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Abstract: The shunt active power filter (SAPF) is an effective means for the modification of power
quality. However, the compensation performance of SAPF would be deteriorated when the unbalanced
nonlinear loads are present in the power system. To enhance the compensation performance of
SAPF, the adaptive frequency-based reference compensation current control strategy is proposed in
this paper. The proposed solution procedure can be divided into three stages including adaptive
frequency detection, phase synchronization, and adaptive compensation. With the tracking of power
system frequency, the phase synchronization for the SAPF compensation can be effectively modified
under the power variation of unbalanced nonlinear loads. Based on the correct synchronization phase
angle, the reference compensation current of SAPF can be accurately obtained with the adaptive
linear neural network (ALNN) in the stage of adaptive compensation. In addition, the direct current
(DC)-link voltage of SAPF can also be effectively regulated to maintain the compensation performance.
To verify the effectiveness of the proposed adaptive frequency-based reference compensation current
control strategy, the comprehensive case studies implemented with the hardware-in-the-loop (HIL)
mechanism are performed to examine the compliance with the specification limits of IEEE Standard
519-2014. The experimental results reveal that the performance of proposed SAPF control strategy
is superior to that of the traditional instantaneous reactive power compensation control technique
(p-q method) and sliding discrete Fourier transform (DFT).

Keywords: adaptive frequency detection technique; reference compensation current control
strategy; shunt active power filter (SAPF); power quality; IEEE Standard 519-2014; DC-link voltage;
hardware-in-the-loop (HIL)

1. Introduction

Due to the widespread usage of nonlinear loads such as power converters and other
power-electronic equipment inherited with a pulse-width modulation control technique, harmonic
and interharmonic currents are increasingly injected into the power system to deteriorate the power
quality. These power quality disturbances may lead to the power losses, malfunction of equipment,
excessive heating, and communication interferences for the sensitive devices, etc. [1–3]. As a result,
the compensation for the distorted current of nonlinear load to maintain the power quality has become
one of major concerns in the modernization of power and energy systems in recent years [4].

From the literature survey, it is realized that the shunt active power filter (SAPF) is the mainstream
device for the compensation of nonlinear load current and modification of power quality [5]. Compared
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with the traditional shunt passive filter, the SAPF can effectively and simultaneously deal with the
power factor correction, harmonic current, reactive power compensation, and then enhancement of
power system stability.

In the literature, many advanced approaches for SAPF have been proposed to extract the
fundamental and harmonic components, determine the reference compensation current, complete
the phase synchronization, regulate the voltage of direct current (DC)-link capacitor, and so on.
Among numerous reference compensation current control strategies, the instantaneous reactive power
compensation control technique (p-q method) is one of commonly used basic approaches for the general
harmonic mitigation [6]. In [7], the sliding discrete Fourier transform (DFT) is applied to perform the
reference current computation for SAPF with the extraction of positive-sequence components. A control
strategy based on direct Lyapunov method for multilevel converters is proposed in [8] to perform the
harmonic elimination. In [9], the all-pass filter and low-pass filter are applied to extract the fundamental
and harmonic components for the compensation of balanced loads. The non-iterative optimized
algorithm is applied in [10] to limit the harmonic injection and perform the SAPF compensation.
To enhance the compensation performance of SAPF, the positive-sequence component of load current
is extracted for the calculation of reference compensation current [11]. According to IEEE Standard
519-2014, it is required to limit the harmonic injection for the maintenance of power quality [12,13].
Therefore, most SAPF are focused on the enhancement of harmonic detection accuracy. However,
the power system frequency would deviate from the nominal value due to the power mismatch
between the generation and the load demand. This phenomenon would lead to the analysis inaccuracy
for the reference compensation current. Besides, the distorted source voltage would deteriorate the
compensation performance of SAPF because of the error of phase synchronization.

In this paper, the effective reference compensation current-control strategy based on the adaptive
calculation mechanism is proposed to deal with the problems of power system frequency deviation and
distorted source voltage. The proposed solution procedure can be divided into three stages, including
adaptive frequency detection, phase synchronization, and adaptive compensation. According to the
above-mentioned compensation mechanism, the main contributions of proposed control strategy of
SAPF are as follows.

(1) When the power system frequency deviation is present due to the power variation, the phase
synchronization for the SAPF compensation can be effectively maintained by the stage of adaptive
frequency detection.

(2) With the correct synchronization phase angle, the reference compensation current of SAPF
can be accurately obtained with the adaptive linear neural network (ALNN) in the stage of
adaptive compensation.

(3) Through the extraction of positive-sequence component in the proposed adaptive compensation
mechanism, the compensation performance can be maintained under the distorted source voltage.

(4) The regulation of DC-link voltage in the SAPF can be accurately performed with the
positive-sequence component obtained by the proposed adaptive compensation mechanism and
then maintain the compensation performance of SAPF for the load current.

The organization of this paper is as follows. In Section 2, the proposed solution procedure for the
reference compensation current is introduced. Some comprehensive case studies are designed and
analyzed based on the hardware-in-the-loop (HIL) mechanism to verify the compensation performance
of proposed SAPF control strategy under the conditions of power system frequency deviation and
distorted source voltage.

2. Proposed Adaptive Frequency-Based Reference Compensation Current Control Strategy

Figure 1 depicts the proposed adaptive frequency-based reference compensation current control
strategy of three-phase SAPF, where Vdc is the DC-link voltage of SAPF capacitor, Zs is the line
impedance, ILa, ILb, and ILc are the three-phase nonlinear load currents extracted from voltage source
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Va, Vb, and Vc, Ic is the compensation current, and the superscript * represents the desired command.
The proposed control strategy of SAPF can be mainly divided into three stages, including the adaptive
frequency detection technique (AFDT), phase synchronization, and adaptive compensation.
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Figure 1. Proposed adaptive frequency-based reference compensation current-control strategy.

2.1. Adaptive Frequency Detection Technique (AFDT)

In general, the compensation of SAPF is synchronized to the nominal power system frequency.
Once the power variation of nonlinear loads is present, the power system frequency would be deviated.
In this way, the compensation performance of SAPF would be deteriorated. To enhance the accuracy of
synchronization and calculation of reference compensation current, the adaptive frequency detection
technique for the power system frequency is proposed in this section.

Suppose the power signal through the filter sn can be expressed as

sn = A cos(nωTs + φ), n = 1, 2, 3, . . . , N (1)

where ω is the power system angular frequency, A is the amplitude, Ts is the sampling period, φ is the
phase angle, and N is the number of samples. Equation (1) can also be represented in the complex
form as

sn = czn + c∗z∗n, n = 1, 2, 3, . . . , N (2)

where c = A
2 e jφ, z = e jωTs , and * represents the complex conjugate. According to the 2nd-order

autoregressive model, the total squared error E for the signal estimation can be illustrated with the
linear combination of three successive samples in Equation (3), where x is the parameter for the
estimation [14].

E =
N∑

n=3

e(n)2 =
N∑

n=3

(xsn + sn−1 + xsn−2)
2 (3)

In addition, the transfer function of 2nd-order autoregressive model can be given by

xz2 + z + x = 0 (4)



Energies 2019, 12, 3080 4 of 14

To minimize the estimation error, the following relationship shall be met.

dE
dx

= 2
N∑

n=3

(xsn + sn−1 + xsn−2)(sn + sn−2) = 0 (5)

Then, x can be obtained as

x =

−

N∑
n=3

sn−1(sn + sn−2)

N∑
n=3

(sn + sn−2)
2

(6)

By substituting Equation (6) into Equation (4) and solving z, the power system angular frequency
ω can be calculated in Equation (7) adaptively based on the sliding window of N samples.

ω =

cos−1


N∑

n=3
(sn+sn−2)

2

2
N∑

n=3
sn−1(sn+sn−2)


Ts

(7)

2.2. Phase Synchronization

To perform the accurate nonlinear load current compensation, the phase synchronization between
the reference compensation current and the voltage source is necessary. In this paper, the dual
second-order generalized integrator phase-locked loop technique (DSOGI-PLL) is directly applied,
which is based on the second-order generalized integrator (SOGI), as depicted in Figure 2, where PI is
the proportional-integral controller. This method is more accurate than the traditional PLL technique
for the harmonic interference condition, as proven in [13]. However, the synchronization accuracy
is dependent on the power system angular frequency ω, as shown in the architecture of Figure 2.
Therefore, the estimated power system angular frequency in Equation (7) would be used to modify the
detected synchronization phase angle θ.
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To perform the accurate nonlinear load current compensation, the phase synchronization 
between the reference compensation current and the voltage source is necessary. In this paper, the 
dual second-order generalized integrator phase-locked loop technique (DSOGI-PLL) is directly 
applied, which is based on the second-order generalized integrator (SOGI), as depicted in Figure 2, 
where PI is the proportional-integral controller. This method is more accurate than the traditional 
PLL technique for the harmonic interference condition, as proven in [13]. However, the 
synchronization accuracy is dependent on the power system angular frequency ω, as shown in the 
architecture of Figure 2. Therefore, the estimated power system angular frequency in Equation (7) 
would be used to modify the detected synchronization phase angle θ. 

 
Figure 2. Block diagram of dual second-order generalized integrator phase-locked loop technique 
(DSOGI-PLL). 
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Figure 2. Block diagram of dual second-order generalized integrator phase-locked loop technique
(DSOGI-PLL).

2.3. Adaptive Linear Neural Network (ALNN)

Adaptive linear neural network (ALNN) is the single-layer neural network, where the activation
function is linear. With the linear combination of input data and corresponding coefficients (weights),
the mapping relationship between input and output can be established [15,16]. In this paper, the ALNN
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is applied to extract the reference compensation current according to the load current and detected
synchronization phase angle in Section 2.2.

For the load current ILp (p = a, b, c, which means the phase sequence), the discrete form of
the estimated current signal with the power system frequency f can be expressed by Equation (9),
where M is the estimation order representing the number of considered harmonics, θm = 2π f mnTs,
w2m−1 = Am cosφm, w2m = Am sinφm, Am and φm are the amplitude and the phase angle of the mth
harmonic, Ts is the sampling period, and n is the time index. The architecture of ALNN is depicted in
Figure 3.

ILp_n =
M∑

m=1
Am cos(2πm f nTs + φm)

=
M∑

m=1
(Am cosφm cos 2πm f nTs −Am sinφm sin 2πm f nTs)

=
M∑

m=1
(w2m−1 cosθm −w2m sinθm)

(8)

Energies 2019, 12, x FOR PEER REVIEW 5 of 14 

 

2.3. Adaptive Linear Neural Network (ALNN) 

Adaptive linear neural network (ALNN) is the single-layer neural network, where the 
activation function is linear. With the linear combination of input data and corresponding 
coefficients (weights), the mapping relationship between input and output can be established 
[15,16]. In this paper, the ALNN is applied to extract the reference compensation current according 
to the load current and detected synchronization phase angle in Section 2.2. 

For the load current ILp (p = a, b, c, which means the phase sequence), the discrete form of the 
estimated current signal with the power system frequency f can be expressed by Equation (9), 
where M is the estimation order representing the number of considered harmonics, sm fmnTπθ 2= , 

mmm Aw φcos12 =− , mmm Aw φsin2 = , Am and ϕm are the amplitude and the phase angle of the mth 
harmonic, Ts is the sampling period, and n is the time index. The architecture of ALNN is depicted 
in Figure 3. 

( )

)sincos(           

2sinsin2coscos           

)2cos(

1
212

1

1
_

m
M

m
mmm

M

m
smmsmm

M

m
msmnLp

ww

mfnTAmfnTA

mfnTAI

θθ

πφπφ

φπ

 −=

 −=

 +=

=
−

=

=

 (8) 

 
Figure 3. Architecture of the adaptive linear neural network (ALNN). 

From the architecture of Figure 3, the estimated load current signal ILp_n at time n can be 
represented by Equation (9), where [ ]TMMn wwwwW 21221  , , , , −=   and 

[ ]TMMnR θθθθ sin ,cos , ,sin ,cos 11 −−=  . 

n
T
nnLp RWI ⋅=_  (9) 



Lp_nÎ
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From the architecture of Figure 3, the estimated load current signal ILp_n at time n can be represented by
Equation (9), where Wn = [w1, w2, . . . , w2M−1, w2M]T and Rn = [cosθ1, − sinθ1, . . . , cosθM, − sinθM]T.

ILp_n = WT
n ·Rn (9)

Then, the updated weight Wn+1 including the information of amplitude and phase angle (extracted
signal) can be adaptively adjusted according to the practical load current signal ÎLp_n by the following
weight updating process.

Wn+1 = Wn +
ηenRn

RT
n Rn

(10)
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where η is the learning rate and en is the estimation error between the estimated and practical signals.
In this way, the amplitude and the phase angle of the mth harmonic can be obtained in Equation (11).

Am =
√

w2
2m−1 + w2

2m, φm = tan−1
(

w2m

w2m−1

)
(11)

2.4. Adptive Compensation

The final stage of proposed adaptive frequency-based reference compensation current control
strategy is the adaptive compensation, which determines the required reference compensation
current of SAPF and performs the DC-link voltage regulation. The block diagram of proposed
ALNN-based reference compensation current control strategy is displayed in Figure 4. In this
architecture, the maximum amplitude value of the fundamental frequency current (Apa, Apb, or Apc)
would be extracted from the load current at each phase based on the synchronized phase angle θ
obtained by the DSOGI-PLL. Then, the reference source currents I∗sa, I∗sb, and I∗sc, can be accurately
obtained by multiplying (Aavg + Adc) and the three-phase unit positive-sequence fundamental currents,
where Aavg is the average of Apa, Apb, Apc and Adc is the difference of DC-link voltage regulation
with PI controller. Then, the reference compensation currents I∗ca, I∗cb, and I∗cc can be obtained with
Equations (12)–(14) and adaptively regulated according to the load currents.

I∗ca = ILa − I∗sa (12)

I∗cb = ILb − I∗sb (13)

I∗cc = ILc − I∗sc (14)

Energies 2019, 12, x FOR PEER REVIEW 6 of 14 

 

Then, the updated weight 1+nW  including the information of amplitude and phase angle 
(extracted signal) can be adaptively adjusted according to the practical load current signal nLpI _ˆ  

by the following weight updating process. 

n
T
n

nn
nn

RR
ReWW η+=+1  (10) 

where η is the learning rate and en is the estimation error between the estimated and practical 
signals. In this way, the amplitude and the phase angle of the mth harmonic can be obtained in 
Equation (11). 

2
2

2
12 mmm wwA += − , 








=

−

−

12
21tan
m
m

m w
wφ  (11) 

2.4. Adptive Compensation 

The final stage of proposed adaptive frequency-based reference compensation current control 
strategy is the adaptive compensation, which determines the required reference compensation 
current of SAPF and performs the DC-link voltage regulation. The block diagram of proposed 
ALNN-based reference compensation current control strategy is displayed in Figure 4. In this 
architecture, the maximum amplitude value of the fundamental frequency current ( paA , pbA , or 

pcA )would be extracted from the load current at each phase based on the synchronized phase angle 

θ  obtained by the DSOGI-PLL. Then, the reference source currents *
saI , *

sbI , and *
scI , can be 

accurately obtained by multiplying (Aavg + Adc) and the three-phase unit positive-sequence 
fundamental currents, where Aavg is the average of paA , pbA , pcA  and Adc is the difference of 

DC-link voltage regulation with PI controller. Then, the reference compensation currents *
caI , *

cbI , 

and *
ccI  can be obtained with Equations (12)–(14) and adaptively regulated according to the load 

currents. 

**
saLaca III −=  (12) 

**
sbLbcb III −=  (13) 

**
scLccc III −=  (14) 

 
Figure 4. Block diagram of proposed ALNN-based reference compensation current control strategy. Figure 4. Block diagram of proposed ALNN-based reference compensation current control strategy.

3. Case Studies

To evaluate the effectiveness of proposed control strategy for SAPF, the comprehensive case
studies implemented with the HIL mechanism are performed in this section, as depicted in Figure 5.
The testing results with the traditional instantaneous reactive power compensation control technique
(p-q method) of [6], the sliding DFT, and proposed control strategy are discussed. In this experimental
system, the unbalance nonlinear load composed of a six-pulse rectifier, a Y-connected resistor–inductor
load, and the unbalanced interharmonic load connected to a converter based on the sinusoidal
pulse-width modulation control and then in series with a motor are built in the MATLAB/Simulink
model. The implemented 2-kVA SAPF hardware is based on Texas Instruments TMS320F28335
Digital Signal Processor (DSP). In the HIL mechanism, the signal extraction and control are performed
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via Advantech PCI-1720 Digital-to-Analog (D/A) Converter and PCI-1716 Analog-to-Digital (A/D)
Converter, respectively. According to IEEE Std. 519-2014, the two indices, total harmonic current
distortion (THDI) and unbalance rate (UR) listed in Equations (15) and (16), are applied for the
evaluation of SAPF compensation performance, where I1 and Irms are the fundamental component
and root-mean-squared (RMS) component of source current, Iavg is the average of three-phase source
currents Isa, Isb, and Isc, and Max(·) is the operator to obtain the maximum value.

THDI =

√
(

Irms

I1
)

2
− 1 (15)

UR =
Max(

∣∣∣Isa − Iavg
∣∣∣, ∣∣∣Isb − Iavg

∣∣∣, ∣∣∣Isc − Iavg
∣∣∣)

Iavg
× 100% (16)
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3.1. Case 1: Unbalanced Nonlinear Loads under Nominal Source Voltage

In this case, the power system is suffered from the unbalanced harmonic and interharmonic
distortion under the nominal source voltage. The SAPF is connected to activate the compensation
at 0.02 s. The experimental results without compensation, with the traditional p-q method, sliding
DFT, and proposed control strategy are displayed in Figures 6–9 and Table 1. From the testing results,
it is realized that the proposed strategy can achieve good power quality under unbalanced harmonic
distortion compared with the traditional p-q method. From Table 1, it is also found that only the
proposed control strategy can effectively reduce the harmonic distortion, which is in compliance with
the 5%-THDI maximum limit of IEEE Std. 519-2014. In this case, the compensation results of sliding
DFT would be deteriorated due to the interharmonic current, where the high frequency resolution is
required to perform the correct compensation. For the time-varying interharmonic currents in this
case, it is impractical for sliding DFT to determine the suitable frequency resolution.
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Table 1. Compensation results for case 1.

Compensation Control Method THDI UR

Without Compensation 36.73% 9.86%
Traditional p-q Method 7.31% 5.62%

Sliding DFT 11.74% 7.12%
Proposed Control Strategy 4.28% 0.02%

3.2. Case 2: Unbalanced Nonlinear Loads under Power System Frequency Deviation

In this case, the power variation of unbalanced nonlinear loads with harmonic and interharmonic
distortion is taken into account, where the power system frequency is deviated from the nominal value
60 Hz to 59.7 Hz due to the load variation and the SAPF is connected to the system at 0.02 s. From the
experimental results in Figures 10–13 and Table 2, it is realized that the proposed control strategy can
effectively perform the compensation of distorted source current via the frequency-deviation regulation
of AFDT in Section 2.1. On the contrary, the traditional p-q method would lead to the compensation
error due to the power system frequency deviation. For the sliding DFT, the frequency resolution is
dependent on the size of analysis sliding window. As a result, it is impractical for sliding DFT to detect
the power system frequency deviation by using a long-duration window. The spectral leakage would be
present for the insufficient frequency resolution (size of sliding window). Therefore, the compensation
result of sliding DFT would be deteriorated due to the power system frequency deviation.
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Table 2. Compensation results for case 2.

Compensation Control Method THDI UR

Without Compensation 36.96% 10.81%
Traditional p-q Method 7.43% 5.78%

Sliding DFT 13.75% 8.74%
Proposed Control Strategy 4.31% 0.03%

3.3. Case 3: Unbalanced Nonlinear Loads under Distorted Source Voltage

In this case, the power system is suffered from the unbalanced harmonic and interharmonic
distortion and distorted source voltage. The SAPF starts to perform the compensation at 0.02 s.
From the experimental results in Figures 14–17 and Table 3, it is realized that the proposed control
strategy can effectively perform the compensation of distorted source current, even under the condition
of distorted source voltage. This is because the positive-sequence component of source voltage can
be extracted in the proposed adaptive compensation mechanism of Figure 4. The traditional p-q
method and sliding DFT would lead to the serious compensation error since the calculation of reference
compensation current is based on the nominal source voltage.
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Table 3. Compensation results for case 3.

Compensation Control Method THDI UR

Without Compensation 35.82% 19.58%
Traditional p-q Method 22.45% 7.89%

Sliding DFT 19.37% 9.83%
Proposed Control Strategy 4.48% 0.72%

4. Conclusions

In this paper, the adaptive frequency-based reference compensation current control strategy
for SAPF is proposed. Through the AFDT, the power system frequency deviation resulted from
the power variation of unbalanced nonlinear loads can be accurately detected. The obtained power
system frequency can be used to regulate the phase synchronization of SAPF. Then, the proposed
adaptive compensation mechanism would effectively enhance the power quality since the reference
compensation current of SAPF can be accurately and adaptively obtained along with the variation of
unbalanced nonlinear loads. In addition, the compensation performance can be maintained under
the distorted source voltage due to the extraction of positive-sequence component in the proposed
adaptive compensation mechanism. Compared with the traditional p-q method and sliding DFT,
the compensation performance of proposed control strategy is superior to make the total harmonic
current distortion and unbalance rate complied with the specification limits of IEEE Std. 519-2014.
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Abbreviations and Symbols

SAPF shunt active power filter
ALNN adaptive linear neural network
DC direct current
HIL hardware-in-the-loop
AFDT adaptive frequency detection technique
DSOGI-PLL dual second-order generalized integrator phase-locked loop
SOGI Second-order generalized integrator
PI proportional-integral
DSP Digital Signal Processor
D/A Digital-to-Analog
A/D Analog-to-Digital
THDI total harmonic current distortion
UR unbalance rate
RMS root-mean-squared
V voltage
I current
A amplitude
E, e error
Ts sampling period
N number of samples
Max maximum
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ϕ phase angle
ω angular frequency
s power signal
M estimation order of ALNN
W, w weight of ALNN
η learning rate
R reference signal
Subscripts
L load
s source component
c compensation component
dc direct current component
a, b, c phase a, b, c component
avg average component
rms RMS component
p phase
n time index
m index of estimation order
Superscripts
T transpose
* complex conjugate for AFDT, reference component
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