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Abstract: Many studies and considerable international efforts have gone into reducing greenhouse
gas emissions. This study was carried out to improve the efficiency of flat-plate photovoltaic thermal
(PVT) systems, which use solar energy to produce heat and electricity simultaneously. An efficiency
analysis was performed with various flow rates of water as the working fluid. The flow rate, which
affects the performance of the PVT system, showed the highest efficiency at 3 L/min compared with 1,
2, and 4 L/min. Additionally, the effects of nanofluids (CuO/water, Al2O3/water) and water as working
fluids on the efficiency of the PVT system were investigated. The results showed that the thermal and
electrical efficiencies of the PVT system using CuO/water as a nanofluid were increased by 21.30%
and 0.07% compared to the water-based system, respectively. However, the increase in electrical
efficiency was not significant because this increase may be due to measurement errors. The PVT
system using Al2O3/water as a nanofluid improved the thermal efficiency by 15.14%, but there was
no difference in the electrical efficiency between water and Al2O3/water-based systems.
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1. Introduction

Solar energy is a renewable and clean energy, and the demand for solar power has increased
worldwide because of the need to reduce greenhouse gas emissions [1]. Solar power generation
through solar cells, however, has low energy conversion efficiency, and electrical efficiency is reduced
as a result of electric performance due to the increase of the cell’s temperature [2]. As an alternative,
a photovoltaic thermal (PVT) system combined with a photovoltaic (PV) module and a solar thermal
collector has been proposed, which circulates the fluid to lower the temperature of the PV cell and
produces heat and electricity simultaneously [3]. Combining the two systems has the advantage of
reducing the installation area compared to separately installing the PV module and the solar thermal
collector [4]. Since the 1970s, a considerable number of studies on PVT technology have been conducted,
and many international developments have emerged from these studies [5].

Tripanagnostopoulos et al. [6] constructed a hybrid PVT system and carried out a study using air
as a circulating medium, based on two types of the PV modules. The results showed that the total
efficiency of this system can be improved through the circulation medium. Aste et al. [7] compared the
daily and annual energy yields of the standard PV module and the PVT collector. This suggested that
although the electricity production of the PVT system is slightly lower than that of the standard PV
module, PVT technology has a high overall efficiency due to producing thermal energy at the same
time. Prakash [8] conducted a transient analysis of the PVT collector by spilling water/air under a solar
cell, and reported the thermal efficiency of air as the heating medium. Chow et al. [9] evaluated PVT
collectors from a thermodynamic point of view, depending on the presence or absence of a glass cover
above the PV module. They reported that the glazed PVT system was more suitable for maximizing
the total energy output. A CPV (concentrated photovoltaic) system is also useful for utilizing solar
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energy, but it is important to include an appropriate cooling system for the effective operation of the
CPV system, because it increases the operating temperature of the solar cell and reduces the electrical
efficiency, in turn decreasing the lifetime of the solar cell [10]. Sharaf et al. [11] defined the CPVT
(concentrated photovoltaic thermal) as a hybrid system of a CPV and PVT, which concentrates solar
radiation and converts it into useful electric and thermal energy. CPVT collectors have been reported to
increase the intensity of solar radiation using concentrator optics, unlike conventional PVT collectors.
Coventry [12] showed that the heat loss of the CPVT does not increase as the operating temperature
increases, due to a decrease in surface area. However, the CPVT is more costly than the flat-plate
PVT module because of the additional expense of high-efficiency solar cells for large scale electricity
production, solar tracking drive, etc. [13].

The overall performance of the PVT system is affected by many factors relating to the collection of
heat and electrical energy [14]. The key to designing a solar collector’s cooling system is to control the
flow rate of the working fluid, which can directly affect the operating temperature and the performance
of the system in terms of the overall power output [15]. Bambrook and Sproul [16] changed the mass
flow rate of air through the PVT system, confirming an increase of the thermal and electrical efficiencies,
with an increasing flow rate. Na et al. [17] analyzed the performance of the conical solar concentrator
system according to the mass flow rate of the working fluid. The results showed that thermal efficiency
tends to improve with an increasing flow rate, but decreases when the optimum flow rate is exceeded.

Most solar systems use working fluids such as water, air, and ethylene glycol. Because these
working fluids have low thermal conductivity, the maximum efficiency that can be obtained in
existing systems is limited. Therefore, an efficiency improvement of the solar system is needed
via an increase of the heat transfer characteristics of the working fluid. Nanofluids, which can be
used as the working fluid (and which have exceptional heat transfer characteristics) were presented
by Choi and Eastman [18]. These nanofluids have nanoscale particles, which were distributed in
base fluids such as water and ethylene glycol. Lee et al. [19] manufactured oxide nanofluids, which
have improved thermal conductivity while containing small amounts of nanoparticles (CuO, Al2O3).
Asirvatham et al. [20] conducted a study on the forced convection heat transfer of nanofluid, using
a low volume concentration of nanoparticles with water (CuO/water). The results showed that the
convection heat transfer coefficient was improved, even at a low concentration of nanoparticles.
They reported that the presence of suspended nanoparticles contributed to an improvement of the
thermal conductivity of the nanofluid. Nassan et al. [21] confirmed an improvement of the thermal
properties of nanofluids (CuO/water, Al2O3/water). It was also reported that the convective heat transfer
coefficient of CuO/water was increased more than that of Al2O3/water at the same concentration.

Nanofluids are generally made with metals and metallic oxide nanoparticles, and many studies
have been conducted to apply them to various fields (systems for heating and cooling, solar water
heating, thermal storage, etc.) by improving the thermal conductivity of conventional heat transfer
fluids [22]. Lu et al. [23] studied the thermal performance of an evacuated tubular solar collector
with nanofluid (CuO/water). By applying the nanofluid, the value of the heat transfer coefficient was
improved slightly, with an increase of the heat flux. They reported that the value of the heat transfer
coefficient was changed according to the concentration of the nanoparticles, and the mass concentration
corresponding to the optimal heat transfer improvement was 1.2%. Kang et al. [24] conducted an
economic analysis of flat-plate and U-tube solar collectors with nanofluid (Al2O3/water). The flat-plate
and U-tube solar collectors using nanofluid with a nanoparticle size of 20 nm and a concentration of
1.0 vol% had 14.8% and 10.7% higher thermal efficiency values, respectively, compared with utilizing
water as the working fluid. Karami and Rahimi [25] performed experiments on the cooling performance
of channels using Boehmite (AlOOH·xH2O) nanofluid for the PV module. The results showed that the
nanofluid had better cooling performance than water with the highest electrical efficiency at 0.1 wt%
concentration. Waeil et al. [26] conducted an experimental study on the PVT system using nanofluid
(SiC/water). As a result, the thermal conductivity of the nanofluid at a concentration of 3 wt% was
improved to 8.2% in the temperature range of 25 ◦C to 60 ◦C. The overall efficiency of the PVT system
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was about 88.9%, which was high compared to the PV system. Shmani et al. [27] studied a PVT
system with various types of nanofluids (SiO2, TiO2, SiC). Using an SiC nanofluid, the highest thermal
and electrical efficiencies were 81.73% and 13.52%, respectively. Many studies on the heat transfer
characteristics of nanofluids have been carried out, but there is a limit to how accurately one can
predict the trend of heat transfer enhancement. There are also many variables in the application of
nanofluids, so more theoretical and experimental studies are needed [28].

This study was carried out to improve the efficiency of a PVT system, with a nanofluid as the
working fluid, at an optimum flow rate. The role of the working fluid is important in increasing the
efficiency of the PVT system. Therefore, the electrical and thermal efficiencies of the PVT system were
compared and analyzed with various flow rates of water as the working fluid. In addition, the thermal
and electrical efficiencies of the PVT system were investigated using water and nanofluids (CuO/water,
Al2O3/water) as working fluids at an optimum flow rate. Nanofluids, for application in the PVT system,
are used after surfactant is added for dispersion stability, and the thermal conductivity according to
the concentration of surfactant was measured. Additionally, the effects on the performance of the PVT
system were investigated using water and nanofluids as working fluids.

2. Materials and Methods

2.1. Experimental Configuration and Methods of the PVT System

In this study, the flat-plate PVT system consists of the PV module, solar absorbing tube, storage
tank, circulating pump, etc. The solar cells in the PV module used in the experiment are monocrystalline
silicon, and ten cells were connected in series. A glass cover installed on the front of the PV module
was used to reduce the loss of heat energy. The absorbing tube, which is installed under the PV module,
was made with copper pipes. A pump and flow meter control the flow rate of the working fluid,
assisting the circulation. The storage tank stores the thermal energy of the working fluid circulating
inside the absorbing tube of the PVT collector. The specifications of the PVT collector system used in
this study are shown in Table 1. The schematic diagram of the PVT system is presented in Figure 1.

Table 1. Specifications of the photovoltaic thermal (PVT) collector.

Items Specification

Cell type Mono crystalline
No. of cell 10

Cell dimension (mm2) 156.75 × 156.75
Typical module efficiency (%) 15–20

Nominal operation cell temperature (◦C) 45 ± 2
The coefficient of Pmax (%/◦C) −0.359
The coefficient of Voc (%/◦C) −0.245
The coefficient of Isc (%/◦C) 0.024

Absorber type Tube
Collector area (m2) 0.297

Absorbing tube material Copper

The PVT system receives the sun’s ray to produce electrical energy from the PV module on the
front and absorbs the heat energy through the absorbing tube at the lower part. This is a stationary
PVT system that does not track the sun, and it was installed 45 degrees to the full south. In experiments
investigating the optimal flow rate, water was used as the working fluid in the PVT system. The working
fluid, which is stored in the storage tank, is circulated through the pump to the absorbing tube to
obtain the heat energy. Each experiment was conducted for 240 minutes, with the PVT system located
at 37◦ north latitude and 127◦ east longitude. To collect the data for an efficiency analysis, resistance
temperature detectors (PT100Ω, PHOENIX, USA) were installed at the inlet and outlet of the heat
absorbing tube, and thermocouples were installed on the glass surface above the PV module. Measured
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temperatures were collected through a data logger (GL820, GRAP-HTEC, USA). Solar radiation was
measured using a pyranometer (EQ-08, Middleton Solar, Victoria, Australia) through the data logger
(KL-200, Wellbian system, Seoul, Korea), and the ambient air conditions were measured by a weather
station (Wireless Vantage Pro2 Plus, Davis Instruments, Hayward, CA, USA). The values of current,
voltage, and power produced by the PV module were collected using a Solar Module Analyzer (PROVA
210, PROVA, Taiwan). The flow rate of the working fluid was controlled through a flow meter (PA-60,
KOMETER, Korea), and was set to the flow rate of 1, 2, 3, and 4 L/min. Temperature data were obtained
in 1 minute increments, and these values were averaged over 10 minutes. The effect of the optimum
flow rate of the working fluid on the performance of the PVT system was analyzed and applied to a
PVT system with nanofluids.
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Figure 1. Schematic diagram of a PVT system.

2.2. Nanofluid Preparation

Nanofluids were manufactured by dispersing the metallic nanoparticles in distilled water at a
concentration of 0.05 wt.%. The nanoparticles used in the study were manufactured and supplied by a
company (AVENTION CO., LTD., Incheon, Korea). Figure 2 show the scanning electron microscope
images of the nanoparticles. The size of the nanoparticles was 50 nm to 100 nm for CuO and 50 nm for
Al2O3. Surfactants of CTAB (Cetyltrimethylammonium Bromide) and AG (Arabic Gum) were added
for the dispersion stability of the nanoparticles. In this study, the two-step method, which is a way of
dispersing nanoparticles in a fluid, was used for the production of the nanofluids. After adding the
nanoparticles and surfactant, stirring was conducted with a stirrer (KMC-130SH, VISION SCIENTIFIC,
Korea) for 30 min, and dispersing was carried out for 1 h 30 min with an ultrasonicator (KFS-1200N,
Korea Process Technology Co., Korea). Li et al. [29] reported that the thermal conductivity of nanofluids
decreases after a certain concentration of surfactant. Therefore, the thermal conductivity of nanofluids
with various concentrations of the surfactant was investigated in this study. CTAB was added as the
surfactant at 1/10, 1, and 10 times CMC (Critical Micelle Concentration), and AG was added at 1/4, 1/2,
and 1 times, based on the nanoparticles, because there was no CMC concentration. The stability of the
manufactured nanofluids was confirmed visually for several days in a stationary condition. The layer
separations of the Al2O3/water and CuO/water nanofluids were started respectively after three and
four days of production. However, the long-term stability of nanofluids would be maintained at the
state of circulation such as an application as working fluid of the PVT system. The thermal conductivity
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and thermal diffusivity of the nanofluids were measured using a thermal characteristic analyzer (KD2,
DECAGON, USA). The measured thermal characteristic values of the nanofluids are shown in Tables 2
and 3. The results are the average value of 10 total measurements. It was also shown that the thermal
characteristics of all nanofluids had statistically significant differences from those of water. Therefore,
the CuO + AG (1/2 times) and Al2O3 + CTAB (1/10 times) nanofluids, which showed the highest values
of thermal conductivity, were selected and used in the experiments for efficiency analysis of the PVT
system. The values of thermal conductivity were 0.901 W/m·◦C and 0.829 W/m·◦C for CuO + AG
(1/2 times) and Al2O3 + CTAB (1/10 times), respectively.
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Figure 2. Scanning electron microscope (SEM) images of the nanoparticles: (a) Al2O3 nanoparticles;
(b) CuO nanoparticles [30].

Table 2. Thermal characteristic values of CuO/water nanofluids. AG, Arabic gum; CTAB,
Cetyltrimethylammonium Bromide.

Surfactant (Concentration) Thermal Conductivity (W/m·◦C) Thermal Diffusivity (mm2/s)

AG (1/4) 0.851 0.262
AG (1/2) 0.901 0.314
AG (1) 0.781 0.21

CTAB (1/10) 0.783 0.214
CTAB (1) 0.774 0.207
CTAB (10) 0.765 0.204

Table 3. Thermal characteristic values of Al2O3/water nanofluids.

Surfactant (Concentration) Thermal Conductivity (W/m·◦C) Thermal Diffusivity (mm2/s)

AG (1/4) 0.795 0.216
AG (1/2) 0.811 0.241
AG (1) 0.815 0.257

CTAB (1/10) 0.829 0.214
CTAB (1) 0.788 0.214
CTAB (10) 0.778 0.208

2.3. Efficiency Calculation

2.3.1. Thermal Efficiency

To obtain the thermal efficiency of the PVT system, the collected heat (Qt) was calculated by
Equation (1):

Qt =
.

mCp(To − Ti) (1)

where
.

m is the mass flow rate, Cp is the specific heat, and To and Ti are the temperatures of the working
fluid located at the outlet and inlet of the heat absorbing tube. The thermal efficiency of the PVT system
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is defined by Equation (2) and Equation (3). The key parameters, which are used to define the thermal
efficiency (ηth), include the collected heat (Qt), collector area (A), and solar radiation (Ia):

ηth =
Qt

AIa
(2)

ηth = η0 − α(
Ti − Ta

Ia
) (3)

where η0 is the thermal efficiency when the difference between the inlet temperature (Ti) and the
ambient air temperature (Ta) is zero, and α is the heat loss coefficient.

2.3.2. Electrical Efficiency

The electrical efficiency (ηe) is defined as Equations (4) and (5):

Pmax = VocIscFF = VmaxImax (4)

ηe =
Pmax

AIa
(5)

where Pmax is the maximum electrical power, Voc is the open-circuit voltage, Isc is the short-circuit
current, and FF is the fill factor. A solar module analyzer was used as the measuring equipment for the
electrical efficiency, providing the maximum voltage (Vmax), maximum current (Imax), and maximum
electrical power (Pmax) values.

2.3.3. Overall Efficiency

Several researchers have shown overall efficiency through Equation (6) when evaluating the PVT
system [31]. The overall efficiency (ηo) is simply expressed as the sum of the thermal and electrical
efficiencies:

ηo = ηth + ηe. (6)

Electrical power and thermal energy have different forms. Electrical energy is considered a
high-grade form, because it is converted from thermal energy. Therefore, for an accurate overall
evaluation of the PVT system, Huang [32] defined the energy saving efficiency (η f ) as Equation (7):

η f = ηth +
ηe

ηpower
(7)

where ηpower is the electric-power generation efficiency of the conventional electric power plant, and
this value is taken as 0.38.

3. Results and Discussion

3.1. The PVT System with its Flow Rate

The experiments for investigating the optimal flow rate were conducted in June 2018, and water
was used as the working fluid. The outdoor environmental conditions for the experiments are shown
in Table 4.

Table 4. The experimental environmental conditions and flow rates.

Flow Rate Solar Radiation (W/m2) Wind Speed (m/s) Ambient
Temperature (◦C) Inlet Temperature (◦C)

1 L/min
732.7–893 0.4–1.8 29.1–34

29.3–38.86
4 L/min 29.5–38.16
2 L/min

713.67–931.67 0–1.8 25.7–30.1
26.94–37.97

3 L/min 26.05–35.85
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3.1.1. Thermal Efficiency Analysis

Figure 3 shows the change of the thermal efficiency for each flow rate of the PVT system over
time. The experimental results showed that the optimum flow rate was 3 L/min. The average thermal
efficiency at a flow rate of 3 L/min was 23.59%, with a maximum and minimum of 30.17% and 17.67%,
respectively. As the flow rate was increased from 1 L/min to 3 L/min, the thermal efficiency tended to
increase, although it decreased at 4 L/min. It is suggested that a flow rate above 3 L/min shortened the
residence time of the working fluid in the absorbing tube, so it could not obtain enough solar energy.
Figure 4 shows the thermal efficiency according to (Ti − Ta)/I, which is an indicator for evaluating
the performance of a solar collector in terms of convection heat loss. As (Ti − Ta)/I was increased,
the flow rates of 1, 2, 3, and 4 L/min showed a reduction in thermal efficiency due to an increase of
convection heat loss. The average thermal efficiency at a flow rate of 3 L/min was the highest, with a
maximum of 29.46% when the difference between the inlet temperature and ambient temperature was
zero. However, if the temperature of the working fluid increased after receiving solar radiation for a
long period of time, the heat loss to the ambient air was also greatly increased compared to other flow
rates, decreasing the thermal efficiency.
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3.1.2. Electrical Efficiency Analysis

Figure 5 shows the change in the electrical efficiency for each flow rate of the PVT system over time.
The average electrical efficiency was the highest at a flow rate of 3 L/min, at 12.08% but was around 12%
for the other flow rates. Figure 6 shows the electrical efficiency according to the surface temperature
of a solar cell. The electrical efficiency of a typical solar cell is affected by several conditions, such as
the surface temperature or amount of solar energy. In particular, electricity is produced through solar
energy, but as solar radiation is concentrated, the surface temperature of the solar cell increases and
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the electrical efficiency tends to decrease. The results also show that the electrical efficiency decreases
as the surface temperature increases. In this study, the average surface temperature of the solar cell
was 43.96 ◦C at 1 L/min, 42.64 ◦C at 2 L/min, 41.67 ◦C at 3 L/min, and 42.08 ◦C at 4 L/min. The surface
temperature of the solar cell was the lowest at 3 L/min, which has the highest thermal efficiency because
it most effectively absorbs the heat energy generated from the PVT system through the working fluid.
However, it is suggested that the difference in the efficiency of each flow rate is not as large as expected
because the reduction rate of the Pmax per the temperature rise of 1 ◦C is very small at 0.359%.Energies 2019, 12, x FOR PEER REVIEW 8 of 16 
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3.1.3. Overall Efficiency Analysis

With a flow rate of 3 L/min, the overall energy saving efficiencies were 36.39% and 57.28%,
respectively, which were higher than those of the other flow rates. Therefore, according to the efficiency
analysis, the optimal flow rate was found to be 3 L/min for the PVT system with water as the working
fluid. The results of the efficiency analysis of the PVT system with each flow rate are shown in Table 5.

Table 5. The average efficiency of the PVT system for each flow rate.

Flow Rate ηth (%) ηe (%) ηo (%) ηf (%)

1 L/min 8.82 12.47 21.29 41.64
2 L/min 19.79 12.75 32.54 53.35
3 L/min 23.59 12.80 36.39 57.28
4 L/min 18.56 12.54 31.09 51.55

3.2. The PVT System Using Nanofluids

To improve the performance of the PVT system, an efficiency analysis with a nanofluid as the
working fluid was conducted. The water-based PVT system was set as the control to confirm the
efficiency improvement of the PVT system using a nanofluid as the working fluid. Two experiments
on the PVT system with nanofluids were carried out on different days in May 2019. The weather data
for each day of the experiments are shown in Table 6.

Table 6. The experimental environmental conditions and nanofluids.

Nanofluids Solar Radiation
(W/m2) Wind Speed (m/s) Ambient

Temperature (◦C) Inlet Temperature (◦C)

CuO/water 733.89–958.22 0.9–4 18.58–25.52 23.4–39.16
Al2O3/water 797–977 0–1.3 22–30.52 23.3–45.48

3.2.1. Efficiency Analysis of the PVT System Using CuO/Water as the Nanofluid

The changes in the thermal efficiency of the water and CuO/water-based PVT systems over time
are shown in Figure 7. The thermal efficiencies of the PVT system with CuO/water as the nanofluid and
the water-based system were 48.88% and 27.58%, respectively. The electrical efficiency of the water and
CuO/water-based PVT systems over time is presented in Figure 8. The electrical efficiency of the PVT
system using CuO/water as the nanofluid was 13.20%, compared to 13.13% for the water-based system.
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In this study, the thermal efficiency of the PVT system with CuO/water as the nanofluid was
increased by 21.30%. The increase in electrical efficiency was 0.07%, with no significance due to the
accuracy of measurement. The thermal efficiency of the CuO/water-based PVT system was improved
because more thermal energy was absorbed due to the increased thermal conductivity of the nanofluid.
The thermal efficiencies of water and CuO/water-based PVT systems according to (Ti − Ta)/I are
shown in Figure 9. When the difference between the inlet and ambient air temperature was zero,
the maximum efficiency of the CuO/water-based PVT system was 61.16%, compared with 49.65%
for the water-based system. As the value of (Ti − Ta)/I increased, the thermal efficiency tended to
decrease. It is expected that the heat loss was caused by the temperature difference between the
working fluid and the ambient air. Figure 10 presents the electrical efficiency according to the surface
temperature of water and CuO/water-based PVT systems. As the results show, the increase in the
surface temperature of the CuO/water-based system was 1.41 ◦C, which was lower than that of the
water-based system. Therefore, it was difficult to find a difference in the electrical efficiency between
the water and CuO/water-based systems, because the surface temperature difference between the two
systems was low, similar to the experimental results of the PVT system with water at various flow
rates. The overall and energy saving efficiencies of the CuO/water-based PVT system were 62.08% and



Energies 2019, 12, 3063 11 of 16

83.62%, respectively, and they were 21.37% and 21.49% higher than those of the water-based-system.
The values of the average and overall efficiencies are presented in Table 7.
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Table 7. The average efficiency of the PVT system using the CuO/water nanofluid.

Working Fluid ηth (%) ηe (%) ηo (%) ηf (%)

CuO/water
Nanofluid 48.88 13.20 62.08 83.62

Water 27.58 13.13 40.71 62.13

Michael and Iniyan [33] compared the thermal and electrical performances of the PVT systems
using CuO/water as the nanofluid and water. As the results show, the maximum thermal efficiency of
the nanofluid system was improved by 9.43% compared to the water, showing the same trend as our
results, but the electrical efficiency decreased slightly by 0.22%. Al-Waeli et al. [34] investigated the
impact of nanofluids (Al2O3, CuO, SiC) on the PVT system. They found that the efficiency of the PVT
systems using nanofluid was higher than that of water, as was suggested in our study. Even though
the electrical efficiency decreased as the luminous intensity increased due to the rising solar cell
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temperature, the use of nanofluids is considered to improve the cooling of the solar cell, thereby
increasing electrical performance.

3.2.2. Efficiency Analysis of the PVT System Using Al2O3/water as the Nanofluid

The thermal and electrical efficiencies of the water and Al2O3/water-based PVT systems over time
are shown in Figures 11 and 12, respectively. The thermal efficiencies of the water and Al2O3/water-based
PVT systems were 31.81% and 46.95%, respectively. The electrical efficiencies were 12.21% and 12.22%
for the water and Al2O3/water-based systems, respectively.
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In this study, the PVT system using Al2O3/water as the nanofluid achieved an improvement of
15.14% in thermal efficiency. There was no difference in the electrical efficiency between water and
Al2O3/water-based systems. The results of the efficiency analysis for PVT systems using Al2O3/water
and water, according to (Ti − Ta)/I, are shown in Figure 13. When the difference between the inlet
and ambient air temperature was zero, the maximum efficiency of the Al2O3/water-based PVT system
was 60.98%, compared with 43.06% for the water system. Figure 14 presents the electrical efficiency
according to the surface temperature of the water and Al2O3/water-based PVT systems. The surface
temperature increase of Al2O3/water was 1.12 ◦C, which was lower than that of water. Overall
efficiencies and energy saving efficiencies of the Al2O3/water-based PVT system were 15.15% and
15.17%, respectively, which were higher than those of the water-based system. The efficiency values
are shown in Table 8.
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Table 8. The average efficiency of the PVT system using an Al2O3/water nanofluid.

Working Fluid ηth (%) ηe (%) ηo (%) ηf (%)

Al2O3/water
Nanofluid 46.95 12.22 59.17 79.11

Water 31.81 12.21 44.02 63.94

Sardarabadi and Passandideh-Fard [35] experimentally and numerically investigated the use
of metal-oxides (Al2O3, TiO2, ZnO)/water as the working fluids in PVT systems. As the results
show, the increase of the average electrical efficiency of the PVT system compared with the PV were
5.48% and 6.36% using water and Al2O3/water as the working fluids, respectively. This suggests that
nanofluid increased the efficiency of the PVT system more than water, as the results of our study
found. Additionally, the reduction of the surface temperature of the PVT system compared to the
PV system was 11.0 ◦C and 11.03 ◦C for water and Al2O3/water, respectively. Thus, nanofluid had
a significant impact by increasing the thermal efficiency of the PVT system, as was presented in our
study. Tang and Zhu [36] compared the efficiency of PVT systems using Al2O3/water and water as
the working fluids. The Al2O3/water-based system had 0.56% lower electrical efficiency than the
water-based system, with a higher thermal efficiency of 26.87%. They concluded that the reason for the
lower electrical efficiency was the inlet temperature of the nanofluid being higher than that of water,
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decreasing the conversion efficiency of the solar cell. However, in our study, the surface temperature
differences of the PVT systems using water and nanofluids were not significant in terms of affecting
the electrical efficiency.

4. Conclusions

This study compared thermal efficiency based on the flow rate of a PVT system using water as
the working fluid. Based on the results of the thermal efficiency analysis, an optimum flow rate of
3 L/min was deduced. At a 3 L/min rate, the thermal, electrical, overall, and energy saving efficiencies
were 23.59%, 12.80%, 36.39%, and 57.28%, respectively, which were the highest among the other flow
rates. The efficiency of a nanofluid-based PVT system was also analyzed, with an optimal flow rate of
3 L/min.

The nanofluids used in the study were manufactured by dispersing the CuO and Al2O3

nanoparticles at 0.05 wt% concentration into water. For dispersion stability, nanofluids with the
highest thermal conductivity were selected and added to the surfactant CTAB or AG in various
concentrations. All thermal conductivities of the nanofluids were higher than those of water, and it
was confirmed that there was a significant difference in thermal conductivity between nanofluids
and water. The nanofluids with the highest thermal conductivity were chosen and applied to the
PVT system as working fluids. The selected nanofluids were CuO + AG (1/2 times the amount of
nanoparticles) and Al2O3 + CTAB (1/10 times the CMC concentration). The thermal conductivities
of CuO/water and Al2O3/water as nanofluids were 0.901 W/m·◦C and 0.829 W/m·◦C, respectively.
The PVT systems using nanofluids showed a significant increase in thermal efficiency compared to the
water-based system, but the difference in electrical efficiency was not significant. The CuO/water and
Al2O3/water-based PVT systems showed higher efficiency than the water-based system. Thus, the heat
transfer was improved by nanofluids with high thermal conductivity. The reason that the difference in
electrical efficiency was small was because the reduction of the surface temperature was small, and the
area of the PV module used in the study was very small, such that the efficiency of the cell was not
greatly changed due to the thermal characteristics of the cell.

Through this study, it was confirmed that the heat transfer characteristics were improved by
adding nanoparticles to the base fluid. It was also suggested that application of nanofluids improves
system efficiency through increased heat transfer. However, the PVT system, which was fixed in one
direction, showed no significant temperature change on the surface of the cell, and the maximum
temperature of the heating medium was not high. Therefore, in order to further investigate the effect
of nanofluids on the efficiency, research should be conducted on tracking and concentrating of PVT
systems in which a high cell temperature could be induced to obtain a high degree of thermal energy,
with a reduction of the temperature and an improvement in efficiency.
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