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Abstract: The paper describes the core heating of ACSR (aluminum conductor steel—reinforced)
conductor in stable operation under different environmental conditions. The calculations are greatly
simplified in a steady state—we can calculate on a balance of power instead of a balance of energies.
At a known surface, the temperature of the conductor due to solar radiation, natural convection,
and joules heating as well as the temperature of the steel core were calculated, which is relevant for
the tensile strength of the rope. Measurements of the surface of the conductor and the core rejected
a simple model of heat transfer—it is also necessary to take into account empty air spaces between
the wires of a rope. On the basis of measurements, a new model has given satisfactory compliance
with the measured values.

Keywords: conductor; ACSR rope; mathematical model; temperature; temperature gradient;
calculation; measurements

1. Introduction

In the design of distribution and transmission networks the choice of cross-section affects several
factors such as a voltage drop, a power loss, stability, and protection. The temperature rise [1] of the
conductors above the ambient temperature is important. It is necessary to know the largest continuous
current of the conductor, since it determines the maximum allowed temperature of the conductor.
The temperature of the conductor affects the sag of the conductor between the pillars and determines
the change in the tensile strength due to heating [2–5].

In calculating the load capacity of the conductors, attention must be paid primarily to the
mechanical properties depending on the temperature [6–8].

Three temperatures are important: Joule heating [9] depends on the average conductor temperature,
and natural convection [10] and radiation depend on the surface temperature of the conductor [11–13].
The change in the tensile strength in the first approximation depends on the temperature of the strands
of the rope in the middle of the conductor.

In the articles [14–16], a sensitivity analysis was performed based on operating conditions (wind,
solar, current) [14–16] and on the IEEE standard [17] for calculating the temperature of the conductor.
In the article [13], a current is determined based on the calculation and measurement of the average
temperature of the conductor [18].

It was also emphasized that, under exceptional conditions, the thermal creep and the loss of
tensile strength of the conductor must be taken into account [15,19–21].

In this paper, a new method for calculating the warming of overhead lines (Al/Fe conductors)
is presented.
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Despite a good contact between the individual layers of aluminum, which is ensured at the time
of manufacture, there is a great deal of influence between the empty spaces between the wires. If they
are ignored, the rope has almost the same (thermal) properties as a homogeneous conductor, and the
temperature in the axis is almost equal to the temperature on the surface. Considering the empty
spaces between the wires, the thermal conductivity is about a hundred times smaller. The differences
between the surface and center temperatures are also greater.

The new method, which results from the surface temperature of the conductor and takes into
account the empty spaces between the wires, was confirmed by measurements.

In the paper, individual influencing factors on the conductor are shown, consequently indicating
whether they heat it or cool it in a stable operation. In the second chapter, a general thermal equation
of conductors has been written. In the third chapter, the simplification of the general equation for
stable operation with emphasis on radiation, natural convection, and electric heating, is presented.

In the fourth chapter, the increase in temperature from the layers from the surface to the interior
was determined. In the fifth chapter, the measurements that were rejected by the simple ACSR model
of the conductor in the fourth chapter, are described. In the sixth chapter, in the conductor model,
the empty spaces between the wires of the individual layers were taken into account, and the measured
results confirmed the results. This is also confirmed by the new method of calculating the heating of
the conductors.

2. Selection of Cross Section of the Conductors Considering on Heating

Each conductor is heated if an electric current flows through it. If all the heat produced in the
conductor was consumed for heating, the temperature of the conductor would rise steadily. When the
temperature of the conductor rises above the ambient temperature, the conductor sends the heat into
the surroundings.

Figure 1 shows the flow of heat in the elemental volume with the indicated geometric and
material parameters.
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Figure 1. Heat flow in elementary volume [22].

General thermal equation of conductors (1) after V. T. Morgan [22]:
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(1)

where Q(T) is temperature-dependent heat produced per unit volume, λ(T) is temperature-dependent
thermal conductivity, γ is specific weight, c is specific heat, T is temperature, and r, z, ϕ are
geometric parameters.
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3. Stabile Operation

In stable operation, there are events observed—energy in a time unit, that is, power. All energy
equilibrium is simplified in the balance of power. For reasons of transparency, the fact that the conductor
can be hidden a few meters from the sun so the heat flow is not observed in the longitudinal direction
(z-axis) is not taken into account. Given the fact that the factors of immission and emissivity for clear,
cloudy skies, grassy surfaces and fields are not known, both the emissivity and the albedo are set up
by the same one, thus obtaining a rotational symmetric system [23].

3.1. Power of Radiation

In the case of heating the conductor, a comparison between the calculated values with the new
method and during the measurements was made.

Figure 2 shows the conductor we are exploring and on which we performed the measurements
described below in the article.
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Using (2), the amount of light that irradiates a 1 m long piece of the conductor at temperature
T = 20 ◦C = 293 K was calculated. For reasons of transparency it is supposed that the surface is
ideally black.

P = ϕ · Sv = σ · T4
· Sv = 40 W (2)

where P means light current, Sv is surface of the conductor [m2], Sv = 2·π·r·1 m = 2·π·0.0153 m·1
m = 0.096 m2, ϕ is density of radiation flow of the black body, σ is a universal constant, known as
Štefan–Boltzmann constant, T is temperature.

Because the rope conductor loses 40 J at a temperature of 20 ◦C per second, under these
circumstances, it would be cooled every second for (P/(m·cp·dT) = 40/1547) = 0.026 K.

Bodies around the rope also have the same temperature (20 ◦C) and are not ideally black. The rope
from the surroundings gets exactly the same amount of energy, namely

σ · T4
o · Sv = 40 W per second. (3)

When the sun shines on the conductor, the light flux is joined by the previous 40 watts:

Ps = Φs = ϕs ·Ap = 30 W (4)

where ϕs is a solar constant (1000 W/m2).
As an irradiated surface, due to the curvature, the longitudinal cross-section Ap = 2·r·1 = 2·0.0153

m·1 m = 0.0306 m2 is taken. The conductor reaches such a T temperature to transmit exactly as much
energy per second as it receives. If only the light currents are considered, the balance is the following:

ϕs ·Ap + σ · T4
o · Sv = σ · T4

p · Sv (5)
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where ϕs is solar energy density at surface [W/m2], Ap is longitudinal section of the conductor [m2],
σ is Štefan–Boltzmann’s constant 5.68 × 108 W/(m2 K4), T0 is ambient temperature [K], Tp is surface
temperature of the conductor [K], Sv is surface of the conductor [m2].

Considering the solar constant (E0 = 1367 W/m2) less for passing through the atmosphere
(ϕs = 1000 W/m2), it is:

T =
4

√
T4

o +
js ·Ap

σ · Sv
= 338 K = 65 ◦C (6)

Figure 3 shows the heat flux in equilibrium.
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3.2. Convection

Convection is the transition of heat from solid bodies to a gaseous (liquid) medium and vice
versa [24].

The research of heat flows due to convection [25,26] gave the following empirical formulas for
determining the size of these flows:

Φ = S · α ·
(
Tp − To

)
[W] ; ϕ = α ·

(
Tp − To

) [ W
m2

]
(7)

where α is thermal transfer coefficient [W/(m2 K)] (depending on the position and shape of the wall),
Tp is the temperature of the convection surface [K], To is the temperature of the surrounding medium
[K], S is surface [m2].

For a horizontal tube [27], the heat flux density can be calculated as follows:

ϕ = α ·
(
Tp − To

)
= 1.4 ·

4

√
Tp − To

d
·

(
Tp − To

)
(8)

Taking radiation and convection into account, the equilibrium equation for power is for Al/Fe
490/65 mm2 conductor per unit of length:

ϕs ·Ap + σ · T4
o · Sv = σ · T4

p · Sv +
1.4
4√

d
·

(
Tp − To

)1.25
(9)

In this case, the markings are equal to (5) and additionally d is a pipe diameter (conductor) [m].
The equation is not algebraically solvable. With the numerical tangent method [28], the surface

temperature of the conductor is 316 K. or 43 ◦C.
Assuming that the surface of the conductor is the ideal black body, it is heated in the sun to 65 ◦C,

the convection (without wind) cools it to 43 ◦C (Figure 4).
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3.3. Electric Heating

The amount of heat released is proportional to the square of the current (Joule’s law):

Q ∝ I2
·R · t = I2

·
ρel

A
· t [J] (10)

where Q is heat due to electric current, I is current of the conductor, R is resistance of the conductor, t is
time, ρel is specific resistance and A is section of the conductor.

The resistance of the conductor depends on the shape and the substance forming the conductor,
and furthermore from the temperature, frequency and current density flowing through the conductor [10].

Normally, at the ropes, in the calculations of operating states, only the resistance (conductivity) of
the aluminum cover is considered. For the generality, the conductivity of the steel core and the proper
distribution of the current along the layers [29] will also be taken into account. The maximum allowed
current for the conductor Al/Fe 490/65 mm2 is 960 A.

The equilibrium equation, taking into account the current, is then:

ϕs ·Ap + σ · T4
o · Sv + I2

·RT =

= σ · T4
p · Sv +

1.4
4√

d
·

(
Tp − To

)1.25 (11)

In this case the marks are as in (5).
Using the tangent numerical method [28], the surface of the conductor is obtained 354 K or 81 ◦C.
Assuming that the surface of the conductor is the ideal black body, it is heated in the sun to 65 ◦C,

the convection cools it to 43 ◦C, maximum allowable current I = 960 A heats it to 81 ◦C (Figure 5).Energies 2019, 12, x FOR PEER REVIEW 6 of 15 
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convection. Note: sun = 30 W, surrounding = 40 W, Joule’s heating = 70 W, convection = 55 W,
conductor at 43 ◦C = 54 W.
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4. Heating a Conductor by Layers

In the case of electric conductors, mainly the steel core determines the tensile strength and thus the
sag and spacing from the ground [21,30]. The change in the tensile strength in the first approximation
depends on the temperature of the strands of the rope. Internal, warmer strands lose tensile strength
faster, therefore, it is necessary to count or also measure the temperature gradient.

In the steady state, the temperature of the surface of the conductor was calculated. The basic
equation for calculating the temperature of individual layers is the equation for the heat flux (power)
through a differential thin wall [22]:

Φ = P = −λ · S ·
dT
dr

(12)

where P, PFe and PAl is electrical power at the appropriate temperature.
Through a differential thin tube (wall thickness dr) in time dt transfers heat flow φ from the steel

core (PFe) and a part of the heat flow from a source in aluminum to a radius r (Figure 6):

Φ = PFe + PAl
′ = PFe +

PAl

VAl
·π ·

(
r2
− r2

Fe

)
· l (13)

− λAl · 2 ·π · r · l ·
dT
dr

= PFe +
PAl

VAl
·π ·

(
r2
− r2

Fe

)
· l

−

T(r)∫
Tp

dT =
PFe −π · l ·

PAl
VAl
· r2

Fe

2 ·π · l · λAl
·

r∫
rAl

dr
r
+

PAl
VAl

2 · λAl
·

r∫
rAl

r · dr (14)

T(r) = Tp +
PFe −π · l ·

PAl
VAl
· r2

Fe

2 ·π · l · λAl
· ln

rAl

r
+

PAl
VAl

4 · λAl
·

(
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Al − r2
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TFe = T(rFe) = Tp +

pFe −
pAl·r2

Fe

(r2
Al−r2

Fe)

2 ·π · λAl
· ln

rAl

rFe
+

pAl

4 ·π · λAl
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The temperature in the axis of the conductor can also be calculated (Figure 7).

Φ = P =
PFe

VFe
·π · r2

· l = −λFe · 2 ·π · l ·
dT
dr

(15)

−

T(r)∫
Tp

dT =

PFe
VFe

2 · λFe
·

r∫
rFe

r · dr
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T(r) = TFe +
pFe

4 · λFe ·π · r2
Fe

·

(
r2

Fe − r2
)

(16)

To = T(r = 0) = TFe +
pFe

4 ·π · λFe

where φ is heat due to electric current, P, PFe and PAl is power or specific power, VFe and VAl is volume,
r, rAl and rFe is radius, l is length, λAl and, λFe is specific conductivity, and Tp is surface temperature.
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where Ф is heat due to electric current, P, PFe and PAl is power or specific power, VFe and VAl is volume, 
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In Table 1, the temperatures are given as a function of the distance from/to the surface.

Table 1. Temperature in dependence of radius.

Radius r [m] ϑ [◦C]

rAl3 0.0153 50.80
rAl2 0.0119 50.8088
rAl1 0.0085 50.8148
rFe2 0.0051 50.8177
rFe1 0.0017 50.8212

center 0.0000 50.8223

I = 960 A, ϕ = 200 W/m2, To = 5 ◦C.

Despite of calculating the layers, the heat flow is the same as for a solid conductor.

5. Measurement of Current by Layers

In order to check the accuracy of the calculations in the previous chapter, the distribution of the
current along the layers had to be checked first. At about 2 m long piece of the stranded conductor,
about 10 cm of aluminum wires were removed in the middle (to gain access to the steel core) and the
‘peeled’ part of the rope only with the removed aluminum wires were shortened (Figure 8).

The results of the measurements were different from the expectations (Table 2).
The sum of the currents was in the class of accuracy of the clamp meters. In checking the matching

of all three measured currents, it was found that the deviations were within the limits of the accuracy
class of the clamp meters.

The expected current distribution at the total current 960 A was 96.13% current in aluminum
coat and 3.85% in steel core. The divergence was explained with the basics of electrical engineering.
An electrical substitute circuit with calculated currents for 2 m long conductor is shown in Figure 9.
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Current through the
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57 46 0.81 12 0.21
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206 166 0.81 43 0.21
408 323 0.79 82 0.20
605 492 0.81 122 0.20
810 650 0.80 159 0.20

1004 811 0.81 198 0.20
1209 971 0.80 250 0.21
1406 1165 0.83 310 0.22
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Obviously, the distribution of the current in accessories (couplings) with the cut aluminum coat
was different than planned. The decision to check and pull out the steel core and parallelly attached to
the source the steel core and an aluminum coat was made (Figure 10).
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At the same time, the temperature of the surface of the conductors was measured with
a thermography camera. An example of a measurement is in the Figure 11.

Figure 11 shows the measured temperature with the thermography. The left figure shows the
temperature of the aluminum—the surface of the conductor, the right picture the temperature of the
steel core—the temperature in the axis of the conductor.
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The current distribution between the layers was in line with expectations.
The difference between the calculated temperatures on the surface and in the middle of the rope

compared with the measurements shows that in the calculations we did not take into account the
empty spaces between the rope wires (Figure 12). In the next chapter the attention was paid to these
empty spaces.

To summarize, the heat transfer to the surface is worse than it was assumed in the previous section.
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6. Heating of Conductor by Layers with Compliance of Air between Spaces

Measurements have shown that the model of heating in layers is not the best, since it shows almost
the same values of core and surface temperatures (Table 3). Significantly higher core temperatures were
measured (Table 3). Despite the good contact between the individual layers of Aluminum, which is
ensured at the time of production, there is a considerable effect between the empty spaces between
the wires [31]. In the new model for the calculation of heat transfer from the middle to the surface,
concentric coils of metal and air were assumed (Figure 12). In the cross-section, these are coils with the
same surface as the actual metals or air spaces.

The basic equation for calculating the temperature of individual layers is the equation for the heat
flux (power) through a differential thin wall (12).

Once again the temperature of the conductor from the surface in a steady state (second chapter)
was re-emerged. In the case of heat transfer, the transmission through the layer of air has to be
separated, where the heat flow is constant (there are no sources) and the transition through the metal
layer (aluminum or steel, where the heat produced in the layer is to be added to the heat flow from
the inside).

Air layer: In a steady state, the heat flow is constant (no sources) and is equal to the heat flow to
the air. In the case of the fourth layer of air it is φ from the steel core and inner layers of aluminum
(Pnot) at a distance rAl2 from the center of the conductor (Figures 12 and 13).

− λzrak · 2 ·π · r · l ·
dT
dr

= Pnot (17)

−

T(r)∫
Tp

dT =
Pnot

2 ·π · l · λzrak
·

r∫
rp

dr
r
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T(r) = Tzrak4 +
pnot

2 ·π · λzrak
· ln

rzrak4

r
(18)

TAl2 = T(rAl2) = Tzrak4 +
pnot

2 ·π · λzrak
· ln

rzrak4

rAl2

Table 3. Measured and calculated currents and temperatures at parallel binding of steel core and
aluminum coat.

Current through the
Clamp Meter Km1

[A]

Clamp Meter Km2
(Aluminum—Surface)

Clamp Meter Km3
(Steel—Core ro)

I
[A]

T
[◦C]

I
[A]

T
[◦C]

Measured * Calculated Measured * Calculated

57 56 25.7 25.9 2 25.3 25.9
104 99 26.3 4 - 26.3
205 199 27.4 27.92 7 - 27.9
414 397 34.2 15 - 34.2
611 593 41.7 43.6 22 47.9 43.6
814 792 56.4 29 - 56.4

1005 986 71.4 37 - 71.4
1210 1176 90.5 44 - 90.5
1416 1370 92.3 112.8 50 >160 112.9

* at higher current values, the stationary condition was not guaranteed.Energies 2019, 12, x FOR PEER REVIEW 12 of 15 
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Figure 13. Heat flow from the interior through the air layer.

In Table 4, the temperatures are shown in dependency of radius taking into account the empty
spaces in the conductor with the air cylinders.

Table 4. Temperatures in dependency from radius and environmental conditions.

Radius r [m] θ [◦C]

rAl3 0.015 50.8
rzrak4 0.012 50.807
rAl2 0.011 52.319

rzrak3 0.009 52.323
rAl1 0.008 53.250

rzrak2 0.006 53.253
rFe2 0.005 53.479

rzrak1 0.002 53.482
rFe1 0.002 53.521

center 0.000 53.522

I = 960 A, ϕ = 200 W/m2, To = 5 ◦C.

The comparison of Tables 1 and 4 shows that already at a low ambient temperature of 5◦C and
a slight radiation of the sun (ϕ = 200 W/m2), the difference between the center and the surface for the
new model is calculated 3 degrees, but earlier there were almost no differences.
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Table 5 is a replicated Table 3 with measured and calculated temperatures, taking into account the
empty spaces inside the conductor as thin air cylinders.

The comparison of Tables 3 and 5 shows that the difference of the current of 611 A of middle
temperature is higher for 7 degrees or 16%, while for the highest measured current, the difference is
in the order of 80 degrees according to the new model. In the model without regard to the airspace,
at 611 A there is practically no difference.

Table 5. Measured and calculated currents and temperatures at parallel binding of steel core and
Aluminum coat taking into account the empty spaces.

Current through
the Clamp Meter

Km1

Clamp Meter Km2
(Aluminum—Surface)

Clamp Meter Km3
(Steel—Core ro)

Current Temperature
[◦C] Current Temperature

[◦C]

[A] [A] [ / ] Measured Calculated [A] [ / ] Measured Calculated

57 56 98.25 25.7 25.9 2 3.51 25.3 26.1
104 99 95.19 - 26.3 4 3.85 - 26.1
205 199 97.07 27.4 27.9 7 3.41 - 27.9
414 397 95.89 - 34.3 15 3.62 - 37.1
611 593 97.05 41.7 43.9 22 3.60 47.9 50.9
814 792 97.30 - 57.3 29 3.56 - 73.9

1005 986 98.11 - 73.2 37 3.68 - 103.3
1210 1176 97.19 - 94.3 44 3.64 - 144.4
1416 1370 96.75 92.3 119.6 50 3.53 >160 197.3

Note: at higher current values, the stationary condition was not guaranteed. We wanted to measure the steady
state even also at the nominal current of the conductor, but we managed to complete the entire measurement
only at 1370 A. During this current, the point source and the conductor were overloaded. The temperature meter
(camera) showed more than 160 degrees. At this temperature, the measurement was interrupted, and 197 degrees
were calculated.

7. Discussion

The purpose of authors was to determine the core temperature of an ACSR (aluminum conductor
steel—reinforced) conductor by simply measuring method.

In the analysis the level of heating of the conductor in a steady state of operation has been examined.
Assuming that the surface of the conductor is the ideal black body, it heats up (ϕs = 1000 W/m2) to
65 ◦C in the sun, in a state without wind, the convection cools it to 36 ◦C, maximum allowable current
I = 960 A heats it up to 80 ◦C.

In the case of electric conductors, the steel core frequently determines the tensile strength and thus
the pitch and spacing from the ground. Joule heating depends on the average conductor temperature,
while convection and radiation depend on the surface temperature of the conductor. The change in
the tensile strength in the first approximation depends on the temperature of the strands of the rope.
Internal, warmer strands lose tensile strength faster, therefore, it is necessary to count or also measure
the temperature gradient.

At a known temperature of the surface of the conductor, the temperature rise in the interior was
calculated as a function of the distance from the surface. At the measured current 611 A, there is
practically no difference of the temperature of the conductor 490/65 mm2 Al/Fe in the center of the
steel core, if we do not take into account the empty spaces between the wires. Considering the empty
spaces of air, the difference is 7 ◦C. In the measurements, the difference in the center of the steel core
was about 6 degrees at current 611 A.

Using the new method, taking into account the empty spaces between the wires, it was calculated
and confirmed, while using the measurement that the temperature of the steel core is higher than
would be expected from the surface of the conductor. This is of great importance because it affects
the temperature of the core on the creep and the tensile strength of the conductor and the related
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sag. The new calculation method is closer to the real state, since it takes into account empty airspaces
between individual wires. Therefore, it is proposed to use the new method in assessing the temperature
of the center of the conductors (steel core) at a known surface temperature of the conductors, which can
be easily measured, for example, with a thermography camera. This gives us the information on the
appropriate mechanical strength of the conductor.

The method is suitable especially at high ambient temperatures, while the limitation is the
measurement (assessment) of the conductor temperature.
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