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Abstract: The upcoming adoption of low-voltage-ride-through requirements in low-voltage
distribution systems is expected to raise significant challenges in the operation of grid-tied inverters.
Typically, these inverters interconnect photovoltaic units, which are the predominant distributed
energy resource in low-voltage distribution networks, under an umbrella of standards and protection
schemes. As such, a challenging issue that should be considered in low-voltage distribution network
applications, regards the coordination between the line protection scheme (typically consisting of a
non-settable fuse) and the low-voltage-ride-through operation of photovoltaic generators. During
a fault, the fuse protecting a low-voltage feeder may melt, letting the generator to continue its
ride-through operation. Considering that the efficacy/speed of the anti-islanding detection is affected
by ride-through requirements, this situation can lead to protracted energization of the isolated
feeder after fuse melting (unintentional islanding). To address this issue, this paper proposes a
fault-current-limitation based solution, which does not require any modification in the existing
protection scheme. The operation principles, design, and implementation of this solution are
presented, while, its effectiveness is supported by extensive simulations in a test-case low-voltage
distribution system. A discussion on the presented results concludes the paper.

Keywords: distribution system protection; fault-current limitation; low-voltage ride-through;
photovoltaic generator

1. Introduction

The mass integration of distributed generation (DG) into distribution systems has forced several
distribution system operators (DSOs) around the world to impose low-voltage-ride-through (LVRT)
requirements [1]. LVRT regards the capability of a DG-unit to remain connected to the network during
faults, providing voltage support, for a time duration which depends on the voltage drop at the
point of common coupling (PCC). This requirement has been initially recommended for transmission
systems and large wind-turbine units, especially those whose fault response might be critical for
the system stability. However, as the development of renewable energy resources (RES) has started
dispersing in lower voltage levels, this requirement has extended to the distribution level, aiming at
large photovoltaic (PV) parks and other DGs. Recently, it has been also adopted by the most recent
version of IEEE 1547, namely the IEEE 1547-2018 [2].

Although the LVRT requirements for distribution systems are mainly applied to the
medium-voltage (MV) level, their extension to the low-voltage (LV) distribution networks is currently
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under consideration [1,3]. LV distribution networks are expected to be dominated by inverter-interfaced
DG-units (IIDGs), principally photovoltaic ones [1,4]. To this end, several inverter-design concepts
have been proposed, aiming at the compliance of LV-IIDGs with LVRT requirements [5–7].

Since LVRT requirements keep DG-units connected to the network during faults, they contradict the
requirement for a quick anti-islanding detection. Indeed, despite the fact that several efficient passive [8],
active [9–12], or other hybrid methods [13] have been proposed over the last years for fast anti-islanding
detection, their cooperation with LVRT operation remains a challenging issue under research, especially
under high DG-penetration conditions. The authors of [14] attempted to clarify this contradiction,
by allowing a PV-unit to trip without complying with LVRT, if passive anti-islanding detection asserts.
This approach is also recommended within IEEE 1547-2018 [2]. Although the anti-islanding detection
is decoupled by LVRT operation in those cases, the adoption of LVRT requirements can affect its
efficacy/speed. For example, LVRT affects any anti-islanding method that is based on the magnitude of
grid-tied voltage. Compromising the anti-islanding detection is an issue of concern to DSOs and power
system engineers [15,16]. This problem is further intensified when frequency disturbance ride through
requirements are also adopted (e.g., low/high-frequency ride-through, rate-of-change-of-frequency
ride-through, and voltage-phase-angle-changes ride-through [2]). Within this context, it would be
favorable if the occurrence of unintentional islanding could be totally avoided.

In terms of distribution system protection, the traditional practice of disconnecting DG-units
during faults (as also indicated by the earlier IEEE 1547-2003 [17]) aims to facilitate the smooth
operation of the protection scheme, mitigating the effect of DG. However, the extended short-circuit
contribution of DG, imposed by the recent LVRT requirements, can result in significant protection
issues such as blinding of protection and directionality issues [18]. To address these issues, advanced
protection concepts have been proposed over the last years, which mainly concern MV distribution
systems and reconsider conventional-overcurrent-relay-based protection schemes. These concepts
are protective-relay-based and mainly apply directional overcurrent protection [19–21], distance
protection [22,23], differential protection [24–26], or other alternative techniques [27–29].

In LV distribution systems, similar protection issues are encountered when DGs are present [30].
Another challenge comes from the non-settable nature of the fuses that are typically installed as
protection means in LV distribution networks. Although some studies propose advanced protection
schemes for LV distribution networks, consisting of multiple protective relays [31–33], such solutions
might be considered impractical, mainly due to their high cost.

A challenging issue that should be taken into account in LV distribution network applications
regards the coordination of line protection with the LVRT operation of downstream DG-units.
The detailed description of this issue is demonstrated in Section 2. In brief, the line protection
scheme might operate before a downstream DG-unit disconnects, after complying with the LVRT
requirements. As the DG-unit may continue its ride-through operation, and given the above-described
conflict between this operation and anti-islanding detection, the isolated line may keep being energized
by the DG-unit. This constitutes a protracted unintentional islanding situation, which, as mentioned
earlier, is quite unfavorable. The authors of [34] re-set (delay) the line reclosers of a MV distribution
network, so as not to interrupt the LVRT operation of the downstream DG-units. However, such a
solution would not be feasible in a LV distribution network, since such a network is typically protected
by a non-settable fuse.

This study aims to address the aforementioned unintentional islanding situation in a fuse-protected
LV distribution network with integrated PV-units, by allowing the PV units to comply with the LVRT
requirements (and disconnect) before fuse melting. A fault-current-limitation approach is used for this
purpose; more precisely, in this work, a current-limiting device (CLD), supported by an appropriate
control algorithm, is applied to ensure coordination of the fuse protecting a LV distribution line and a
downstream PV-unit, according to the LVRT requirements. To the authors’ best knowledge, such a
solution has not been yet proposed for DG-integrated, LV distribution networks.
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It is worth mentioning that fault-current limitation has been proposed in the scientific literature
for the protection of distribution systems. However, the proposed approaches mainly concern MV
distribution networks, while, their aim is to ensure coordination between line protection means
(e.g., relay-relay or relay (recloser)-fuse coordination [19,35,36]), without addressing the issue of
coordination between line protection and the LVRT operation of the downstream DG-units. In other
words, the purpose of applying fault-current limitation in these applications is different to that of the
present work.

The substantial contribution of the proposed concept is reflected on the concurrent fulfillment of
the following:

• Compliance of PV-units with LVRT requirements during faults.
• Prevention of the unintentional islanding that is caused during faults, because of the

LVRT requirements.
• A mass protection reconsideration is avoided, since the existing protection means (fuse)

is maintained.

The rest of the paper is organized as follows. Section 2 describes the problem that is addressed
in this work, as well as the basic operation principles of the proposed solution from a power system
perspective. The description of the proposed CLD from a power electronics perspective is included in
Section 3. The CLD performance is evaluated through simulations in a test LV distribution system in
Section 4. Finally, conclusions are drawn in Section 5.

2. Problem Description and Basic Operation Principles of the Proposed Concept

2.1. Problem Description

The problem examined in this work is further explained with the aid of Figure 1, showing a
generic LV distribution line with a connected PV-unit. The line is protected by a fuse installed at its
departure. The PV-unit is designed to comply with the LVRT characteristic of the Bundesverband der
Energie und Wassrwirtschaft (BDEW) guidelines [37] for type-2 generators, including IIDGs (although
other LVRT characteristics could be equally considered). According to these requirements, the PV-unit
has to remain connected during faults for a time duration imposed by the voltage drop at its point
of common coupling (PCC) and the LVRT characteristic. The aforementioned LVRT characteristic is
illustrated in Figure 2.
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It is a fact that the PV-unit should comply with the LVRT requirements only in case of faults
in network sections other than the feeder where the PV-unit is connected. However, the protection
functions of the PV-unit are not aware of the exact fault position. Hence, even if the fault occurs
somewhere in the examined feeder (e.g., fault F), the PV-unit will remain connected for as long as it
is imposed by the adopted LVRT characteristic and the voltage drop at the PCC. On the other hand,
the fuse will melt strictly based on its non-settable time-overcurrent characteristic and the magnitude
of the short-circuit current IF flowing through it. Therefore, fuse melting might occur before the
PV-unit disconnects. The problem here is that the PV-unit may continue its LVRT operation, even after
the feeder is disconnected (due to the fuse melting), bearing also in mind the effect of ride-through
operation on anti-islanding detection (see Section 1). In other words, the quick fuse melting may lead
to an unintentional islanding situation, where the isolated feeder keeps being energized by the PV-unit.
Of course, such prolonged unintentional islanding situations are not desirable by DSOs.

An obvious solution to the above-described problem would be to replace the fuse protecting the
LV feeder with a settable overcurrent relay, suitably delayed to allow the PV-unit disconnect first,
after complying with the LVRT requirements. Nevertheless, such a solution would be impractical,
since the fuse coordinates with its upstream protection means in the LV or in the MV side (commonly
non-settable fuse), which in turn coordinates with its own upstream protection means. Hence, if the
fuse is to be replaced by an overcurrent relay with a different (delayed) time-overcurrent characteristic,
the whole upstream protection scheme should be also replaced/re-set accordingly. This will result
in an additional cost due to the replacement of protection means, as well as in the need for a new
protection coordination study (which translates to man-hours for a protection engineer). Moreover,
such a solution cannot be considered inherently cheap, as, besides the installation of a protective relay
and measuring transformer(s), it requires the installation of a circuit breaker to clear the fault, which is
typically the costliest element in a protective-relay-based scheme. In the next subsection, a different
approach is proposed, which solves the above-described problem without the need to modify the
existing protection scheme or install an additional circuit breaker. Within this context, this solution
does not require a protection coordination study either.

2.2. Basic Operation Principles of the Proposed Concept

In this work, we propose installing a CLD at the fuse location (directly upstream to the fuse,
as shown in Figure 1), in order to provide a solution which prevents unintentional islanding, without
requiring the modification of the existing protection scheme.

The purpose of the designed CLD is to suitably limit the short-circuit current flowing through the
fuse during faults, so as to delay its melting and achieve coordination with the LVRT operation of the
PV-unit; in that way, the PV-unit will be allowed to disconnect first (after remaining connected for as
long as it is imposed by the LVRT requirements), preventing unintentional islanding.

The basic operation principle of the proposed CLD is described with the aid of Figures 3 and 4.
Figure 3 illustrates a generic time-overcurrent characteristic of a fuse, while Figure 4 presents the
flowchart of the proposed CLD operation logic. Considering Figure 3, tF is the melting time of the
fuse, resulting from its time-overcurrent characteristic and the short-circuit current IF, whereas tthr is
the required time duration of the PV-connection that is imposed by the adopted LVRT characteristic
and the voltage drop at PCC. If tF < tthr holds, then the fuse melts before the disconnection of the PV,
leading to an unintentional islanding condition. By installing the proposed CLD at the fuse location,
we can limit IF to a lower value (i.e., Ithr), increasing the melting time of the fuse to a value larger
than or at least equal to tthr. Subsequently, the fuse melting is suitably delayed, allowing for the
PV to disconnect first, after meeting the LVRT requirements. Note that the minimum-melting (MM)
time-overcurrent characteristic of the fuse (also depicted in Figure 3) has to be taken into account
instead of its total-clearing (TC) characteristic, as a safe-side consideration to ensure that the PV-unit is
disconnected (after complying with the LVRT requirements) prior to the fuse melting.
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Apparently, a critical design parameter is the CLD current threshold Ithr. Ithr is adaptively
determined in this study, based on the voltage measured at the CLD location, which coincides with
the fuse location. The adopted approach intends to directly link Ithr to the LVRT characteristic of the
PV-unit. The process to acquire Ithr value is shown in the flowchart of Figure 4 and is briefly described
as follows: Initially, tthr is calculated based on the measured voltage and the LVRT characteristic.
Next, using the calculated tthr value, we can determine the maximum current for which the fuse melts
subsequent to the time indicated by the LVRT requirements. This current value is set as the current
threshold Ithr of the CLD and is determined based on tthr and the MM time-overcurrent characteristic
of the fuse. In order to achieve the adaptive approach mentioned above, the LVRT characteristic as
well as the MM time-overcurrent characteristic of the fuse should be beforehand uploaded into the
CLD microprocessor, e.g., in the form of a look-up-table. This task can be easily performed in any
microprocessor. It is also noted that Vref in Figure 4 is the reference voltage for compliance with LVRT
requirements, as indicated by the grid code adopted in each case. For example, according to [37], Vref
corresponds to the lowest line-line voltage.

It should be mentioned, that the undervoltage protection characteristic of the PV-unit is assumed to
coincide with the adopted LVRT characteristic, implying that the PV-unit disconnects (or at least ceases
energization) as soon as the time duration imposed by the LVRT characteristic elapses; this undervoltage
characteristic is always embedded in the PV control-units. Nonetheless, the proposed methodology is
applicable, without any modification, to any undervoltage protection characteristic, assuming that this
characteristic is wide enough to comply with the LVRT requirements.

It has to be noted that measuring the voltage at the CLD/fuse location, instead of the PCC of the
PV-unit (which is actually of interest), is a compromise made to avoid the use of communication link
between the CLD and the PV-unit (and thus to avoid increasing the cost of the proposed scheme).
However, this is a safe-side compromise, since, for the vast majority of fault cases, the voltage at the
CLD/fuse location is expected to be equal to or greater than the voltage at the PCC of the PV-unit.
This assumption stems from the short-circuit contribution of a PV-unit, which is considerably lower
compared to that of the, much stronger, external grid source directly upstream to the CLD/fuse. Hence,
the calculated tthr will be larger than (or at least close to) the actual tthr resulting from the actual PCC
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voltage. As such, the PV-unit will be allowed to disconnect first, as desired. Even in the worst-case
scenario, where the PCC voltage is greater than the voltage at CLD/fuse location, the voltage difference
is expected to be rather small and can be easily compensated by considering an additional safety
margin in the voltage measured by the CLD. The above assumption is further supported through
extensive simulation results, presented in Section 4.4.

3. Description of the Proposed CLD from a Power Electronics Perspective

3.1. Topology Selection

Various current-limiting topologies have been proposed over the past years in scientific literature.
A review of those is presented in [38], focusing on power flow control in the ac transmission systems
and power conditioning in distribution systems. As part of the approach used in the present work,
the CLD is based on the buck converter, utilizing only five active switches per phase [39]. In principle,
the proposed CLD topology opposes a voltage to the ac-mains through a transformer, in order to limit
the short-circuit current during faults. Its equivalent electric diagram is presented in Figure 5, where
the following components of the CLD are depicted: The high (Sh_1,2) and low (Sl_1,2) -side power
switches (either Insulated Gate Bipolar Transistors, IGBTs, or Metal Oxide Semiconductor Field Effect
Transistors, MOSFETs, can be used), the transformer shorting switch (Sb), the low-pass filter (Lf, Cf)
and the isolation transformer. Based on the topology of Figure 5, we can extend the proposed solution
in a three-phase system. The three-phase version of the proposed solution is presented in Figure 6 and
it consists of three single-phase topologies, connected together through the neutral wire. The output
neutral-connection of the CLD can be connected with the neutral point of the distribution (substation)
transformer. In the next subsection, the operation of the CLD is described, also supported by indicative
simulation results.
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3.2. CLD Operation Description

This Section describes the operation of the proposed CLD in detail; the description is based on
the single-phase topology of Figure 5 and is equally valid for the three-phase system. The operation
principle of this CLD topology is shown in Figure 7, and it is based on the appropriate control of the
high (low-side switches are complementary driven)—side switches of Figure 5, in order to generate the
opposing voltage vop (the same principle applies to the three-phase system of Figure 6). Considering
the above, the CLD is principally a buck converter, whose output (vop) is connected in series with
the grid voltage through a transformer. vop’ is the output voltage of CLD (after the transformer)
which opposes to the grid voltage, whereas vg is the grid voltage at the fuse location; the CLD output
voltage opposed grid voltage as it is connected in series with it (see Figure 5); in this work, the series
voltage-source connection is used, due to its simple design and control scheme. Assuming that the
switching frequency of CLD is much higher than the line frequency and the filter does not impose
any magnitude or phase differentiation, the mean value of buck and CLD output voltage (vop and vop’,
respectively), over a switching period, is given by Equations (1) and (2). Their magnitudes, Vop and
Vop’ are given by Equations (3) and (4).

vop = d·vLN (1)

vop′ = N·vop (2)

Vop = d·VLN (3)

Vop
′ = N·Vop = d·VLN (4)

d = Th_on/TSW (5)

d′ = 1− d (6)Energies 2019, 12, x FOR PEER REVIEW 8 of 20 
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In the above equations, d and d’ are the duty cycles of the high-side and low-side switches,
respectively, given by Equations (5) and (6), Th_on is the on-state time of high switches, and Tsw is the
switching period of the Pulse Width Modulation (PWM) modulator. Finally, N is the turn ratio of
the transformer.

It is also noted that switch Sb shorts the secondary side of the CLD transformer, which in turn
results in a zero vop’ voltage and the effective deactivation of CLD; it is recommended to keep Sb closed
during the normal operation. As the switches operate in a high frequency (~10–20 kHz), a low pass
L-C filter is also used to filter out the higher order harmonics; it should be noted that the filter stage
can be omitted for PWM switching frequencies higher than 20 kHz.

Based on the circuit of Figure 5, the fuse current (iF) is given by:

iF =
VLN −VThev −Vop

′

Z
(7)
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where vThev and z are the equivalent Thevenin voltage and impedance of the LV network, respectively,
given by:

vg = iF·z + vThev (8)

According to Equations (4) and (7), the fuse current can be limited to the desired level by controlling
the duty cycle of CLD high-side switches (the same principle also applies for the three-phase system).
In order to control the fuse current, we have used the control scheme that is depicted in Figure 7.

Its operation is shortly described as follows: The fuse current is sensed and the acquired samples
are used to calculate the Root Mean Squre (RMS) value in a “running-window” mode. The RMS value
is subtracted from Ithr (Ithr is calculated based on Figure 4) and fed into a proportional-integral (PI)
controller. The output of the PI controller output (i.e., Vref) is the desired voltage magnitude of the
CLD output. A PWM modulator is finally used to generate the driving pulses of CLD switches.

Finally, Figure 8 illustrates a safety measure against very large fault currents. In such a case,
the response time window of the controller is reduced to a few ms, which occasionally might not
be enough to limit the fault current prior to the fuse melting. To overcome this problem, the fuse
current is compared to a threshold value which immediately activates the CLD (it sets high-side switch
permanently on), bypassing so the PI controller and the slow RMS estimator. This threshold value
should be calculated based on the minimum time duration imposed by the LVRT characteristic and the
corresponding current value of the fuse time-overcurrent characteristic. Indicative simulation results of
the CLD output voltage before the filter stage, the vop, the fuse-current, and the CLD high-side switch
currents, are presented in Figure 9a,b. These figures demonstrate the CLD operation, both during
steady state and transient conditions; CLD parameters are: N = 1, Tsw = 100 us, Cf = 200 nF, Lf = 400 uH.
The LV network impedance during the normal operation is znormal = 2.45 Ohm.
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In order to test the CLD response we assume a fault that results in a very large voltage drop of
vg (below 0.3 pu). According to the LVRT requirements of Figure 2 a grid-tied inverter in this fault
should remain connected for 150 ms (tthr). Referring to Figure 4, Ithr is defined based on tthr and fuse
characteristic. Assuming the fuse (MM) characteristic of Figure 10 (which will be also considered
in the simulation study of the next section), we calculate the Ithr value to be around 2200 A. This is
the current value that the CLD should maintain in this example. The sequence of events for this
demonstration example is the following: During the time interval 0 ≤ t < 0.2 s, the system operates
under the normal voltage level, assuming an equivalent Thevenin resistance of znormal = 2.45 Ohm.
At t = 0.2 s, a fault occurs in the low-voltage network. The fault results in an equivalent resistance
zfault of 0.01 Ohm. Subsequently, the voltage level drops and the CLD is activated after having set
the Ithr value accordingly. At ~t = 0.21 s, the fuse RMS current exceeds Ithr and the high-side switch
starts operating.

Figure 9a illustrates the CLD output voltage before and after the filter stage, during the time-interval
0 ≤ t < 0.3 s. During the normal operation, the CLD output voltage is approximately zero. When
the CLD is activated, its output voltage is either N·vLN or zero, depending on the high-side switch
state. Indicative results of the high-side switch and fuse current are shown in Figure 9b. According to
Figure 9b, the fuse current is effectively limited by CLD to 2200 RMS (or 3160 peak A), supporting the
effectiveness of proposed CLD to limit the fault current to the desired value.
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The current flowing through the CLD switches is also depicted in Figure 9b. It can be noticed
that, after fault occurrence, a high current flows through the CLD switches for a considerable time
duration. Consequently, CLD sizing should be made, taking into account the current value of the
fuse time-overcurrent characteristic that corresponds to the minimum time duration imposed by
LVRT requirements.
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The above simulation results are related to the operation of the proposed CLD from a power
electronics perspective. In the following section, extensive simulation results are presented, examining
the CLD from a power system perspective.

4. Performance Evaluation from a Power System Perspective: Results and Discussion

4.1. Test-System Description

The proposed CLD has been modeled and tested on the 50 Hz, 0.4 kV, LV distribution feeder
of Figure 11, using MATLAB/Simulink. The test feeder has been modeled based on actual data
(concerning external grid, distribution transformer, distribution line, protection means etc.) of
European LV distribution systems, which have been received from the Hellenic Distribution Network
Operator S.A. (HEDNO S.A.) and [30].
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Figure 11. Test distribution system.

A 50-kW PV-unit is assumed to be connected to the endpoint of the feeder. The PV-unit is
designed to comply with the LVRT requirements, which, in this work, are indicatively assumed to be
the requirements of BDEW [37] (see the corresponding LVRT characteristic in Figure 2), extended to
LV distribution systems. It should be noted though that the proposed concept can be equally applied
considering any LVRT characteristic. Furthermore, the PV-unit has been designed to provide dynamic
voltage support, although the detailed design of this function is out of the scope of the present work.

The feeder is protected by a 3 × 250 A gL fuse installed at its departure. Both the MM and the TC
time-overcurrent characteristics of the fuse are shown in Figure 10, as provided by the library of the
DIgSILENT PowerFactory software. It is noted that only the MM characteristic of the fuse (instead of
the delayed TC characteristic) is taken into account (and therefore modeled) for the simulation study.
This approach allows us to test the proposed CLD under the worst-case scenario (in terms of fuse
quick melting) and ensure that the PV-unit will be disconnected prior to the fuse melting, preventing
unintentional islanding (see Section 2). Finally, according to Section 2, the proposed CLD is placed at
the fuse location (directly upstream to the fuse); the electrical characteristics of the system under study
are summarized in Table 1.

4.2. Simulation Results

The effectiveness of the proposed CLD has been thoroughly evaluated against both balanced, i.e.,
three-phase (3PH), and unbalanced, i.e., single-line-ground (SLG), faults at the critical (marginal) points
of the examined feeder. These points are the fuse location (directly in front of the fuse) and the PCC of
the PV-unit. Practically solid faults are simulated, as these faults are more prone to causing “early”
fuse melting. Moreover, each fault is simulated with and without the proposed CLD. The examined
study cases are summarized in Table 2.
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Table 1. Electrical characteristics of the test distribution system.

Element Data

External grid Short-circuit power: 200 MVA

Distribution transformer

Rated voltage: 20 kV/0.4 kV
Rated power: 160 kVA

Connection: Dyn11
Short-circuit voltage: 4%

Distribution line

Length of each line segment S: 50 m
Total line length: 200 m

Positive-sequence resistance: 0.2067 Ohm/km
Positive-sequence reactance: 0.0804 Ohm/km

Zero-sequence resistance: 0.8267 Ohm/km
Zero-sequence reactance: 0.3217 Ohm/km

Load Load L: 35 kVA (33.25 kW)
Total system load: 140 kVA (133 kW)

Fuse Fuse rating/type: 250 A gL

PV-unit Nominal power: 50 kW
Penetration Level (PL): 37.6%

Table 2. Examined study cases.

Study Case Fault Location Fault Type CLD

1 In front of fuse 3PH No
2 In front of fuse 3PH Yes
3 In front of fuse SLG No
4 In front of fuse SLG Yes
5 At PV PCC 3PH No
6 At PV PCC 3PH Yes
7 At PV PCC SLG No
8 At PV PCC SLG Yes

The simulation results for study cases 1–8 are depicted in Figures 12–19, respectively. The following
quantities are shown, supporting the operation of CLD: Root-mean-square (RMS) voltage at fuse
location; RMS current flowing through the fuse, current threshold Ithr of CLD (only in the study cases
where CLD is used, i.e., study cases 2, 4, 6, and 8); RMS voltage at the PCC of the PV-unit. Moreover,
the state of the fuse and the PV circuit breaker (CB) (“0” when the protection means conducts current
and “1” when it does not conduct current) are also presented. Note that the voltage measured at
the fuse location and at the PCC of the PV-unit is the lowest line-line voltage, which is the reference
voltage (Vref) for compliance with LVRT requirements according to [37]. Moreover, during SLG faults,
the current illustrated corresponds to the faulted phase (phase a). All faults occur at t = 0.2 s.
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4.3. Discussion

Based on the simulation results illustrated in Figures 12–19, the following two critical observations
can be made:

• In all the examined study cases where CLD is not applied, the fuse melts before the PV-unit
disconnects, so, the desired fuse-PV coordination is violated. As can be seen in Figures 12b, 14b,
16b and 18b, the short-circuit current flowing through the fuse becomes high after fault inception,
leading to an “early” fuse melting. This results in a prolonged connection of the PV-unit to the
network, after fuse melting (unintentional islanding). The duration of this undesirable protracted
PV-connection is greater during SLG faults (which are the most frequently occurring in actual
distribution networks). This is because, in these cases, Vref at the PCC of the PV-unit remains
relatively high after fuse melting (as only the faulted phase is disconnected), unlike 3PH-fault
cases, where the voltage drops considerably.

• When the CLD is applied, the above problem is solved for all the examined cases, even for the
most severe faults (i.e., faults occurring directly in front of the fuse). Specifically, after fault
occurrence, the CLD acts rapidly, limiting the fault current that flows through the fuse to the
calculated current threshold Ithr; the drastic limitation of the fuse current by CLD is effectively
shown in Figures 13b, 15b, 17b and 19b. Concluding, the fuse melts after the PV-unit disconnects,
letting this unit to fully comply with the LVRT requirements. At the same time, since the PV-unit
disconnects first, unintentional islanding is certainly avoided.

All the above observations are further supported by Figures 12d, 13e, 14d, 15e, 16d, 17e, 18d
and 19e, where the state of protection means is shown.

It is worth noting that, in order to ensure that the proposed scheme will always operate properly,
a safety margin (additional voltage) of 0.01 p.u. has been considered in the voltage measured by the
CLD (Vref), as mentioned in Section 2.2. It is reminded that this safety margin is related to the much less
frequent cases where a negative voltage difference ∆V between the fuse voltage and the PCC voltage
(meaning that fuse voltage < PCC voltage) appears. The voltage safety margin of 0.01 p.u. is selected
after having simulated faults of all types in front of the fuse. Note that this is the fault position that
reasonably results in the greatest negative voltage difference ∆V (if any) between the fuse voltage and
the PCC voltage.

The required voltage safety margin is notably low, which confirms the initial assumption, made in
Section 2.2: In a typical LV distribution feeder, the voltage at the PCC of a PV-unit is expected to be
lower than (or at least very close to) the grid voltage at fuse location. This issue is further analyzed in
the next subsection.

4.4. Additional Simulation Results

In this subsection, additional simulations are performed, in order to further analyze some
noteworthy aspects of the proposed concept.



Energies 2019, 12, 2909 16 of 20

4.4.1. Voltage Difference between CLD/Fuse Location and PCC Location

As mentioned at the end of the previous subsection, a very low maximum absolute negative
voltage difference between the CLD/fuse location and the PCC of the PV-unit might be observed in the
system under study. Hence, this issue can be addressed by considering a slight safety margin in the
voltage measured by the CLD.

In general, the amount of this voltage difference ∆V depends on the fault type, the fault position
and the PV rated power (i.e., the PL). To further analyze this aspect, faults of all types were simulated
along the examined distribution line, varying the rated power of the PV-unit. During these simulations,
negative ∆V values appeared only for certain SLG faults (∆V was always positive for the rest fault
types, as desired).

Figure 20a shows ∆V as a function of the length of the examined distribution line (shown as a
percentage of the total line length) for different PL, considering SLG faults. Figure 20b focuses solely
on the most unfavorable fault-type/fault-location conditions regarding the appearance of negative
∆V (i.e., a SLG fault in front of the CLD/fuse), considering PL 0–100%. Based on these two figures,
the following conclusions can be derived:

• ∆V drastically varies from negative to positive as fault position moves away from the CLD/fuse
location (0% of the distribution line).

• ∆V drastically varies from negative to positive as PL is decreased.
• Even the greatest absolute negative ∆V value appearing during the simulations is quite low

(~ 0.045 p.u.)
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Figure 20. ∆V during SLG faults as a function of PL; (a) along the examined distribution line; (b) in
front of the CLD/fuse.

All in all, negative ∆V values are not likely in typical LV distribution systems with PV-unit(s),
since such a phenomenon concerns in very specific conditions (i.e., specific fault type, fault position
quite close to the CLD/fuse, and quite high PL at the same time). However, even in the worst-case
scenario, the absolute negative ∆V seems to be very small and can be easily addressed considering
a slight safety margin in the voltage measured by the CLD, as we did in the previous subsection.
Furthermore, it is reminded that the proposed CLD operates based on the MM characteristic of the
installed fuse, as a strict/safe-side assumption to ensure fuse-PV coordination. Nevertheless, since the
actual clearing time of the fuse can reach the time resulting from its TC characteristic, the time between
the MM time and the actual clearing time of the fuse serves as an additional safety margin for this
purpose (although we do not rely solely on this safety margin).

4.4.2. Impact of the Delayed Fuse Melting on the Equipment Through-Fault Damage

Although the proposed scheme aims at delaying the fuse melting, so as to achieve fuse-PV
coordination and prevent unintentional islanding, this delay should not compromise the LV distribution
system equipment, in terms of through-fault damage. In the following, the fulfillment of this
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requirement is checked using the damage curves of the two basic elements of the examined
LV distribution system, i.e., the distribution transformer and the distribution line. Figure 21a,b
show the damage curve of the former and the latter element, respectively, extracted using
DIgSILENT PowerFactory.
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Table 3 gives the steady-state fault current flowing through the fuse for the study-cases that have
been examined in Section 4.2 and are related to the CLD. The corresponding maximum allowable
clearing time values, resulting from the damage curve of the distribution transformer and the damage
curve of the distribution line, are also presented. Finally, in each case, Table 3 gives the melting time of
the fuse as well as the clearing time of the fuse resulting from its MM and TC characteristic, respectively;
it is reminded that the CLD control algorithm takes into account only the MM characteristic, as it
corresponds to the most challenging case for the CLD response.

Table 3. Maximum allowable clearing-time versus fuse MM/TC time.

Study Case
Steady-State
Fault Current

through Fuse (A)

Maximum
Allowable Clearing

Time (s)
(Transformer

Damage Curve)

Maximum Allowable
Clearing Time (s)

(Line Damage Curve)

Actual Fuse
MM Time (s)

Actual Fuse
TC Time (s)

2 2310 12.58 N/I 0.156 1.256
4 1377 34.36 N/I 1.143 10.601
6 1496 28.48 N/I 0.813 7.388
8 1333 37.20 N/I 1.313 12.296

Based on the data presented in Table 3, it is concluded that both the MM and the TC time of the
fuse are always safely below the corresponding maximum allowable clearing time indicated by the
damage curve of the distribution transformer. Moreover, in all the examined cases, the fault current
does not even intersect the distribution line damage curve (noted as “N/I” in Table 3). It is, therefore,
evident that the operation of the proposed CLD is by no means detrimental for the equipment of the
examined LV distribution system.

5. Conclusions

This paper proposes a CLD along with an appropriate control algorithm, aiming to prevent
unintentional islanding by coordinating the fuse protecting a LV distribution line with any downstream
PV-unit (in accordance with the LVRT requirements for the PV-unit).

The CLD, placed at the fuse location, is designed to take into account both the time-overcurrent
characteristic of the fuse and the LVRT characteristic of the adopted grid code. In that way, it ensures



Energies 2019, 12, 2909 18 of 20

enough time for the PV-unit to comply with the LVRT requirements and disconnect, before fuse melting;
as a result, prolonged unintentional energization of the isolated feeder is avoided. The aforementioned
two characteristics constitute the main data uploaded to the proposed CLD by the user, since the CLD
calculates its current threshold adaptively, based on the voltage continuously measured at its location.
This is an easy task to be performed by any microprocessor.

Extensive simulation tests have been performed to demonstrate the problem of unintentional
islanding, resulting from fuse-PV coordination loss. These simulations also validate the effectiveness of
the proposed CLD at dealing with this issue, for a variety of critical fault cases. Specifically, it is shown
that, when the proposed CLD is not considered, the fuse always melts before the PV-unit disconnects;
the PV-unit remains connected after fuse melting, leading to unintentional islanding. The duration
of the unintentional islanding situation is greater during SLG faults. On the other hand, when the
CLD is considered, fuse melting is always properly delayed, letting the PV-unit disconnect first. In this
way, unintentional islanding is avoided. Moreover, it is shown that the use of the voltage measured at
the CLD/fuse location instead of the voltage measured directly at the PCC of the PV-unit is a robust
solution to avoid the use of communication means, given that (i) for the vast majority of possible fault
cases, the fuse voltage is equal to or greater than the PCC voltage; (ii) even in the worst-case scenario,
the PCC voltage is only slightly greater than the fuse voltage; and (iii) any negative ∆V (see Section 4)
can be easily compensated by, primarily, considering a small safety margin in the voltage measured by
the CLD and, secondarily, by the inherent time margin between the MM and the actual clearing time of
the fuse. Finally, it is shown that the delayed melting of the fuse due to short-circuit current limitation
does not affect protection speed in terms of possible equipment through-fault damage.
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