not taken into account in this debate. In this study, an extensive literature
review was performed to estimate the overall energy required for the manufacturing of an engine
cylinder block using (a) cast iron and (b) aluminum alloys. Moreover, data from over 100 automotive
companies, ranging from mining companies to consultancy firms, were collected in order to support
the soundness of this investigation. The environmental impact of the manufacturing of engine blocks
made of these materials is presented with respect to the energy burden; the “cradle-to-grave approach”
was implemented to take into account the energy input of each stage of the component life cycle
starting from the resource extraction and reaching to the end-of-life processing stage. Our results
indicate that, although aluminum components contribute toward reduced fuel consumption during
their use phase, the vehicle distance needed to be covered in order to compensate for the up-front
energy consumption related to the primary material production and manufacturing phases is very
high. Thus, the substitution of traditional materials with lightweight ones in the automotive industry
should be very thoughtfully evaluated.
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1. Introduction

Over the years, the material selection for modern car components changed a lot. As a reference,
in the 1970s, a design engineer would have to select from four to five sheet forming grades, whereas
today there are more than 50 options [1]. A number of material selection criteria need to be considered
including corrosion and wear resistance, crashworthiness, and manufacturability. At the same time,
legislation pushes for lighter vehicles, on the basis that lighter cars result in lower fuel consumption.
Since 1995 in Europe, the average car CO2 emission requirement dropped from 186 g/km to 161 g/km
in 2005, and it is expected to further reduce to 95 g/km in 2021 [2]. For achieving these requirements,
automotive manufacturers opt to use aluminum alloys in vehicles as a “lightweight” material.
The average usage of aluminum (Al) in a passenger car varies from 12% to 60% depending on the
vehicle. With regard to cast Al alloys, these are mostly used for engine blocks, cylinder heads,
and wheels, although they are increasingly used for nodes in the chassis structure and can potentially
reduce weight by 40%.

Substituting with lower-density materials leads to lower tailpipe emissions; however, this does not
consider the CO2 footprint of the materials used in the manufacturing of vehicles. The CO2 footprint of
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any material is related to its embodied energy, which is a synonym of the “track record” of a material
and the way it is produced. In every production phase, energy is needed for changing the phase,
geometry, and properties of the material. This energy is, thus, virtually embodied in the material.
Ashby et al. [3] presented the embodied energy of producing components for the automotive industry
and discussed the contribution of each life-cycle phase. According to their investigation, the energy
involved during the use phase of a vehicle is much larger than that during the material extraction
and manufacturing phase. Similar conclusions were reached by Sorger et al. [4] who investigated the
effects of substituting an aluminum cylinder block with a newly developed one made of cast iron (CI).
Their results showed that the CI engine block presents some significant advantages with respect to
cost, energy savings, and CO2 emissions.

Manufacturing process efficiency can obviously have a great impact on the energy consumption
during that life-cycle phase of the vehicle. Salonitis and Ball [5] highlighted the importance of
energy efficiency for both manufacturing processes and systems. One of the most energy-consuming
manufacturing processes is casting (when considering all sub-processes such as melting, holding,
finishing), and a lot of research is undertaken on how to improve its energy efficiency [6–10]. The casting
process is used in the automotive sector for the manufacturing of a number of components both in the
powertrain and in the body in white (BIW). A couple of attempts were also reported on the use of
different materials for the casting of automotive components [11,12].

The objective of the present investigation is to establish a methodology for the environmental
impact assessment of substitution of materials in the automotive sector so as to improve the current
decision-making practices in the automotive sector. The discussion is on whether Al alloys are a
better option than cast iron (CI), when the total energy burden is considered (and not only the tailpipe
emissions). For assessing the energy required, an extensive literature review was undertaken, and over
100 experts from the automotive supply chain, such as original equipment manufacturers (OEMs),
engine design consultancy firms, foundries, mining companies, primary alloy producers, and recycling
companies, as well as machining, heat treatment, and impregnation companies, were contacted. The case
study selected was the engine block, as it is the single heaviest component in most passenger cars.

2. Methodology: Assessment Approach

Focusing only on the use phase, or only on the manufacturing phase for the assessment of the
overall environmental impact of a product does not allow for a full understanding of the whole picture.
The “cradle-to-grave” approach aims to include the energy consumption that occurs due to resource
extraction and processing, component and product assembly, use, and end-of-life processing of a
vehicle (Figure 1). The evaluation of the overall impacts that a product has on the environment through
all of these life-cycle stages would give a complete picture of the lightweighting shift validity.

Energies 2019, 12, x FOR PEER REVIEW 2 of 23 

 

footprint of any material is related to its embodied energy, which is a synonym of the “track record” 

of a material and the way it is produced. In every production phase, energy is needed for changing 

the phase, geometry, and properties of the material. This energy is, thus, virtually embodied in the 

material. Ashby et al. [3] presented the embodied energy of producing components for the 

automotive industry and discussed the contribution of each life-cycle phase. According to their 

investigation, the energy involved during the use phase of a vehicle is much larger than that during 

the material extraction and manufacturing phase. Similar conclusions were reached by Sorger et al. 

[4] who investigated the effects of substituting an aluminum cylinder block with a newly developed 

one made of cast iron (CI). Their results showed that the CI engine block presents some significant 

advantages with respect to cost, energy savings, and CO2 emissions. 

Manufacturing process efficiency can obviously have a great impact on the energy consumption 

during that life-cycle phase of the vehicle. Salonitis and Ball [5] highlighted the importance of energy 

efficiency for both manufacturing processes and systems. One of the most energy-consuming 

manufacturing processes is casting (when considering all sub-processes such as melting, holding, 

finishing), and a lot of research is undertaken on how to improve its energy efficiency [6–10]. The 

casting process is used in the automotive sector for the manufacturing of a number of components 

both in the powertrain and in the body in white (BIW). A couple of attempts were also reported on 

the use of different materials for the casting of automotive components [11,12]. 

The objective of the present investigation is to establish a methodology for the environmental 

impact assessment of substitution of materials in the automotive sector so as to improve the current 

decision-making practices in the automotive sector. The discussion is on whether Al alloys are a better 

option than cast iron (CI), when the total energy burden is considered (and not only the tailpipe 

emissions). For assessing the energy required, an extensive literature review was undertaken, and 

over 100 experts from the automotive supply chain, such as original equipment manufacturers 

(OEMs), engine design consultancy firms, foundries, mining companies, primary alloy producers, 

and recycling companies, as well as machining, heat treatment, and impregnation companies, were 

contacted. The case study selected was the engine block, as it is the single heaviest component in most 

passenger cars. 

2. Methodology: Assessment Approach 

Focusing only on the use phase, or only on the manufacturing phase for the assessment of the 

overall environmental impact of a product does not allow for a full understanding of the whole 

picture. The “cradle-to-grave” approach aims to include the energy consumption that occurs due to 

resource extraction and processing, component and product assembly, use, and end-of-life 

processing of a vehicle (Figure 1). The evaluation of the overall impacts that a product has on the 

environment through all of these life-cycle stages would give a complete picture of the lightweighting 

shift validity. 

Figure 1. “Cradle-to-grave” approach. 

For assessing the energy required and the CO2 emissions in each stage of the life cycle, an 

extensive literature review was undertaken. The present study focused on all the processes, from 

Extraction and 
Processing of Raw 

Materials

Componenet 
Production

Vehicle Use Phase Vehicle Disposal

Materials & Energy

 Waste

Material Choice

Figure 1. “Cradle-to-grave” approach.

For assessing the energy required and the CO2 emissions in each stage of the life cycle, an extensive
literature review was undertaken. The present study focused on all the processes, from cradle to



Energies 2019, 12, 2557 3 of 23

grave, in the production of passenger vehicle engine blocks, such as mining, smelting and electrolysis,
melting, holding, casting, fettling, heat treatment, machining, impregnation, and recycling.

3. Embodied Energy in Materials Due to Primary Production

The starting point is the calculation of the primary production energy for each type of material.
For the calculation of embodied energy, the methodology proposed by Brimacombe et al. [13] is used.

3.1. Primary Aluminum Production

The production of primary aluminum requires a number of steps. Allwood and Cullen [14]
suggested that, for primary aluminum, the energy required is of the order of 170 GJ/ton. The literature
review indicated that energy ranges from 50 to 100 GJ/ton. Due to the ambiguity in these figures,
the energy requirements were calculated theoretically; Figure 2 shows that, for one ton of primary
aluminum, 98 GJ of energy is required. In the paragraphs below, the calculation of these figures
is explained.
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Figure 2. Primary aluminum production steps with associated energy content for producing one ton
of material.

Primary production of aluminum starts with the mining of dry bauxite, which requires 0.17 ± 0.08 GJ/t.
This figure was calculated after reviewing a number of reported energy figures in the literature review
as listed in Table 1.

Table 1. Bauxite mining energy per ton of bauxite.

Source Energy (GJ/t)

[15] 0.145
[16] 0.150
[17] 0.150
[18] 0.153
[19] 0.188
[20] 0.210

Alumina is refined from bauxite through the Bayer process, where the main steps are digestion,
clarification, precipitation, and calcination [21]. Firstly, dry bauxite is crushed in large mills and
blended with liquor to form slurry. Then, lime and caustic soda are added, mixed, and poured into the
digester, where a solution of hot caustic soda dissolves the alumina. During the digestion, impurities
drop to the bottom and form a solid waste residue called red mud. In order to separate the alumina
from the red mud, the mix is moved to clarification. By cooling, aluminum hydroxide is precipitated
from the caustic soda and then washed. The last step is calcination, where the water content in
hydroxide is removed, and the alumina white powder is produced [22]. The energy consumption in
this process varies in a range where the calculated average is 13.2 ± 6.4 GJ/t of alumina (Table 2).
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Table 2. Alumina refining energy per ton of alumina.

Source Energy (GJ/t)

[19] 13.17
[17] 12.52
[23] 10.65
[15] 12.77
[16] 14.20
[18] 17.90
[24] 15.00
[25] 13.80
[23] 10.95
[26] 10.65
[20] 13.82

Red mud is highly alkaline (pH = 13), having great environmental impact; thus, it is very difficult
to dispose of. It represents a major problem in the primary aluminum production. Red mud disposal
covers vast areas which consequently cannot be built or farmed on, even after red mud is dried after
several years. The most common ways to dispose of it is by land storage in the form of lagoons,
dry stacking, or dry cake [23]. Two or more tons of red mud is produced for every ton of aluminum.

The key process for producing Al is electrolysis. Alumina is dissolved in a molten cryolite to
decrease the melting point of alumina. The process, known as the Hall–Heroult process after the
inventors, passes an electric current through the molten alumina to dissociate it into aluminum and
oxygen. The oxygen reacts with the carbon anode to produce CO2, whilst molten aluminum remains
and is tapped off periodically into teapot ladles [22]. In terms of process consumables, carbon anodes
are used. A mix of calcined petroleum coke, recycled anodes butts, and coal are baked at 1150 ◦C
to produce anodes, consuming 3.1 GJ per ton of anode. Depending on the anode use, the produced
Al can be differentiated. The two main technologies are prebake (anodes are baked in ovens and
then consumed in the electrolysis cells) and Soderberg (anodes are baked directly in the electrolysis
cell) [23]. Furthermore, the carbon anode is totally consumed in Soderberg technologies, while, in
prebake technologies, 80% is consumed and the other 20% is used again in the anode production
process. In Europe, most of the electrolysis facilities use prebake technology with the exception of two
Soderberg smelters placed in Spain. By calculating the average from the range of energy consumptions
required for electrolysis, the process consumes approximately 54.4 ± 4.5 GJ/t of produced Al (Table 3).
Also, if 80% of the total amount of carbon anode is converted into carbon dioxide, an extra energy of
14 GJ/t aluminum is added to the process [26], ending up with a total energy consumption of 68 GJ/t
aluminum in the electrolysis process.

Table 3. Electrolysis energy per ton of aluminum.

Sources Energy (GJ/t)

[27] 56
[24] 52
[28] 66
[21] 54
[29] 53
[16] 55
[20] 47

[23] (95% prebaked and 5% Soderberg) 53.6
[23] (89% prebaked and 11% Soderberg) 55.0

[24] 50
[18] 55
[26] 56
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Afterward, the molten aluminum is poured into molds to solidify in different shapes, which are
shipped as ingots. In some cases, liquid aluminum is transported in insulated ladles by road depending
on the proximity of the foundry [18]. The average energy consumption for ingot casting from the
range collected from the literature review is 1.81 ± 0.17 GJ per ton of aluminum (Table 4). Finally,
by adding up all the energy consumed in all the different processes, the production of one ton of
primary aluminum requires 98 GJ.

Table 4. Cast ingot energy per ton of aluminum.

Sources Energy (GJ/t)

[26] 2.00
[18] 1.77
[20] 1.67

3.2. Pig Iron Production

Similarly, for primary iron/steel, the energy required for the production of pig iron, according to
the literature review, ranges from 20 to 40 GJ/ton. Revisiting the process and calculating the energy per
phases theoretically indicated that the energy content of one ton of primary iron is 17 GJ (Figure 3).
In the paragraphs below, the calculation of these figures is explained.
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Figure 3. Primary iron production steps with associated energy content for producing one ton
of material.

According to Moll et al. [30], the main raw material in pig iron production is iron ore, consuming
an average energy of 0.44 ± 0.2 GJ/t of iron ore mined (Table 5). Fine iron ores are converted into lump
ores before charging into the blast furnace, in a process known as iron ore agglomeration. There are
two different processes of agglomeration which are used in industry: sintering and pelletizing.
Sintering plants are usually located near the blast furnace site, while pelletizing plants are situated
near the mines [31]. From the range of data collected, the average energy required for this process is
1.59 ± 0.36 GJ/t of iron agglomerate (Table 6).

Table 5. Iron ore mining and concentration energy per ton of iron ore.

Sources Energy (GJ/t)

[32] 0.153
[33] 0.142
[30] 0.177
[27] 0.956
[34] 0.750
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Table 6. Iron ore agglomeration per ton of iron ore agglomerated.

Sources Energy (GJ/t)

[35] 1.70
[33] 1.50
[27] 1.37
[36] 1.60

[30] (pelletizing) 1.33
[30] (sintering) 1.55

[37] (pelletizing) 0.82
[37] (sintering) 1.54
[38] (sintering) 2.25
[34] (sintering) 1.75

[31] (pelletizing) 2.10
[31] (sintering) 1.60

Coal is converted at high temperatures to produce coke, which will provide permeability, heat,
and gases which are required to reduce and melt the iron ore, pellets, and sinter [39]. The energy
consumed to produce one ton of coke is approximately 3.98 ± 1.1 GJ (Table 7). In some countries like
Brazil, charcoal is commonly used in the production of pig iron instead of coke.

Table 7. Coke manufacturing energy per ton of coke.

Sources Specific Country Energy (GJ/t)

[27] 2.19
[40] 3.70

[34]
Germany 2003 3.70

Japan 2002 3.50

China 2004 4.20

[35] 4.30
[37] 4.45
[22] 3.59
[36] 5.80
[38] 2.40
[31] 6.00

Finally, limestone is added in order to remove the impurities [33]. Similar to iron ore, limestone
also has to be extracted from the earth, in a process that consumes close to 0.9 ± 0.5 GJ per ton (Table 8).

Table 8. Energy consumption per ton of limestone.

Sources Energy (GJ/t)

[41] 0.964
[27] 0.848

The iron ore (lump, sinter, and/or pellets), along with additives such as limestone and reducing
agents (coke), is put into the blast furnace in order to smelt. Then, a hot air blast is injected into the
blast furnace. The limestone is melted to remove the sulfur and other impurities, originating a residue
known as slag. This process, known as smelting, is the most energy-consuming in the production of
pig iron, accounting for 13 GJ (Table 9) of the total 17.4 GJ per ton of pig iron.
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Table 9. Energy consumption per ton of limestone.

Sources Specifics Energy (GJ/t)

[22] 16.90
[38] 13.6–16.2
[42] Blast furnace 12.3
[40] Blast furnace 10.4
[27] Raw iron manufacturing 12.8
[31] Blast furnace 13–14.1
[43] Blast furnace 12.7–18.6
[44] 12.0
[34] blast furnace 10.4
[45] 12.2
[36] blast furnace 10.4
[37] 13.63

3.3. Outcome

In Figure 4, the various stages and their energy consumption for the production of one ton of pig
iron and primary aluminum are shown. The difference in the total energy consumed to produce one
ton of primary aluminum when compared to the production of the same amount of pig iron sums up
to roughly 80 GJ.
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Furthermore, red mud is a by-product of the primary aluminum production at a rate of two tons
per ton of aluminum (120 million tons per year) and, at this moment, there are no solutions for it.
On the other hand, the slag from the smelting process is easily recycled into road and cement making.
Finally, the electrolysis of alumina consumes four times more energy than the whole production of
pig iron.

4. Case Study: Engine Block

The heaviest single component in a passenger vehicle is the cylinder block. Over the last 10 years,
the most significant transformation in engines was the capacity to provide more power with a lower
displacement. This is a result of one of the most significant engine trends: downsizing. Comparing 2001
with 2013, engine power increased 20% while engine displacement decreased by 10% [46]. Furthermore,
the top-selling vehicle models worldwide follow this trend. According to Reference [46], the engine
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displacement of the most sold vehicles is between 0.8 and 2.0 L, except for the United States of America
(USA) and Canada, where engines with more power and displacement are highly valued.

The four-cylinder blocks were selected as a case study in the present study, as they represent
approximately 71% of the total blocks manufactured worldwide [47]. For the reasons mentioned in
the previous paragraph, the present investigation focuses on in-line four-cylinder 1.6-L engine blocks.
These can be found in both diesel and petrol versions and in both CI and Al-alloy materials. Al-alloy
engine blocks are lighter than CI engine blocks as illustrated in Figure 5. However, due to the fact that
CI is stronger than Al alloys, Al-alloy engine blocks need thicker walls between cylinder bores, making
them longer. As a result, the volume of CI required is considerably less, being in the region of 55% of
that of the equivalent Al-alloy block, and CI engines are considerably more compact. As illustrated in
Figure 5, the weight differentials between the petrol and diesel engines made of Al alloy and CI are 9
and 11 kg, respectively. However, more compact engines lead to an even smaller weight difference
in the fully assembled engine, as a result of smaller ancillary components. Thus, our calculations
are based on an on-the-road weight differential for the engine of 7 kg and 9 kg for petrol and diesel,
respectively, which was substantiated by a number of design consultancy firms and OEMs.
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In Figures 6 and 7, the process flow for manufacturing the engine blocks from CI and Al alloys,
respectively, is presented. The key difference between the two process flows is the need for heat
treatment in the case of Al-alloy engine blocks and the use of liners.
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4.1. CI Engine Blocks

Producing engine blocks from cast iron requires casting to a near net shape and machining to the
exact dimensions. For collecting the required data (material use and energy consumption), three casting
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foundries were visited. These three foundries are responsible for the production of more than 60% of
the world’s cast-iron engine blocks.

4.1.1. Melting Stage

The casting temperatures for CI and Al vary around 1500 ◦C and 730 ◦C, respectively. This normally
occurs in a melting furnace which can differ from foundry to foundry and/or for different metals.
Normally, two types of furnaces are used: cupola and induction. By a number of foundries, it was
verified that they only use cupola furnaces to produce CI engine blocks. Cupola furnaces use coke as
an energy source, and their thermal efficiency ranges between 20 and 30%. The main inputs in these
furnaces are pig iron (4.8%), ferrosilicon 75% Si (4%), and steel and/or CI scrap (91.2%). Unrecoverable
metal losses, mainly due to oxidation, are reported by foundries, to an average of 2%. In total, three CI
foundries were audited, and the energy per ton of liquid metal was measured to be 3.9 ± 0.1 GJ
(Figure 8).
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Figure 8. Melting energy per ton of liquid metal in three different cast-iron foundries.

4.1.2. Holding Stage

After melting, to keep the metal at casting temperature and with a consistent composition, it is
transferred and kept in the holding furnace as a buffer due to different production rates. The energy per
ton of liquid metal was measured to be 0.2 ± 0.1 GJ in two foundries (Figure 9). The holding furnaces
in both foundries were electricity powered. One of the biggest factors in the energy consumption
during the holding process is the holding time. This changes from foundry to foundry according to the
production rate, casting method, and of course the type of metal. In the holding process, the foundries
reported an unrecoverable metal loss of 2%.

Energies 2019, 12, x FOR PEER REVIEW 9 of 23 

 

casting foundries were visited. These three foundries are responsible for the production of more than 

60% of the world’s cast-iron engine blocks. 

4.1.1. Melting Stage 

The casting temperatures for CI and Al vary around 1500 °C and 730 °C, respectively. This 

normally occurs in a melting furnace which can differ from foundry to foundry and/or for different 

metals. Normally, two types of furnaces are used: cupola and induction. By a number of foundries, 

it was verified that they only use cupola furnaces to produce CI engine blocks. Cupola furnaces use 

coke as an energy source, and their thermal efficiency ranges between 20 and 30%. The main inputs 

in these furnaces are pig iron (4.8%), ferrosilicon 75% Si (4%), and steel and/or CI scrap (91.2%). 

Unrecoverable metal losses, mainly due to oxidation, are reported by foundries, to an average of 2%. 

In total, three CI foundries were audited, and the energy per ton of liquid metal was measured to be 

3.9 ± 0.1 GJ (Figure 8). 

  

Figure 8. Melting energy per ton of liquid 

metal in three different cast-iron 

foundries. 

Figure 9. Holding energy per ton of liquid 

metal in two different cast-iron foundries. 

4.1.2. Holding Stage 

After melting, to keep the metal at casting temperature and with a consistent composition, it is 

transferred and kept in the holding furnace as a buffer due to different production rates. The energy 

per ton of liquid metal was measured to be 0.2 ± 0.1 GJ in two foundries (Figure 9). The holding 

furnaces in both foundries were electricity powered. One of the biggest factors in the energy 

consumption during the holding process is the holding time. This changes from foundry to foundry 

according to the production rate, casting method, and of course the type of metal. In the holding 

process, the foundries reported an unrecoverable metal loss of 2%. 

4.1.3. Core- and Mold-Making Stage 

In engine block castings, cores are used to form the complex internal geometry of the block. 

Cores are made from silica sand using the cold box method, where a binder system is used to cure 

the sand and resin to form the core. The design of the core varies depending on the material to be 

casted, and, for CI engine blocks, the reported core weight is 42.6 ± 4 kg (Figure 10a). The process of 

core-making also consumes a significant amount of energy, as the cores are normally coated and 

baked before use. Three foundries reported average energy needed for core-making to be 0.97 ± 0.3 

GJ per ton of core sand (Figure 10b). In addition to the cores, a sand mold is used to form the outer 

limits of the casting. It is also used to support the core package, which together form the core package 

system. The weight of the sand mold, according to one of the foundries, is approximately 180 kg. For 

3.6

4.0 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

CI - F1 CI - F2 CI - F4

N
o

rm
a
li
s
e
d

 M
e
lt

in
g

 E
n

e
rg

y
 (

G
J
/t

 o
f 

m
e
ta

l)
 

0.1
0.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

CI - F1 CI - F2

N
o

rm
a
li
s
e
d

 M
e
lt

in
g

 E
n

e
rg

y
 (

G
J
/t

 o
f 

m
e
ta

l)
 

Figure 9. Holding energy per ton of liquid metal in two different cast-iron foundries.
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4.1.3. Core- and Mold-Making Stage

In engine block castings, cores are used to form the complex internal geometry of the block.
Cores are made from silica sand using the cold box method, where a binder system is used to cure
the sand and resin to form the core. The design of the core varies depending on the material to be
casted, and, for CI engine blocks, the reported core weight is 42.6 ± 4 kg (Figure 10a). The process of
core-making also consumes a significant amount of energy, as the cores are normally coated and baked
before use. Three foundries reported average energy needed for core-making to be 0.97 ± 0.3 GJ per
ton of core sand (Figure 10b). In addition to the cores, a sand mold is used to form the outer limits of
the casting. It is also used to support the core package, which together form the core package system.
The weight of the sand mold, according to one of the foundries, is approximately 180 kg. For the
formation of the mold, machining is used that is reported to consume 0.16 ± 0.2 GJ (Figure 10c) per ton
of green sand.
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Figure 10. Mold- and core-making: (a) core weight, (b) core-making energy, and (c) mold-making energy.

4.1.4. Casting Stage

For the casting of CI into engine blocks, all visited foundries reported that only gravity sand
casting is used, using green sand molds and a core package. In gravity sand casting, liquid metal is
poured into a cavity that is formed by a monolithic sand mold, as explained previously. The pouring of
the metal can be fully automated, semi-automated, or completely manual. Flow rates of the metal may
vary from the beginning to the end of a casting campaign as the pouring ladle empties. Metal flow
velocities should be adequate to avoid turbulence and achieve a good-quality casting. Sand castings
have a low cooling rate because of the sand insulating mass surrounding the casting.

4.1.5. Fettling Stage

Following the casting process and the removal of the solid block from the sand mold, it has to be
roughly machined to remove secondary cavities, risers, runners, and gates (also known as fettling).
This excess material is usually re-melted. The mold yield reported from all three foundries was 75 ±
1% (Figure 11a). The energy consumed during the process varies significantly per foundry, and the
reported values range from 0.1 to 1.4 GJ per ton of liquid metal (Figure 11b).

4.1.6. Machining Stage

Castings are produced volumetrically larger than required. Surfaces such as cylinder bores,
deck faces, crankshaft bores, etc. are casted with an excess material of 2–3 mm that allows later
dimensional corrections. A large number of holes must be drilled for oil circulation, bolts, etc. The main
machining operations in an engine block are cubing, boring, drilling, and threading. Machining
performance and, consequently, machining energy consumption may vary according to the machining
parameters used. The energy can be significantly reduced by arranging for casting feeders to be
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located on areas which are to be machined. The approach used to quantify the energy requirements
during machining is based on an analytical model provided by MAG Manufacturing Technology [48].
The model used is based on real machining energy measurements and has the capability to aggregate
all the ancillary energy requirements (air, coolant supply, etc.) into each operation. Cycle times for
each operation were obtained from machining outsourcing houses for two in-line four-cylinder blocks.
The total energy consumption calculated for machining one cast-iron block is 61 MJ, i.e., 1.6 GJ/ton of
cast-iron block. Usually, 10 kg of material is removed, which represents 20% of the block.
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Figure 11. Fettling process: (a) mold yield in different casting processes; (b) fettling energy consumption.

4.1.7. Ancillary Processes

Miscellaneous energy is related to the facility operation and other ancillary processes like heating,
lighting, etc. The energies included in each foundry for the miscellaneous processes vary widely. In the
case of the three CI foundries, the reported energy ranged from 0.1 to 3.8 GJ per ton of good casting.

4.1.8. Inspection Stage

Quality inspection is undertaken throughout the casting process. Foundries aim to minimize their
internal rejection rate to increase their efficiency by applying strict internal inspection standards in
order to not ship and transport bad product. CI foundries reported an average of 3% internal scrap
and 0.5% external scrap. Internal scraped CI blocks are re-melted directly.

4.1.9. Material Recycling

In all foundries, material is recycled. The furnace charge that foundries are using for engine block
manufacturing comes from two different sources—external recycling (new scrap, old scrap, turnings,
and dross) and in-house recycling (Figure 12). According to foundry practices, the ratio between the
two differs. The dominant production route for steel made from scrap is electric arc furnace, while the
energy needed is equal to on average 7 GJ/ton (Table 10). The most common route for primary steel
production is basic oxygen furnace that converts pig iron into steel. The energy for this step on average
is equal to 0.8 GJ/ton. Together with pig iron production energy, a full steelmaking process is equal to
18.2 GJ per ton.
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Table 10. Energy for steel recycling with electric arc furnace.

Source Energy (GJ/t)

World Steel Association (2015) 5.3–8.7
[49] 6–15
[50] 8.1–9.0
[13] 10
[22] 5.5
[43] 5.3
[44] 5.5

Because the history of the scrap that is used as a furnace charge is not known [13], it is necessary
to consider all the stages that the material might go through, from initial manufacture to final disposal.
Based on the number of product cycles, the embodied energy in the material can be estimated by
calculation. The total energy content for the chosen number of cycles can be calculated as follows [13]:

X =
(
Xpr −Xre

)[ (1− r)
(1− rn)

]
+ Xre. (1)

According to Equation (2), the energy burden for multiple recycling, where the material is recycled
indefinitely, can be obtained by calculating the following [13]:

X = Xpr − r
(
Xpr −Xre

)
, (2)

where Xpr stands for energy for manufacturing one ton of material via the primary route, Xre is the
energy for manufacturing one ton of material via the recycling route, r is the overall recycling efficiency
over one life cycle (r = RR·Y), RR is the scrap recovery rate (%), and Y stands for the efficiency of the
recycling process (%). Figure 13 represents the embodied energy for steel scrap after recycling. For the
electric arc furnace (EAF) route and steel scrap processing, the average overall recycling efficiency (r)
includes the furnace yield and the efficiency of recovering the steel at the end-of-life (r = 0.89) [13].
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However, the above analysis considers only the once-through product system. To undergo a
full energy analysis, the influence of recycling and reusing material in the casting process should
also be considered [14]. As a result, the multiple life-cycle method needs to be adopted. The residue
metal that can be again re-melted comes from fettling (in the form of runners and feeders), rarely
machining (swarf), and internal inspection. Apart from metal, other process materials like core sand
and green sand can also be recycled (via thermomechanical or thermal sand reclamation) or reused [51].
The embodied energies for cast-iron, core sand after reclamation and green sand are illustrated in
Figure 14a,b,c respectively.

The alloying and treatment materials need to be considered as well. For CI, ferrosilicon is added to
enhance the grain structure and metallurgy of the finished component. The energy content to produce
one ton of ferrosilicon master alloy is just over 30 GJ. However, the addition rate into the iron is such
that this contributes 1.6 GJ/ton of CI engine blocks.
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Figure 15 shows the Sankey diagram representation of the energy and materials flows. Using this,
the largest areas of energy input, recycling loops, and material losses are shown.
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Figure 15. Energy and material flow in CI sand casting, showing that 1000 kg of good castings require
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4.2. Al-Alloy Engine Blocks

Figure 7 shows the process flow for Al-alloy engine block manufacturing. Compared to CI engine
blocks, the process is slightly more complicated, as there is need for the use of liners as explained
later on, as well as heat treatment of the cast components. Furthermore, the casting processes to
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be used vary from company to company. Three different casting processes can be identified that
are widely used for the manufacturing, namely high-pressure die casting (HPDC), low-pressure die
casting (LPDC), and low-pressure sand casting (LPSC; also known as the Cosworth process). Overall,
70% of aluminum-alloy engine blocks are casted by HPDC, while the other 30% are casted through a
combination of the other methods [23].

The LPDC process consists of a dosing furnace which is pressurized, forcing liquid aluminum to
enter the mold from the bottom. The mold consists of steel dies combined with internal sand cores.
The repeatable rising and falling of the metal through the delivery tube may introduce oxide layers
which eventually are delivered to the casting. LPDC is used for medium to long series of casting
runs, where better mechanical properties are required when compared to HPDC. In HPDC, the alloy
is inserted into a cold chamber and a hydraulic piston squeezes the metal into a steel die mold at
extremely high speed (up to 80 m/s) and pressure (3500 tons). No sand cores can withstand the high
pressure; thus, the HPDC block designs are limited to open-deck blocks.

Similar to cast-iron green sand casting, aluminum gravity sand casting also uses core packages.
In the LPSC (Cosworth process), the metal is usually pumped into the sand mold from the bottom by
an electrical pump. The difference from LPDC is that the metal in the pump never drops back to the
level of the metal and, consequently, the level of oxide generated is potentially lower than in a gravity
system [52]. Data were collected from a number of foundries that employ such processes.

4.2.1. Melting and Holding

In Al-alloy engine block foundries, tower furnaces are most commonly used [6]. The unrecoverable
metal losses are of the same order of magnitude as CI. The foundries contacted reported an average
energy consumption of 6.5 ± 3 GJ per ton of liquid metal (Figure 16). With regard to the holding of
the liquid metal, the holding time varies between foundries. In HPDC and LPDC, the holding time is
around four hours, while for LPSC it is 13 hours because of the additional time required for refining of
the metal. The foundry using the Cosworth process used holding as a refining step to allow unwanted
trace elements to settle out of the liquid Al alloy and oxides to float to the surface. Figure 17 shows the
holding energy in GJ per ton of liquid metal.
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Figure 16. Melting energy per ton of liquid metal in three different Al foundries.

4.2.2. Core- and Mold-Making

The material and the process used for the core- and mold-making depend on the type of the
casting process to be used. In LPSC foundries, cores are made from silica sand using the cold box
method, where a binder system is used to cure the sand and resin to form the core. In HPDC, sand cores
are not used due to the high-pressure injection of the metal which would destroy the cores. The core
weight also varies for the different metals. The cores in cast iron sand casting are much heavier than in
aluminum LPDC. This is because it includes the whole core package (cores + core shells). The energy
required for making cores and the mold is quite similar with cast-iron sand casting (CISC), with the
exception of when dies are used.
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Figure 17. Holding energy per ton of liquid metal in three different Al foundries.

4.2.3. Casting

The four different casting processes were presented already. As per CI, the energy consumed
during the casting process is negligible with the exception of HPDC. In HPDC, automatic spray-up for
lubrication and robotic casting removal after solidification also consume a lot of energy. The dies are
usually monolithic and contain cooling and heating channels. Due to these extra energies in HPDC,
a casting energy is accounted for in this casting method only (1.2 GJ per ton of casting). HPDC parts
are near net shape, and less fettling and machining operations are required. Due to the nature of
metal filling, HPDC castings are often non-heat-treatable but might go through a stress-relieving
thermal cycle.

4.2.4. Fettling

Once the cast engine block is removed from the sand mold or the die, fettling is required as
per the CI process as well. In the case of Al-alloy engine blocks, the reported mold yield is lower
compared to CI and is approximately 65 ± 2%. The material removed from fettling aluminum-alloy
engine blocks can be re-melted directly in the foundry or sold to an external recycling company to be
transformed again into aluminum alloys. The second case relates to aluminum LPDC and, therefore,
the calculations in this study, for LPSC, are based on outside recycling. The energy consumed during
the fettling process was reported in all three foundries to be 0.6 GJ per ton of liquid metal.

4.2.5. Heat Treatment

A key difference in the CI process flow is the need for heat treatment. Al–Si alloys used to
produce Al-alloy engine blocks usually require T6 and T7 heat treatments which are used to improve
both mechanical and wear properties [53]. Foundries also reported that T5 is the most common heat
treatment process used in HPDC. The average energy consumption per casting can be calculated when
temperature and holding times are known.

Considering a treatment efficiency of 100%, the average energy consumption for heat treatments
T6 and T7 can be calculated to be 3.2 GJ/ton of finished casting. For T5, the average energy consumption
is calculated to be 1.0 GJ/t. For the case of engine block casting, 20% heat treatment efficiency is
required; thus, the values considered were scaled accordingly.

4.2.6. Impregnation

Casting introduces porosities during the solidification of the liquid metal. Turbulent metal flow,
gas entrapment, and metal shrinkage are the main factors that introduce voids in the casting. Porosity
is more pronounced in aluminum-alloy castings because of its higher volumetric shrinkage and
hydrogen content. The three main forms of porosity are full enclosed, blind, and through porosity.
Such porosity could result in leaking under pressure, and would, thus, require the block to be scrapped.
an impregnation process that introduces a polymer sealant in the pores and cracks of castings is used for
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this reason. The most commonly used impregnation process is the vacuum dry process. The castings
are stashed into a basket and inserted in a series of chambers until a full impregnation cycle is achieved.

Around 90% of the energy in an impregnation cycle is consumed heating up the water at around
90 ◦C, and the remaining 10% is used for circulation pumps, vacuum pumps, rotational mechanisms,
and other ancillary systems. The energy involved in the process was ascertained to be around
7.2 MJ/engine block.

4.2.7. Machining

Using the MAG analytical model [48], the total energy consumption for machining is 51 MJ,
of which 13 MJ is for the initial machining of the cylinder liners.

4.2.8. Liner Casting

For the aluminum-alloy in-line four-cylinder blocks, for all casting processes, cast-iron cylinder
liners are cast in the block. The wear and mechanical properties of hypoeutectic alloy sliding surfaces
are not adequate to withstand the friction of the moving piston in the cylinder bore. Cast-in CI liners
are used for the tribological system “cylinder–piston–piston ring”. The liners are centrifugally cast and
the induction pre-heated prior to casting at around 375 ◦C to achieve better bonding with the liquid
Al, ending up with a total energy of 188 MJ/engine block. For the fettling of the solid casting system,
the yield ratio is approximately 67% with a total energy consumption of 0.6 GJ per ton of liquid metal.

4.2.9. Material Recycling

As with the CI foundries, Al foundries charge their furnaces with recycled material as well.
The process is quite similar; however, Figure 12 needs to be updated in order to include secondary
smelter and the production of ingots. Figure 18 illustrates the common processes for the material flow
of the recycling model for the case of Al alloys.
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Figure 18. Material flow diagram of the recycling.

Al-alloy engine blocks are usually made from secondary ingot. The alloy used is A383 or A380
for LPDC and HPDC, and A319 for LPSC. The process of recycling Al scrap to form the alloys is by
refining, a process that uses a combination of rotary and reverberatory furnaces [54]. The recycled Al
can have similar properties to primary Al. However, in a course of multiple recycling, more and more
alloying elements are introduced into the metal cycle. Secondary alloys have relatively high levels of
impurities, especially iron, which is detrimental to many properties. The multiple life-cycle method is,
thus, used (as in the CI recycling) for calculating an average energy consumption.

Figures 19–21 present the Sankey diagrams for the LPSC, LPDC, and HPDC cases, respectively.
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5. The Answer to the Dilemma between Al Alloys and CI

Figure 22 shows the energy breakdown in each material source and indicates that ingot and
external scrap represent the highest embodied energy of the charge and feedstock for Al-alloy and CI
engine blocks. Figure 23 demonstrates the process energy breakdown for each casting. It is obvious that
the CI engine block requires considerably less energy. The excess energy spent for the manufacturing
of Al-alloy engine blocks should be compensated for by the fact that the vehicle is lighter and, thus,
consumes less energy during its use.
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Figures 22 and 23 provide information about the embodied and process energy per ton of engine
block. However, it is equally significant to represent the data above using a single block as a functional
unit. The values of process, embodied, and total energy, which is equal to the sum of the embodied
and process energy, required for the production of each single engine block via the four manufacturing
processes, are listed in Table 11.

Table 11. Total energy per engine block. HPDC—high-pressure die casting; LPDC—low-pressure die
casting; LPSC—low-pressure sand casting; CISC—cast-iron sand casting.

HPDC LPDC LPSC CISC

Diesel Petrol Diesel Petrol Diesel Petrol Diesel Petrol

Process energy (GJ/t) 25.8 25.8 36.78 36.78 59.12 59.12 13.11 13.11
Embodied energy (GJ/t) 72.37 72.37 78.63 78.63 114 114 19.46 19.46

Weight of single block (kg) 27 18 27 18 27 18 38 27
Process energy (GJ/block) 0.64 0.41 0.91 0.58 1.46 0.93 0.5 0.35

Embodied energy (GJ/block) 1.79 1.14 1.94 1.24 2.81 1.79 0.74 0.53
Total energy (GJ/block) 2.43 1.54 2.85 1.81 4.28 2.72 1.24 0.88

The embodied energy due to manufacturing and use is illustrated in Figure 24 (shown for the case
of diesel engines; similar results were attained for petrol engines). The starting values of the embodied
energy correspond to the total energy of the manufacturing process (Table 11). It is evident that the
vehicle would have to be driven more in order for the lightweighting to yield benefits. This is due
to the much higher embodied energy of Al alloys compared with CI as a result of the huge energy
content during both the electrolysis and bauxite conversion stages of the production of aluminum.

The distance needed to be covered by a vehicle in order to compensate for the additional energy
due the manufacturing and primary production of the engine block is estimated using the break-even
distance (BED) according to

BED =
∆PEB(

δFs·E f ·∆M
) ·104, (3)

where ∆PEB (MJ) is the difference in the process energy burden between the manufacturing process
with the lowest total energy (CISC) and the rest of the processes, δFs is the fuel savings, E f is the
energy content of the fuel, and ∆M is the engine block weight differential (Table 12). The values
of the break-even distance for the two types of engine blocks (diesel and petrol) and the various
manufacturing processes under examination are summarized in Table 13.
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Figure 24. Break-even distance for paying back the lightweight material (for a diesel automotive vehicle
of 1200 kg with an average consumption of 7l,100 km).

Table 12. Parameters for the break-even distance (BED) calculation.
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Table 13. BED (km) vs. CISC for various types of engine blocks and manufacturing processes.

Diesel Petrol

HPDC 170,889 110,611
LPDC 232,141 155,809
LPSC 369,221 256,960

6. Conclusions

Currently, the legislation around the automotive industry is focused on the reduction of tailpipe
emissions of vehicles and does not consider the production phase of automotive components.
Automotive companies are compelled to pursue a lightweighting and engine-downsizing design
strategy to comply with the steadily more stringent targets in emission standards. The objective of
this investigation was to perform a thorough life-cycle analysis of an automotive component (engine
block) made of two different materials, CI and Al alloy, in order to review the potential energy savings
of lightweighting.

The “cradle-to-grave” approach was adopted to calculate the overall energy requirements,
including the energies for the production of the raw materials, while acknowledging the embodied
energy from the initial manufacture up to the final disposal. Our results indicate that the energy
required for the primary production and manufacture of CI engine blocks is much lower compared to
the Al-alloy engine case. On the other hand, Al-alloy blocks are more lightweight and contribute to the
increase in fuel savings during the use phase of the particular component.

In order to evaluate the effects of lightweighting on the overall energy consumption during
the component’s life cycle, the weighted average break-even distance (required to compensate for
the extra energy consumption in Al-alloy engine blocks) was estimated and found to be around
175,000 km. The breakeven distance fluctuated between 175,000 and 370,000 km for a diesel and
between 115,000 km and 260,000 km for a petrol engine block. The conclusion drawn is that, compared
to an average passenger vehicle life of 200,000 km, for the LPDC and LPSC processes, the vehicle will
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never recover the extra energy in the Al-alloy engine blocks while being on the road. Therefore, the
substitution of materials, traditionally used in the automotive industry, with lighter ones should be
very carefully considered.
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