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Abstract: The energy transition from fossil fuels to carbon-free sources will be a big challenge in
the coming decades. In this context, the long-term prediction of energy demand plays a key role
in planning energy infrastructures and in adopting economic and energy policies. In this article,
we aimed to forecast energy demand for Spain, mainly employing econometrics techniques. From
information obtained from institutional databases, energy demand was decomposed into many factors
and economy-related activity sectors, obtaining a set of disaggregated sequences of time-dependent
values. Using time-series techniques, a long-term prediction was then obtained for each component.
Finally, every element was aggregated to obtain the final long-term energy demand forecast. For the
year 2030, an energy demand equivalent to 82 million tons of oil was forecast. Due to improvements in
energy efficiency in the post-crisis period, a decoupling of economy and energy demand was obtained,
with a 30% decrease in energy intensity for the period 2005–2030. World future scenarios show a
significant increase in energy demand due to human development of less developed economies. For
Spain, our research concluded that energy demand will remain stable in the next decade, despite the
foreseen 2% annual growth of the nation’s economy. Despite the enormous energy concentration and
density of fossil fuels, it will not be affordable to use them to supply energy demand in the future.
The consolidation of renewable energies and increasing energy efficiency is the only way to satisfy
the planet’s energy needs.

Keywords: long-term energy demand; energy demand forecasting; energy transition;
econometric model

1. Introduction

Modern societies face the challenge of transitioning to a new energy model that permits continuing
fulfilment of increasing energy demand while meeting the requirements presented for climate change
and sustainability, which can be summarized in the so-called energy trilemma [1] depicted in Figure 1.
Industry and governments have to simultaneously pursue energy security (reliability of energy
infrastructure, and ability of energy providers to meet current and future demand), energy equity
(accessibility and affordability of energy supply across the population), and environmental sustainability
(energy efficiency and the development of energy supplies from renewable and other low-carbon
sources).

The commitments of the European Union, derived from the Paris Agreement, established a goal
of reducing emissions between 80% and 95% by 2050, compared to 1990 levels [2]. This necessarily
leads to the electrification of most of the energy demand, which would cause the demand for electricity
to approximately double what it is currently before the year 2060 [3].

In this context, the prediction of energy demand plays a key role in planning energy infrastructures
and in adopting economic and energy policies. Besides institutional and national studies, many
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academic works have addressed this problem, adopting global [4], regional [5], national [6,7], or even
local [8] perspectives.

Energy forecasting has been addressed in the literature, mainly considering three different
prediction horizons: short-term (an hour to a week) [9,10], mid-term (a month to 5 years) [11], and
long-term (5 to 20 years) [12]. Prediction methods can be additionally categorized into two types:
data-driven methods, where the relationship between the energy demand and its causal variables is
automatically discovered using statistical procedures [13]; and model-driven, where this relationship
has been previously established [14].

Data-driven methods can be classified as autoregressive (those using only historical data to make
predictions) and causal (those which also consider external variables influencing energy demand, such
as temperature, economy, etc.).

Once the variables used to make predictions (either only past values or past and external values)
have been established, different data-driven forecasting techniques have also been suggested in the
literature, such as artificial neural networks [10], fuzzy logic [15], time-series analysis [16], regression
models [6], support vector machines [17], or genetic algorithms [18].

By contrast, model-driven predictions can be made using system dynamics [19], or, more often,
econometric models [20,21]. For large horizons (long-term predictions), data-driven methods are more
likely to fail, as the forecasting error usually increases with the length of the prediction horizon. Thus,
econometric models are the most commonly employed technique [22]. Ghalehkhondabi et al. [23] have
made an overview of general energy demand forecasting methods.

Econometric models have been employed to forecast energy demand for regions as diverse as, for
instance, China [24], South Korea [25], Mexico [26], United Kingdom [27], South Africa [28], United
States [29], or Europe [30].

Some other works have also addressed long-term energy demand prediction for Spain, as it
is an active country in the renewable energy market [31]. Most of them have addressed partial
aspects [32–37], although research from a more general perspective can be found in References [38,39].
However, these two general approaches focus only on electricity demand and not overall energy
consumption, which is the key factor determining CO2 emissions.
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Figure 1. Energy trilemma.

In our research, the goal was to obtain a long-term forecast (year 2030) of the Spanish total energy
demand. As was suggested by the literature review described in the previous paragraphs, the approach
of this paper used econometrics techniques. From information obtained in institutional databases,
energy demand was decomposed into many factors and economy-related activity sectors, obtaining a
set of disaggregated sequences of time-dependent values. Using time-series techniques, a long-term
prediction was then obtained for each component. Finally, every element was aggregated to obtain the
final long-term energy demand forecast.
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2. Materials and Methods

2.1. Data Sources

The data used in this paper can be found in the Eurostat (European Statistical Office) databases [40].
More specifically, for this research, population [41], economic [42], energy [43], and climate change [44]
magnitudes were considered for Spain for the period 1990–2015.

The energy magnitudes have been disaggregated into n = 30 activity sectors (level 1), as it is
detailed in Table 1.

Table 1. Sectors of activity considered for energy demand disaggregation.

Sector Level 1 Level 2 Level 3

1 Agriculture and Forestry A: Agriculture and
Forestry

A: Agriculture and
Forestry

2 Chemical and Petrochemical

I: Industry I: Industry

3 Iron and Steel
4 Non-Metallic Minerals
5 Wood and Wood Products
6 Construction
7 Paper, Pulp and Print
8 Food and Tobacco
9 Textile and Leather

10 Machinery
11 Transport Equipment
12 Non-Specified (Industry)
13 Mining and Quarrying
14 Others (Industry)

15 Hotels, Restaurants

S: Services S: Services

16 Health and Social Action Sector
17 Education, Research
18 Trade (Wholesale and Retail)
19 Public and Private Offices
20 Others (Services)

21 Cars

Tp: Passenger Transport

T: Transport

22 Buses
23 Rail Transport of Passengers
24 Others in Passenger Transport

25 Trucks and Light Vehicles
Tf: Freight Transport26 Inland Waterways

27 Rail Transport of Goods

28 Others (Transport) To: Others (Transport)

29 Occupied Dwellings R: Residential R: Residential

30 Others O: Others O: Others

Some medium (level 2) or coarse (level 3) partial disaggregation has also been employed in
some representations through the article. The structure of energy demand disaggregation is depicted
in Figure 2.
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2.2. The Kaya Identity

In energy transition scenarios, the emission of the greenhouse gas carbon dioxide is one of the
most relevant variables to be considered. For that reason, in the last decade of the 20th century, the
Kaya identity [45] was proposed as a method to decompose the influence of different elements on CO2

emissions. This identity can be formulated as:

C = P·Gp·Ie·Fe (1)

where C is the global CO2 emissions due to human activities; P is the world’s total population; Gp is
defined as G/P, that is, the world’s gross domestic product (GDP: G) per person (P); Ie is the energy
intensity, defined as E/G, with E being the global energy consumption; and Fe is the carbon footprint
of energy, defined as F/E. Substituting these definitions into Equation (1), the Kaya identity can also
be formulated as:

C = P·
G
P
·
E
G
·
F
E

(2)

The increase of the population (P) and the development of the economy (Gp) are the main elements
that identify the energy needs of a society. Following the Kaya identity, future increase of population
and economic growth can be compensated through an improvement in energy efficiency (lower
values of Ie) and the decarbonization of the energy consumed (lower values of Fe). The reduction
of greenhouse gas emissions justifies actions aimed at reducing these two factors. In the context of
this paper, aimed at energy demand forecasting, only the first three factors of the Kaya identity were
considered, while the fourth (Fe) should play a key role in energy production policies.

2.3. Laspeyres Decomposition

Most of the member countries of the OECD (Organisation for Economic Co-operation and
Development) have established energy saving and efficiency objectives in their energy and
environmental policies. However, there is a big challenge in measuring these values and their progress
over the time. The problem becomes even more complex if there are economic changes and, jointly,
improvements in energy efficiency. To tackle this issue, several decomposition methods have been
proposed [46]. By far the most employed techniques in energy studies are the Laspeyres method [47–49]
and the logarithmic mean Divisia index (LMDI) [50,51], due to their ease of understanding and their
advantages over other competing indices (Fischer [52] or Paasche [53]).

To obtain the energy demand forecast, the following procedure (as depicted in Figure 3) was
employed:

1. Using a decomposition method, the raw economic data (1990–2015) were disaggregated into
several economic sectors and, for every sector, into three factors (activity, structure, and intensity),
which will be defined below.
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2. The time-series obtained for every sector and factor was used to forecast its values (2030).
The forecasted values were then aggregated to obtain a prediction of the energy demand.
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Let us call n the number of economic sectors of a certain economy. At a given time, t, we will use
the following definitions:

• A(i)(t): level of activity of the i-th sector, which is measured by the gross value
added for the industry and services sectors, by population for residential consumption,
and by passenger-kilometers and ton-kilometers for the sectors of passenger and freight
transport, respectively;

• E(i)(t): energy consumption of the i-th sector;
• A(t): total level of activity, considering all the sectors;

• S(i)(t) = A(i)(t)/A(t): weight of the i-th sector in the structure of the economy;

• I(i)(t) = E(i)(t)/A(i)(t): energy intensity of the i-th sector;

Based on these definitions, it can be written that:

E(i)(t) = A(t)·
A(i)(t)
A(t)

·
E(i)(t)

A(i)(t)
= A(t)·S(i)(t)·I(i)(t). (3)

The change of energy consumption due to a change in the total level of activity for a period of
time between t0 and T can be expressed, as shown in Appendix A, as:

∆E(i)
A = A(T)·S(i)(t0)·I(i)(t0) − E(i)(t0) + ε

(i)
A . (4)

Analogously, the other two components are defined as:

∆E(i)
S = A(t0)·S(i)(T)·I(i)(t0) − E(i)(t0) + ε

(i)
S ;∆E(i)

I = A(t0)·S(i)(t0)·I(i)(T) − E(i)(t0) + ε
(i)
I . (5)

Considering now the n sectors of the economy, we obtain:

∆E =
n∑

i=1

∆E(i) =
n∑

i=1

(
∆E(i)

A + ∆E(i)
S + ∆E(i)

I

)
=

n∑
i=1

∆E(i)
A +

n∑
i=1

∆E(i)
S +

n∑
i=1

∆E(i)
I . (6)

For the activity component, it can be written, as shown in Appendix A, that:

∆EA =

AT

n∑
i=1

S(i)
0 ·I

(i)
0

− E0 + εA. (7)
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Analogously, the other two components are:

∆ES =

A0

n∑
i=1

S(i)
T ·I

(i)
0

− E0 + εS; ∆EI =

A0

n∑
i=1

S(i)
0 ·I

(i)
T

− E0 + εI. (8)

Finally, the increasing energy demand is decomposed as:

∆E = ∆EA + ∆ES + ∆EI. (9)

This expression is called the additive decomposition. It is sometimes preferred to use the ratio of
increasing energy demand, RE, instead of the direct value of this increase (∆E).

RE ≡
ET

E0
. (10)

In the common case where ∆EA, ∆ES, ∆EI � E0, the increase of energy demand is multiplicatively
decomposed, as shown in Appendix A, as:

RE ≈ REA·RES·REI =
AT

∑n
i=1 S(i)

0 ·I
(i)
0

E0
·
A0

∑n
i=1 S(i)

T ·I
(i)
0

E0
·
A0

∑n
i=1 S(i)

0 ·I
(i)
T

E0
+ ε′. (11)

2.4. LMDI Decomposition

In logarithmic mean Divisia index (LMDI) decomposition, the change of energy consumption due
to a change in the total level of activity, for a period of time between t0 and T, can be expressed, as
detailed in Appendix B, as:

∆E(i)
A ≡ E(i)

A (T) − E(i)
A (t0) = E(i)(t∗)·

{
Ln

[
A(i)(T)

]
− Ln

[
A(i)(t0)

]}
+ ε

(i)
A (12)

where E(i)(t∗) is an approximate intermediate value of E(i) in the interval [t0, T]. LMDI decomposition
uses for the approximation the logarithmic mean, which is:

E(i)(t∗) = L
[
E(i)(T), E(i)(t0)

]
≡

E(i)(T) − E(i)(t0)

Ln
[
E(i)(T)

]
− Ln

[
E(i)(t0)

] . (13)

Thus, as shown in Appendix B:

∆EA =

 n∑
i=1

L
(
E(i)

T , E(i)
0

)
·Ln

A(i)
T

A(i)
0


+ εA. (14)

Analogously, the other two components are:

∆ES =

 n∑
i=1

L
(
E(i)

T , E(i)
0

)
·Ln

S(i)
T

S(i)
0


+ εS; ∆EI =

 n∑
i=1

L
(
E(i)

T , E(i)
0

)
·Ln

 I(i)T

I(i)0


+ εI. (15)

LMDI decomposition can also be expressed in the multiplicative form as:

RE ≈ REA·RES·REI. (16)

Laspeyres and LDMI factorial decomposition methods are summarized in Table 2.
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Table 2. Laspeyres and logarithmic mean Divisia index (LMDI) factorial decomposition.

Component Symbol Laspeyres LMDI

Activity ∆EA

[
AT

n∑
i=1

S(i)0 ·I
(i)
0

]
− E0 + εA

[
n∑

i=1
L
(
E(i)

T , E(i)
0

)
·Ln

(
A(i)

T

A(i)
0

)]
+ εA

Structure ∆ES

[
A0

n∑
i=1

S(i)T ·I
(i)
0

]
− E0 + εS

[
n∑

i=1
L
(
E(i)

T , E(i)
0

)
·Ln

(
S(i)

T

S(i)
0

)]
+ εS

Intensity ∆EI

[
A0

n∑
i=1

S(i)0 ·I
(i)
T

]
− E0 + εI

[
n∑

i=1
L
(
E(i)

T , E(i)
0

)
·Ln

(
I(i)T

I(i)0

)]
+ εI

2.5. Time-Series Forecasting

To predict future values of a time-dependent magnitude (activity, structure, or intensity for a
certain sector), time-series forecasting models were employed. Some authors [54] have classified these
models according to the estimation period: short-, medium-, or long-term.

In shorter terms, prediction of seasonal behaviors, such as climate or labor market variations, has to
be considered. However, for long-term forecasting, only time-series trends are really relevant. For this
reason, linear regression (or linear trend) [55] is one of the most employed forecasting techniques.

Let us denote xi the i-th value of a certain variable (or magnitude) x. This value has been obtained
at time ti, so N pairs (ti, xi) are available. The linear regression method obtains a straight line in the
(t, x) plane, defined as x = m t + b, where m is the slope of the line and b is the interception point with
the vertical line. The values of m̂ and b̂ are estimated to minimize the root mean squared error (RMSE),
defined as:

RMSE =

√√√
1
n

N∑
i=1

[
xi −

(
m̂ ti + b̂

)]2
. (17)

The resulting line parameters are:

m̂ =

∑N
i=1

(
ti − t

)
(xi − x)∑N

i=1

(
ti − t

)2 ; b̂ = x− m̂ t. (18)

A more advanced prediction technique is exponential smoothing [56], where, to forecast new
values, the more recent data have greater weight than the older ones. In this method, the prediction x̂t

at a certain time t is obtained as:
x̂t = α·xt−1 + (1− α)x̂t−1, (19)

where 0 ≤ α ≤ 1.
If the time series has a trend, a double exponential smoothing (Holt–Winters model) is usually

preferred [57], which is formulated as:

x̂t = α·xt−1 + (1− α)(x̂t−1 + m̂t−1); m̂t = β·(x̂t − x̂t−1) + (1− β)m̂t−1, (20)

where α is the data smoothing constant, 0 ≤ α ≤ 1, and β is the trend smoothing constant, 0 ≤ β ≤ 1.
These parameters are also estimated, minimizing the RMSE, defined now as:

RMSE =

√√√
1
n

N∑
i=1

(xi − x̂i)
2. (21)

As this paper was focused on long-term prediction, there was no need for seasonal or short-term
details. Moreover, as complex models tend to overfit available data, more sophisticated predictors
were avoided.
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3. Results

3.1. Evolution of Main Carbon-Related Magnitudes

Human and economic activity is related to energy consumption and carbon dioxide emissions.
In Figure 4, we see the evolution of four key parameters for the period 1990–2015: population,
gross domestic product (GDP), primary energy demand, and CO2 emissions. When energy comes
from different sources (not just electricity) it is usually expressed in tons of oil equivalent (toe;
1 toe = 11.63 MWh).Energies 2019, 12, x FOR PEER REVIEW 8 of 22 
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Figure 4. Magnitudes (absolute values) of the Kaya identity for Spain (1990–2015): (a) population;
(b) gross domestic product; (c) primary energy demand; (d) CO2 emissions.

Taking values in 1990 as the baseline, the evolution of the four previous magnitudes can be
compared in Figure 5 Between 1990 and 2005, a high rate of economic growth (GDP) can be seen: 2.7%
in Spain vs. 3.1% in the European Union (EU). By contrast, in the period 2005–2015, the years of crisis
and subsequent recovery can clearly be observed, with a GDP increase of 0.5% in Spain vs. 1% in EU).
The impact on primary energy consumption was 3.2% and −1.7% in each period. All these percentage
values correspond to the compound annual growth rate (CAGR).
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During these 25 years, the population in Europe grew at 0.3% (CAGR), whereas Spain presented a
strong growth of 0.7%. While the population of Europe grew 7% in this period in accumulated terms,
Spain reached an almost 20% increase, a value consistent with other not fully-developed countries and,
therefore, with greater energy requirements.

These values can be expressed in terms of the Kaya identity factors (Equation (1)), as seen in
Table 3.

Table 3. Factors of the Kaya identity for Spain (baseline: 1990).

Factor Symbol 1990 1995 2000 2005 2010 2015

Population P 1.00 1.02 1.04 1.11 1.20 1.20
GDP per person Gp 1.00 1.03 1.23 1.34 1.33 1.32
Energy Intensity Ie 1.00 1.08 1.07 1.07 0.91 0.85

Carbon footprint of energy Fe 1.00 1.00 0.99 1.01 0.87 0.89
CO2 emissions C 1.00 1.17 1.36 1.62 1.25 1.20

The emissions produced between 1990 and 2015 grew by 20%, mainly due to the growth of the
population by the same proportion, 20%, in addition to an increase of the GDP per person of 32%,
which was compensated with improvements in the energy intensity by 15% and in the carbon intensity
by 11%.

The process of tertiarization describes the phenomenon of evolving from an economy centered on
agriculture, livestock, and fisheries to an economy in which the services sector has the greatest role.
Every society begins first with a process of urbanization and industrialization, which is followed by
the development of tourism and public services, as well as the incorporation of women into the labor
market. This presence of the service sector in the economy translates into jobs, reaching 76% of the
active population in Spain.

The relative weight of this sector in GDP, measured through gross value added (GVA) at basic
prices, also reached a similar proportion, as depicted in Figure 6. By 2015, at 2015’s prices, the industrial
sector represented 33.2% of the GVA, compared to 64.6% for the services sector and 2.2% for agriculture.

Energies 2019, 12, x FOR PEER REVIEW 9 of 22 

 

by the development of tourism and public services, as well as the incorporation of women into the 

labor market. This presence of the service sector in the economy translates into jobs, reaching 76% of 

the active population in Spain. 

The relative weight of this sector in GDP, measured through gross value added (GVA) at basic 

prices, also reached a similar proportion, as depicted in Figure 6. By 2015, at 2015's prices, the 

industrial sector represented 33.2% of the GVA, compared to 64.6% for the services sector and 2.2% 

for agriculture. 

 

Figure 6. Gross value added for Spain (1990–2015). Units: billions of euros at 2015 prices. 

The energy consumed by sector is depicted in Figure 7. In this graph, only the energy demand 

directly related to the economy has been included, that is, the activity sectors 1 to 20, as they are 

identified in Table 1. 

Relating the energy consumed by sector, shown in Figure 7, to its economic contribution, shown 

in Figure 6, shows that the tertiary sector is less intensive in energy consumption (measured in Mtoe 

per billion of euro in 2015): 13.9 for services vs. 51.1 for the industry sector and 92.0 for the agricultural 

and forestry sector. 

 

Figure 7. Energy demand (Mtoes) for Spain (1990–2015): Industry, Services, and Agriculture and Forestry. 

3.2. Energy Demand Decomposition 

We next applied the Laspeyres and LDMI factorial decomposition methods (summarized in Table 2) 

to the data depicted in Figure 5 (energy) and Figure 6 (activity). The results are shown in Figure 8. 

It can be seen that both methods offered quite similar results. As the Laspeyres decomposition 

is easier to understand, it has been used in the rest of the paper. A more detailed analysis of the results 

obtained employing the Laspeyres method is depicted in Figure 9. 

Figure 6. Gross value added for Spain (1990–2015). Units: billions of euros at 2015 prices.

The energy consumed by sector is depicted in Figure 7. In this graph, only the energy demand
directly related to the economy has been included, that is, the activity sectors 1 to 20, as they are
identified in Table 1.

Relating the energy consumed by sector, shown in Figure 7, to its economic contribution, shown
in Figure 6, shows that the tertiary sector is less intensive in energy consumption (measured in Mtoe
per billion of euro in 2015): 13.9 for services vs. 51.1 for the industry sector and 92.0 for the agricultural
and forestry sector.
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3.2. Energy Demand Decomposition

We next applied the Laspeyres and LDMI factorial decomposition methods (summarized in
Table 2) to the data depicted in Figure 5 (energy) and Figure 6 (activity). The results are shown
in Figure 8.Energies 2019, 12, x FOR PEER REVIEW 10 of 22 
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It can be seen that both methods offered quite similar results. As the Laspeyres decomposition is
easier to understand, it has been used in the rest of the paper. A more detailed analysis of the results
obtained employing the Laspeyres method is depicted in Figure 9.
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A decomposition of the energy demand showed the drivers behind the initial variation observed.
The variation in energy demand (from 25.3 Mtoes in 1990 to 31.2 in 2015) was explained by an increase
(11.7 Mtoes) in the economic activity (A), partially compensated (−2.5 Mtoes) by the structural change
from industrial to tertiary economy (S), and a decreasing (−2.4 Mtoes) in intensity or energy efficiency
(I).

Following techno-economic factors, it was possible to make an analysis of the past variation in
Spain. Following the Annex XIV, part 1 of the Energy Efficiency Directive [58]: “In sectors where
energy consumption remains stable or is growing, Member States shall analyze the reasons for it and
attach their appraisal to the estimates”.

The activity effect is the measure of value added variation, very much linked to the economic
setting. Since 1990, it has been the main effect that explains the variation, shown in Figure 9, of final
energy growth. The economic activity trend was linked to the energy demand with a positive elasticity
until the appearance of the recession period. Structural changes represent internal evolution with
different energy intensities; the evolution of individual branches represents different global energy
needs, and they did not grow at the same rate. The energy efficiency depended on technological
improvements, fuel substitution, and highest output per unit.

Let us now consider the Laspeyres multiplicative decomposition of energy demand, as depicted
in Figure 8. A demand growth of 23% over 1990 was justified by a 50% growth in gross value added
(GVA), a −10% reduction due to a structural change in economy (variations of weights between
industry, services, and agriculture), and a −10% improvement in energy efficiency or energy use per
economic unit.

Around the year 2005, with the economic crisis, an inflection point was seen that invited a more
detailed analysis considering two periods: pre-crisis (1990–2005) and post-crisis (2005–2015). Figure 10
shows the results of that analysis, where a pre-crisis growth of energy demand can be seen, mainly
based on the positive economic evolution of the country, followed by a post-crisis energy demand
decrease, based primarily on a higher energy efficiency (intensity), and secondarily on the tertiarization
of the economy (change of economy structure).
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the post-crisis (2005–2015) periods.

Figure 10 shows a different decomposition in both periods. In the second one, due to the crisis,
there was a lower demand for energy in all branches of activity, but the contribution of the construction
sector was particularly negative. After the crisis, Spain significantly reduced its energy requirements
with an improvement of energy efficiency, reinforced by variation in structure branches with different
energy intensity compositions, also reducing energy needs.
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3.3. Population and Aggregated GDP Forecasting

Projections of the United Nations [59,60] estimate for Spain in the year 2030 a low scenario of
44.80 million inhabitants (−0.24%) against a high scenario of 47.37 million inhabitants (+0.18%), as
depicted in Figure 11, similar predictions to those of the Spanish National Institute of Statistics [61],
which forecast 45.89 million inhabitants, and which could be taken as a central and flat value used to
compute the evolution of future energy demand.
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Along with population forecasts, to make a projection of long-term energy demand, it is also
essential to analyze the growth of the economy. As shown in Table 3, these two magnitudes (population
and economy) have been the determining factors in the growth of CO2 emissions in Spain, having to
be compensated with the improvement of energy and carbon intensity.

Regarding GDP growth, projections by the European Commission to 2030 [62] and the OECD [63]
forecast the GDP growth of Spain at a 1.9% compound annual growth rate (CAGR). On the other hand,
similar results (depicted in Figure 12) were obtained using the previously described time-series models.Energies 2019, 12, x FOR PEER REVIEW 12 of 22 
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Table 4 summarizes the total growth (% ∆) and the CAGR predicted using three time-series
forecasting methods. The 2% GDP growth (CAGR) obtained using a linear regression time-series
predictor was the same as the forecast published in a recent report driven by the Spanish Government [1].
This value is also very similar to the 1.9% EU and OECD predictions. For these reasons, linear regression
was employed to make time-series predictions in the following sections of the paper.
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Table 4. Growth of GDP for Spain as predicted for several time-series methods.

Time Series Predictor % CAGR
1990/2005

% CAGR
2005/2015

% CAGR
1990/2015

% CAGR
2015/2030

% ∆

1990/2015
% ∆

2015/2030

Linear regression 2.7% 0.5% 1.8% 2.0% 58.1% 34.9%
Exponential
smoothing 2.7% 0.5% 1.8% 0.2% 58.1% 2.9%

Holt-Winters 2.7% 0.5% 1.8% 1.1% 58.1% 17.9%

3.4. Energy Demand Forecasting

To forecast the energy demand, the procedure described in Figure 3 was followed. The final
energy demand was disaggregated into the n = 30 level-1 components described in Figure 2 and
Table 1. Later, for the sake of representation, sectors 1 to 20 have been grouped into level-2 components
(agriculture and forestry, industry and services).

The results are shown in Figure 13, where it can be seen that the energy demand of the activities
related to transport represented the largest share of 2015 (42%), while the energy supplied to Industry,
Services, and Agriculture represented 39%, and residential activities accounted for 18%.
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Figure 13. Disaggregation of final energy (Mtoe) for Spain. Inner: 1990; middle: 2015; outer: 2030
(forecast).

For factor decomposition, the Laspeyres method (Equations (9) and (11)) was employed because,
as was shown earlier, it offered very similar results to LMDI and it is easier to understand. Thus, each
of the n = 30 activity sectors was decomposed into f = 3 factors, obtaining a total of m = n· f = 30·3 =

90 time-series.
To obtain the 2030 horizon forecast for any of the m = 90 disaggregated time series, a linear

regression method was then employed, because, as shown previously, it offered the most accurate
predictions in population and GDP forecasts.

The results for the five most energy-demanding level-2 components (as described in Figure 2) are
summarized in Figure 14.
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Finally, in the third and last step of the proposed methodology (Figure 3), the m = 90 forecasted
values were aggregated to obtain a prediction of the final energy demand. The results are depicted in
Figure 15, where the level-2 components are also shown.
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4. Discussion

In Figure 16, the final energy demand (red line) and GDP (blue line) are compared. They show a
coupled evolution in the pre-crisis period (1990–2005). However, in the post-crisis scenario (2005–2030),
they behave in an uncoupled way due to increasing energy efficiency, depicted in the graph by
decreasing energy intensity (green line).
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Figure 16. Final energy demand (Mtoe), GDP (T€: trillions of €), and energy intensity (toe/M€).

The energy intensity had a value of 85.9 toe/M€ in 1990, it was slightly flat till 2005, and decreased
to a value of 74.4 in 2015. In Spain, energy efficiency is driven by the European Directive on Energy
Efficiency [58] and its transposition into the Spanish legal system. Energy intensity was reduced in
Spain by 18.4% between 2000 and 2015, mainly in the post-crisis period, reaching recent reductions
of −0.6% in 2016 and −5.0% in 2017. Projecting this trend, the energy intensity will reach a value of
59.8 toe/M€ in 2030.

Some other works have also addressed long-term energy demand prediction for Spain. The results
of the present paper were compatible with the findings in Reference [38], which used a similar
methodological approach. However, our approach had three main improvements: (a) it employed data
spans to 2015 (instead of 2012), gaining a more precise overlook of the post-crisis period; (b) predictions
involved the whole energy demand (and not only electricity), obtaining a more comprehensive view;
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and (c) through the Kaya identity, it was easier to obtain CO2 emissions, as they depend on the total
energy demand.

The results presented in Reference [39], using an econometric model similar to our approach,
were also compatible with our findings, confirming the post-crisis decoupling of economy and energy
demand due to improvements in energy efficiency. However, our research presented three advantages:
(a) it used a more detailed and precise disaggregation; (b) predictions involved the whole energy
demand (and not only electricity); and (c) CO2 emissions were more easily derived.

Energy is essential for the normal functioning of modern societies, although excessive energy
consumption becomes a major problem. The energy resources of the planet have to be consumed in a
rational way. Energy industry planners and policy makers need accurate tools for prediction.

The world needs energy to keep developing, with more people accessing better life conditions.
Energy demand is closely related to the prosperity of people and the competitiveness of economies,
which can be measured by the Human Development Index (HDI) [64]. Their relationship is plotted in
Figure 17.
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5. Conclusions

The forecasting of energy demand is a key issue for making decisions on future investment
needs, and also for monitoring energy policy objectives, both for the reduction of CO2 emissions
and the improvement of energy efficiency. Knowledge of the evolution of demand is also the
appropriate way to establish alternative plans to correct our course towards our goals and to carry out
permanent monitoring.

Our methodological contribution offers a complement to both traditional and data-driven
prediction techniques. The possibility of making an individualized projection for each explanatory
key parameter separately improves the observability of each effect and trend in a method of “energy
forecast by factorial decomposition.” To the extent that each effect maintains its own trends of activity,
efficiency, and structural changes separately, different forecasting techniques have been applied and
more accurate predictions have been obtained.

The results found in this paper forecast an energy demand in Spain of 82 millions of tons of oil
equivalent for the year 2030. Due to improvements in energy efficiency in the post-crisis period, a
decoupling of economy and energy demand has been obtained, with a 30% decrease in energy intensity
for the period 2005–2030.

In the coming years, energy demand will continue to grow due to the increasing population
and economic development. World future scenarios show a significant increase in energy demand
due to the human development of less developed economies. For Spain, our research concluded that
energy demand will remain stable in the next decade, despite the foreseen 2% annual growth of its



Energies 2019, 12, 3095 17 of 23

economy. The factorial decomposition methodology used through the paper showed that it is possible
to decouple economic growth and energy demand via improved energy efficiency.

Finally, from the energy offer perspective, in the future it will not be affordable to supply energy
demand using fossil fuels. Despite their enormous energy concentration and density, they represent
the waste of a stored energy reservoir to supply the needs of a few moments in humankind history.
The consolidation of renewable energies and increasing energy efficiency will reduce future need of
fossil fuels.
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R.S.-D., J.L. and J.B.
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Appendix A

The equations defining Laspeyres decomposition can be obtained from (3). Taking derivatives,

dE(i)(t) = S(i)(t)·I(i)(t)·d[A(t)] + A(t)·d
[
S(i)(t)

]
·I(i)(t) + A(t)·S(i)(t)·d

[
I(i)(t)

]
. (A1)

That is, the change of energy consumption is due to three components: change in the total level of
activity; change in the structure of the economy; and change in the energy intensity. This result can be
written as:

dE(i)(t) = dE(i)
A (t) + dE(i)

S (t) + dE(i)
I (t). (A2)

Let us now consider any of these components, for instance the activity component. In this case:

dE(i)
A (t) ≡ S(i)(t)·I(i)(t)·d[A(t)]. (A3)

The change of energy consumption due to a change in the total level of activity, for a period of
time between t0 and T, can be expressed as:

∆E(i)
A ≡ E(i)

A (T) − E(i)
A (t0) ≈ S(i)(t∗)·I(i)(t∗)·[A(T) −A(t0)]. (A4)

∆E(i)
A = S(i)(t∗)·I(i)(t∗)·[A(T) −A(t0)] + ε

(i)
A . (A5)

∆E(i)
A = S(i)(t∗)·I(i)(t∗)·∆A + ε

(i)
A , (A6)

where ε(i)A summarizes the approximation errors for the total level of activity of the i-th sector; and
t∗ is an approximate intermediate time in the interval [t0, T]. Laspeyres Decomposition uses the
approximation t∗ = t0, so

∆E(i)
A = S(i)(t0)·I(i)(t0)·∆A + ε

(i)
A = S(i)(t0)·I(i)(t0)·[A(T) −A(t0)] + ε

(i)
A . (A7)

∆E(i)
A = A(T)·S(i)(t0)·I(i)(t0) −A(t0)·S(i)(t0)·I(i)(t0) + ε

(i)
A . (A8)

∆E(i)
A = A(T)·S(i)(t0)·I(i)(t0) − E(i)(t0) + ε

(i)
A . (A9)

Analogously, the other two components are defined as:

∆E(i)
S = A(t0)·S(i)(T)·I(i)(t0) − E(i)(t0) + ε

(i)
S ;

∆E(i)
I = A(t0)·S(i)(t0)·I(i)(T) − E(i)(t0) + ε

(i)
I .

(A10)
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For the activity component in (6) it can be written that

∆EA ≡

n∑
i=1

∆E(i)
A =

n∑
i=1

[
A(T)·S(i)(t0)·I(i)(t0) − E(i)(t0) + ε

(i)
A

]
. (A11)

∆EA =
n∑

i=1

A(T)·S(i)(t0)·I(i)(t0) −
n∑

i=1

E(i)(t0) +
n∑

i=1

ε
(i)
A . (A12)

Calling

εA =
n∑

i=1

ε
(i)
A , (A13)

it can be written that

∆EA =

A(T)
n∑

i=1

S(i)(t0)·I(i)(t0)

− E(t0) + εA, (A14)

or more compactly,

∆EA =

AT

n∑
i=1

S(i)
0 ·I

(i)
0

− E0 + εA. (A15)

Analogously, the other two components are

∆ES =

A0

n∑
i=1

S(i)
T ·I

(i)
0

− E0 + εS; ∆EI =

A0

n∑
i=1

S(i)
0 ·I

(i)
T

− E0 + εI. (A16)

Finally, the increasing of energy demand is decomposed as

∆E = ∆EA + ∆ES + ∆EI (A17)

Let us now consider the ratio of energy increasing demand RE as it is expressed in (1010). For a
change in the activity component it can be written that

REA =
EA(T)
E(t0)

=
E(t0) + ∆EA

E(t0)
=

E0 + ∆EA
E0

. (A18)

Analogously, the other two components are

RES ≡
ES(T)
E(t0)

=
E0 + ∆ES

E0
; REI ≡

EI(T)
E(t0)

=
E0 + ∆EI

E0
. (A19)

The product of the three decomposed factors is

REA·RES·REI =
E0 + ∆EA

E0
·
E0 + ∆ES

E0
·
E0 + ∆EI

E0
=

(
1 +

∆EA
E0

)(
1 +

∆ES
E0

)(
1 +

∆EI

E0

)
. (A20)

REA·RES·REI = 1 +
∆EA
E0

+
∆ES
E0

+
∆EA
E0

∆ES
E0

+
∆EI

E0
+

∆EA
E0

∆EI

E0
+

∆ES
E0

∆EI

E0
+

∆EA
E0

∆ES
E0

∆EI

E0
. (A21)

In the common case where ∆EA, ∆ES, ∆EI � E0

REA·RES·REI ≈ 1 +
∆EA
E0

+
∆ES
E0

+
∆EI

E0
=

E0 + ∆EA + ∆ES + ∆EI

E0
. (A22)
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Recalling Equation (9) it can be written that

REA·RES·REI ≈
E0 + ∆E

E0
=

ET

E0
= RE. (A23)

For the activity component, let us substitute Equation (7) in Equation (A18)

REA =
E0 +

[
AT

∑n
i=1 S(i)

0 ·I
(i)
0

]
− E0 + εA

E0
=

AT
∑n

i=1 S(i)
0 ·I

(i)
0

E0
+ ε′A. (A24)

Analogously, the other two components are

RES =
A0

∑n
i=1 S(i)

T ·I
(i)
0

E0
+ ε′S; REI =

A0
∑n

i=1 S(i)
0 ·I

(i)
T

E0
+ ε′I. (A25)

Finally, the increasing of energy demand is multiplicatively decomposed as

RE ≈
AT

∑n
i=1 S(i)

0 ·I
(i)
0

E0
·
A0

∑n
i=1 S(i)

T ·I
(i)
0

E0
·
A0

∑n
i=1 S(i)

0 ·I
(i)
T

E0
+ ε′. (A26)

Appendix B

To derive the Logarithmic Mean Divisia Index (LMDI) decomposition, let us first consider the
energy consumption of the i-th sector, which can be written as

E(i)(t) = eLn[E(i)(t)] = eLn[A(i)(t)·S(i)(t)·I(i)(t)]. (A27)

E(i)(t) = e{Ln[A(i)(t)]+Ln[S(i)(t)]+Ln[I(i)(t)]}. (A28)

E(i)(t) = eLn[A(i)(t)]eLn[S(i)(t)]eLn[I(i)(t)]. (A29)

Taking derivatives and considering changes only in the activity component, it can be written that

dE(i)
A (t) = eLn[S(i)(t)]eLn[I(i)(t)]d

{
eLn[A(i)(t)]

}
. (A30)

dE(i)
A (t) = eLn[S(i)(t)]eLn[I(i)(t)]eLn[A(i)(t)]d

{
Ln

[
A(i)(t)

]}
. (A31)

Recalling Equation (A29)
dE(i)

A (t) = E(i)(t)d
{
Ln

[
A(i)(t)

]}
. (A32)

The change of energy consumption due to a change in the total level of activity, for a period of
time between t0 and T, can be expressed as

∆E(i)
A ≡ E(i)

A (T) − E(i)
A (t0) = E(i)(t∗)·

{
Ln

[
A(i)(T)

]
− Ln

[
A(i)(t0)

]}
+ ε

(i)
A (A33)

where E(i)(t∗) is an approximate intermediate value of E(i) in the interval [t0, T]. LMDI decomposition
uses for the approximation the logarithmic mean, that is,

E(i)(t∗) = L
[
E(i)(T), E(i)(t0)

]
≡

E(i)(T) − E(i)(t0)

Ln
[
E(i)(T)

]
− Ln

[
E(i)(t0)

] . (A34)

So,

∆E(i)
A = L

[
E(i)(T), E(i)(t0)

]
·Ln

 A(i)(T)

A(i)(t0)

+ ε
(i)
A . (A35)
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It can be shown that the value of the logarithmic mean is between the arithmetic and geometric
means, that is,

√

a·b ≤ L(a, b) ≤
a + b

2
, ∀a, b > 0. (A36)

Considering now the activity component of the n sectors of the economy, we obtain

∆EA ≡

n∑
i=1

∆E(i)
A =

n∑
i=1

L
[
E(i)(T), E(i)(t0)

]
·Ln

 A(i)(T)

A(i)(t0)

+ ε
(i)
A

. (A37)

∆EA =
n∑

i=1

L
[
E(i)(T), E(i)(t0)

]
·Ln

 A(i)(T)

A(i)(t0)

+ n∑
i=1

ε
(i)
A , (A38)

or more compactly,

∆EA =

 n∑
i=1

L
(
E(i)

T , E(i)
0

)
·Ln

A(i)
T

A(i)
0


+ εA. (A39)

Analogously, the other two components are

∆ES =

 n∑
i=1

L
(
E(i)

T , E(i)
0

)
·Ln

S(i)
T

S(i)
0


+ εS; ∆EI =

 n∑
i=1

L
(
E(i)

T , E(i)
0

)
·Ln

 I(i)T

I(i)0


+ εI. (A40)
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