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Abstract: In this paper, a linearized discrete charge balance (LDCB) control strategy is proposed for
buck converter operating in discontinuous conduction mode (DCM). For DC-DC power converters,
discrete charge balance (DCB) control is an attractive approach to improve the output voltage transient
response. However, as a non-linear control strategy, the algorithm is complex, which is difficult for
implementation. To reduce the complexity, this paper proposes the LDCB control strategy that is
derived through linearizing conventional DCB controller. By deriving the differential functions of the
DCB control algorithm, the small signal relationship between the input and output of DCB controller
is explored. Furthermore, based on the relationship, the LDCB controller is formed through three
parallel feed loops to the duty ratio. As a linear control approach, the achieved LDCB controller
is greatly simplified for implementation. This not only saves the hardware cost, but also reduces
the calculation lag, which provides potential to improve the switching frequency. Besides, since the
LDCB controller shares the same small signal model as that of DCB controller, it achieves similar
control loop bandwidth and transient performance. Effectiveness of the proposed LDCB control is
verified by zero/pole plots, transient analyses and experimental results.
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1. Introduction

In portable and processor applications, there is a continuous demand for a fast output voltage
transient response. Therefore, a lot of control strategies are proposed for different DC-DC power
converters. Among many strategies, the well-known V2 controls have been widely used in industrial
applications, and they can achieve a great control loop bandwidth [1–3]. Predictive controls
acquire state variables ahead of time, which allow earlier actions to stabilize the system [4,5].
Adaptive controls can achieve optimized performance in different conditions, which is ensured
by online tunings for control parameters [6,7]. Current mode controls are effective approaches to
simplify compensator design, and they can achieve fast transient performance with over current
protection [8–10]. Multiloop controls are popular for their closed-loop stability and flexible load/line
transient optimizations [11,12]. Sliding mode and hysteretic controls are non-linear strategies to
optimize large-signal transient responses, and they are not only robust to parameter deviations, but
also easy for implementation [13–15].

To achieve time-optimal output voltage transient responses, various control strategies have
recently been investigated, such as time-optimal sliding-mode control [16,17], bang-bang and geometric
control [18], programmable deviation current control [19], etc. Among many strategies, a practical
approach to achieve time-optimal control is through capacitor charge balancing method [20–22].
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These controls adopt variable switching-on and switching-off durations to balance the charge on
output capacitor, and achieve optimal output voltage transient response. Furthermore, various
methods are proposed to carry out the control with digital circuits [23–26]. However, these control
strategies induce a variable switching frequency, which challenges the converter modeling and EMI
suppression [27,28]. Besides, all above charge balance controls are limited for buck converters operating
in continuous conduction mode (CCM).

When a converter operates in discontinuous conduction mode (DCM), the discontinuous inductor
current provides potential advantages of high stability, simple compensation, compact and low-cost
inductor, etc. [29,30]. For DC-DC converters operating in DCM, a novel control strategy based on
estimation and charge balance principle is proposed in [31]. This forms the discrete charge balance
(DCB) control where all control variables are updated once every cycle. The approach is based on
digital pulse wide modulation (DPWM) with a fixed switching frequency, and suits various converters,
such as boost and flyback converters, etc. Furthermore, with comprehensive consideration of parasitics,
the control accuracy is improved in [32,33]. However, all above DCB algorithms are non-linear, and
they induce complicated calculations. Besides, the calculations must be carried out in serial, i.e., charge
estimation, charge compensation and charge regulation. These not only increase the hardware cost,
but also cause considerable calculation lag that limits the switching frequency.

In order to solve above mentioned issues, a linearized discrete charge balance (LDCB) control
strategy is proposed in this paper, which is acquired through linearizing conventional DCB controller.
By deriving the differential functions of the DCB algorithm, the small signal relationship between the
input and output of DCB controller is explored. Furthermore, the LDCB controller is formed through
three independent feed loops, where the outputs are summarized as duty ratio. In this way, the LDCB
controller eliminates several complicated calculations, such as divisions and square roots. Besides,
since the relationship between the input and output is explicitly revealed, all loops can be carried out
in parallel. Both the simplified algorithm and the parallelism help to save the hardware cost, reduce
the calculation lag, and provide potential to improve the switching frequency. Furthermore, since
the LDCB controller shares the same small signal model as that of DCB controller, it achieves similar
control loop bandwidth and transient performance. The stability and robustness under LDCB control
are proved by closed-loop modeling, transient analyses and zero/pole plots.

The paper is organized as follows. In Section 2, control scheme and algorithm of the conventional
DCB control strategy is introduced. The proposed LDCB controller is given in Section 3, where the small
signal relationship between the input and output of DCB controller is explored. In Section 4, detailed
closed-loop modeling under LDCB control is derived. Furthermore, the stability and robustness are
proved by zero/pole plots and transient analyses. Experimental results and comparisons are given in
Section 5 to verify effectiveness of the proposed LDCB controller. Finally, a brief conclusion is given in
Section 6.

2. Conventional Discrete Charge Balance Control

For switched mode power converters, the output capacitor is charged and discharged periodically.
At steady state, the charge and discharge are equal, which ensures a constant output voltage.
When operating in DCM, the charge can be strictly controlled by the duty ratio of DPWM signal.
Therefore, the output voltage can be controlled by balancing the charge on the output capacitor [31–33].
This forms the DCB control strategy, and a buck converter under conventional DCB control is shown
in Figure 1.

The DCB controller consists a charge estimator, a charge compensator and a charge regulator.
First, the charge estimator calculates the charge to output capacitor, denoted as the estimated charge
Qest. An appropriate charge estimator ensures that Qest = Qch, where Qch is the actual output charge.
Second, to balance the charge on output capacitor, the charge compensator outputs a reference for
output charge, denoted as Qref. Algorithm of the compensator determines the output voltage transient
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responses to load and input. Finally, the charge regulator adjusts a suitable duty ratio d1 to ensure that
Qch tracks Qref in the next switching cycle.Energies 2019, 12, x FOR PEER REVIEW 3 of 17 
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Figure 1. Buck converter under conventional discrete charge balance (DCB) control. 
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Figure 2. Output voltage under discrete charge balance (DCB) control. 

As shown in Figure 2, the output voltage is controlled by increasing or decreasing the charge on 

output capacitor. Since the voltage across the capacitor is out /v Q C , the voltage increment is given 

by     out ch dis/ ( ) /v Q C Q Q C  where disQ  is the discharge of the capacitor. Furthermore,  outv  

can be regulated by chQ  since disQ  varies slow owing to the filtering effect of C . For example, 

when outv  is lower than refv  in the thk  switching cycle, the DCB controller increases chQ  to 

generate a positive  outv . Finally, the output voltage is regulated to its reference value in the 

( 2) thk  switching cycle. 

2.1. Charge Compensator 

The charge compensator regulates the output voltage by compensating the charge on output 

capacitor. For discrete-time analyses, the voltage increment   out ch dis( ) /v Q Q C  is transformed as 


   ch dis

out out

( ) ( )
( 1) ( )

Q k Q k
v k v k

C
. (1) 

Since the discharge is determined by dis out( ) ( ) /Q k v k T R , (1) is derived as 

    ch
out out out

( )
( 1) ( ) ( )

T Q k
v k v k v k

RC C
. (2) 

Figure 1. Buck converter under conventional discrete charge balance (DCB) control.

As shown in Figure 2, the output voltage is controlled by increasing or decreasing the charge on
output capacitor. Since the voltage across the capacitor is vout = Q/C, the voltage increment is given
by ∆vout = ∆Q/C = (Qch −Qdis)/C where Qdis is the discharge of the capacitor. Furthermore, ∆vout

can be regulated by Qch since Qdis varies slow owing to the filtering effect of C. For example, when
vout is lower than vref in the kth switching cycle, the DCB controller increases Qch to generate a positive
∆vout. Finally, the output voltage is regulated to its reference value in the (k + 2)th switching cycle.
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Figure 2. Output voltage under discrete charge balance (DCB) control.

2.1. Charge Compensator

The charge compensator regulates the output voltage by compensating the charge on output
capacitor. For discrete-time analyses, the voltage increment ∆vout = (Qch −Qdis)/C is transformed as

vout(k + 1) − vout(k) =
Qch(k) −Qdis(k)

C
. (1)

Since the discharge is determined by Qdis(k) = vout(k)T/R, (1) is derived as

vout(k + 1) − vout(k) +
T

RC
vout(k) =

Qch(k)
C

. (2)

Furthermore, iterating (2) gives

vout(k + 2) − 2vout(k) + vout(k− 2) + T
RC [vout(k + 1) + vout(k) − vout(k− 1) − vout(k− 2)]

=
Qch(k+1)+Qch(k)−Qch(k−1)−Qch(k−2)

C
. (3)
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Nevertheless, is comparable to the output voltage ripple ratio, which is much smaller than unity
in most DC-DC applications [34], thus (3) approximates

vout(k + 2) − 2vout(k) + vout(k− 2) ≈
Qch(k + 1) + Qch(k) −Qch(k− 1) −Qch(k− 2)

C
. (4)

To regulate the output voltage to its reference value in the (k + 2)th switching cycle, the charge
compensator should provide a reference charge Qref(k) = Qch(k + 1) that ensures vout(k + 2) = vref(k).
Therefore, taking Qref(k) = Qch(k + 1), vout(k + 2) = vref(k) and Qch(k) = Qest(k) into (4) gives

Qref(k) = −Qest(k) + Qest(k− 1) + Qest(k− 2) + C[vref(k) − 2vout(k) + vout(k− 2)]. (5)

Based on (5), a reference charge for the (k + 1)th switching cycle is calculated, which makes the
output voltage tracking the reference voltage in two switching cycles. Furthermore, to carry out the
algorithm in (5), a charge estimator must be derived to estimate Qch, while a charge regulator should
also be provided to calculate an appropriate d1.

2.2. Charge Estimator and Charge Regulator

The DCB controller carries out charge estimation, charge compensation and charge regulation
in serial. The charge estimator is required to estimate the output charge, while the charge regulator
is needed to calculate an appropriate duty ratio. For DCM buck converter, the output charge in a
switching cycle is determined by the inductor current. As shown in Figure 3, the inductor current rises
linearly when the main switch is on, and it falls linearly when the main switch is off.
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The output charge is the integration of inductor current, i.e., the shadow area in Figure 3. For
buck converter, the inductor current peak value is (vin − vout)d1T/L while (d1 + d2)T = vind1T/vout is
always valid. Therefore, the output charge is given by

Qch =
d1

2T2(vin − vout)vin

2voutL
. (6)

Based on (6), the charge estimation and regulation algorithms are derived as Qest =
(d1T)2(vin−vout)vin

2voutL

d1 = 1
T

√
2voutLQref

(vin−vout)vin

. (7)

These algorithms can ensure accurate charge estimation and charge regulation under DCM
operation. However, they are relatively complicated owing to the square-root and division operations.
Besides, the charge compensator and charge regulator are dependent on the charge estimator, thus the
calculations must be processed in serial. These not only increase the hardware cost, but also cause
considerable calculation lag that limits the switching frequency.
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3. Linearized Discrete Charge Balance Control with Simplified Algorithm

Although conventional DCB controller can greatly optimize the control loop bandwidth and
the output voltage transient response, it suffers a complicated algorithm and the serial calculations.
These greatly increase the overall cost and the requirement for a high-performance digital control unit.
A large calculation lag also limits the achievable switching frequency.

In order to solve above mentioned issues, the LDCB controller is proposed in this section. By
deriving the differential functions of the DCB control algorithm, small signal relationship between the
input and output of DCB controller is explored. Furthermore, the LDCB controller is formed through
three independent feed loops, where the outputs are summarized as duty ratio. In this way, the LDCB
controller eliminates several complicated calculations, such as divisions and square roots. Since the
relationship between the input and output is explicitly revealed, all loops are carried out in parallel.
Both the simplified algorithm and the parallelism help to save the hardware cost, reduce the calculation
lag, and provide potential to improve the switching frequency.

3.1. Linearization of Conventional DCB Controller

To linearize DCB control, a partial differential function d̂1 = f (v̂in, v̂out, v̂ref) is derived from the
charge estimator, charge compensator, and charge regulator. Based on (7), differential function of the
estimated charge is given by 

Q̂est = X1d̂1 + X2v̂in + X3v̂out

X1 =
d1T2(vin−vout)vin

voutL = 2voutT
d1R

X2 =
d1

2T2(2vin−vout)
2voutL =

voutT(2vin−vout)
vin(vin−vout)R

X3 = − d1
2T2vin

2

2vout2L = − Tvin
R(vin−vout)

, (8)

where X1, X2 and X3 denote partial differential functions ∂Qest/∂d1, ∂Qest/∂vin and ∂Qest/∂vout,
respectively.

Since the charge controller uses Qref to calculate d1, similar differential function is derived for the
charge regulator:

d̂1 = (
1

X1
Q̂ref −

X2

X1
v̂in −

X3

X1
v̂out)z−1. (9)

In (9), a unit delay z−1 is induced, since the duty ratio is pre-calculated for the next switching
cycle. Furthermore, based on (5), differential function of Qref is given by

Q̂ref = (z−1 + z−2
− 1)Q̂est + C(−2 + z−2)v̂out + Cv̂ref. (10)

Finally, combining (8)–(10), a partial differential function d̂1 = f (v̂in, v̂out, v̂ref) is derived as

d̂1 = Hdv(z)v̂out + Hdg(z)v̂in + Hdr(z)v̂ref

Hdv(z) =
d̂1

v̂out
= −X3

X1

2(1+C/X3)−z−1
−(1+C/X3)z−2

z+1−z−1−z−2

Hdg(z) =
d̂1
v̂in

= −X2
X1

2−z−1
−z−2

z+1−z−1−z−2

Hdr(z) =
d̂1

v̂ref
= C

X1
1

z+1−z−1−z−2

. (11)

This equation explicitly reveals the relationship between d̂1 and {v̂out, v̂in, v̂ref}. Based on (11), the
LDCB controller can be realized by three independent feedback and feed forward loops.
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3.2. Realization of LDCB Control

Similar to conventional DCB control, the LDCB controller regulates the output voltage with three
inputs, i.e., vref, vout and vin. Each of the inputs has an independent feeding loop to d1, as shown in
Figure 4.
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Furthermore, since the LDCB controller maintains the same small signal model as conventional
DCB controller, it achieves similar control loop bandwidth and transient performance. Besides, without
calculating state variables (such as Qest and Qref), the LDCB controller has a simplified algorithm and
features parallel calculations, as shown in Table 1.

Table 1. Comparison between the conventional DCB and LDCB control algorithms.

Control Algorithms DCB Algorithm LDCB Algorithm

Complexity Complex Simple

Parallelism Successively calculating Qest, Qref and d1
Processing Hdr(z), Hdg(z) and
Hdv(z) calculations in parallel

Based on (11), a further simplified implementation of LDCB controller is given in Figure 5.
This implementation requires only six multipliers and nine adders. Moreover, all feeding loops
calculations are processed in parallel, which greatly reduces the calculation lag. Therefore, compared
with conventional DCB controller, the LDCB controller can reduce the hardware cost, while providing
potential for a higher switching frequency.Energies 2019, 12, x FOR PEER REVIEW 7 of 17 
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4. Closed-Loop Analysis and Robustness of LDCB Controller

To verify the stability under LDCB control, closed-loop small signal model is derived to investigate
zeros and poles of the system. Since the LDCB controller is derived through linearizing conventional
DCB controller, they share the same closed-loop small signal model at the typical operation point.
However, when the operation point deviates, the system under LDCB control may fail owing the
deviated model. Therefore, robustness of LDCB controller is further verified with ±30% deviation
of the operation point. Since the controller is digital, all analyses and simulations are carried out in
discrete-time domain.

4.1. Closed-Loop Small Signal Model

Since vin, d1 and R are independent variables in a DC-DC converter, their impacts to vout are
modulated by three transfer functions, namely Gvg(z), Gvd(z) and Gvl(z), respectively. Under LDCB
control, the duty ratio is acquired through

{
Hdg(z), Hdv(z), Hdr(z)

}
. Therefore, the closed-loop small

signal model under LDCB control is given by Figure 6.
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Based on transfer function of the output filtering network, the relationship between vout and Qch

is given by

voutT =
1

sC
(Qch −

voutT
R

). (12)

Based on (12), differential function of vout is given by

v̂out =
1
T

R
sRC + 1

Q̂ch +
vout

R
1

sRC + 1
R̂. (13)

Furthermore, to derive the discrete-time transfer functions, (13) is transformed to its z domain, as
shown in (14).

v̂out =
1
C

1
z− 1 + a

Q̂ch +
voutT
R2C

1
z− 1 + a

R̂, (14)

where a = T/RC. Since the charge to output is Q̂ch = X1d̂1 + X2v̂in + X3v̂out, substituting Q̂ch into
(14) gives 

v̂out = Gvd(z)d̂1 + Gvg(z)v̂in + Gvl(z)R̂
Gvd(z) =

v̂out
d̂1

= X1/C
z−1+a−X3/C

Gvg(z) =
v̂out
v̂in

= X2/C
z−1+a−X3/C

Gvl(z) =
v̂out

R̂
= voutT

R2C
1

z−1+a−X3/C

. (15)
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Obviously, all the functions are first-order, and they share the same pole. Furthermore, based on
Figure 6, closed-loop transfer functions from input voltage, reference voltage and load to the output
voltage are given by 

Fvl(z) =
Gvr(z)

1−Gvd(z)Hdv(z)

Fvg(z) =
Gvg(z)+Gvd(z)Hdg(z)

1−Gvd(z)Hdv(z)

Fvr(z) = Hdr(z)
Gvd(z)

1−Gvd(z)Hdv(z)

. (16)

Substituting (15) and (11) into (16) gives
Fvl(z) =

voutT
R2C

z+1−z−1
−z−2

z2+(a−X3/C)z+(X3/C+a)−az−1−az−2

Fvg(z) =
X2
C

z−1
z2+(a−X3/C)z+(X3/C+a)−az−1−az−2

Fvr(z) = 1
z2+(a−X3/C)z+(X3/C+a)−az−1−az−2

. (17)

This discrete-time closed-loop model reveals the output voltage responses to different signals, i.e.,
input voltage, reference voltage and load resistance.

4.2. Stability Analysis

Substituting {X1, X2, X3} into (17) gives out an explicit form of the closed-loop model, as
shown below 

Fvl(z) =
voutT
R2C

(1−M)(z+1−z−1
−z−2)

(1−M)z2+a(2−M)z−aM−a(1−M)z−1−a(1−M)z−2

Fvg(z) =
aM(2−M)(z−1)

(1−M)z2+a(2−M)z−aM−a(1−M)z−1−a(1−M)z−2

Fvr(z) = 1−M
(1−M)z2+a(2−M)z−aM−a(1−M)z−1−a(1−M)z−2

, (18)

where M denotes vout/vin. Furthermore, the discrete-time responses to input voltage, reference voltage
and load are solved by introducing an input of unit step signal z/(z− 1), as shown below

hl(z) = Fvl(z)z/(z− 1)
hg(z) = Fvg(z)z/(z− 1)
hr(z) = Fvr(z)z/(z− 1)

. (19)

Through synthetic division, the discrete-time responses are derived as (20). Without approximation,
(20) provides accurate analyses for different transients. It indicates that the output voltage will stabilize
in five switching cycles during an input voltage step, five switching cycle during a reference voltage
step, and seven switching cycles during a load step.

hl(z) =
voutT
R2C

{
z−1 + (2− a 2−M

1−M )z−2 + (1− a 4−M
1−M )z−3 + a−1+2M

1−M z−4 + a 3−2M
1−M z−5 + 3az−6 + az−7

}
hg(z) = a M(2−M)

(1−M)

{
z−1
− a 2−M

1−M z−2 + a M
1−M z−3 + az−4 + az−5

}
hr(z) = z−2 + (1− a 2−M

1−M )z−3 + (1− 2a)z−4 + (1− a)z−5 +
+∞∑
i=6

z−i

. (20)

To reveal the main characteristics of the transients, most items that contains a = T/RC are
neglected, since magnitude of T/RC is usually much smaller than unity. Furthermore, the discrete-time
transient responses approximate 

hl(z) ≈
voutT
R2C (z−1 + 2z−2 + z−3)

hg(z) ≈ a M(2−M)
(1−M)

z−1

hr(z) ≈
∞∑

i=2
z−i

. (21)
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Although (21) is less accurate than (20), it reveals the main characteristics of (20). According
to (21), when the load steps by a unit, the output voltage deviates by 2voutT/R2C maximum, and
stabilizes in three switching cycles. When a unity step of input voltage occurs, the output voltage will
deviate by aM(2−M)/(1−M) and it lasts for only one switching cycle. When the reference voltage
steps, the output voltage tracks it and stabilizes in two switching cycles.

Furthermore, based on specifications in Section 5, different transients are calculated from (20) and
(21), respectively. As shown in Figure 7, both approaches derive similar results. Comparatively, (20) is
more accurate and it shows details, while (21) reveals the main characteristics of (20). During an unit R
step, the output voltage deviates by 0.085 V and re-stabilizes in seven switching cycles. During an unit
vin step, the output voltage deviates by 0.05 V, and re-stabilizes in six switching cycles. During an unit
vref step, the output voltage tracks vref in five switching cycles.
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4.3. Robustness to Deviated Operation Point

Although the LDCB and DCB controls have the same small signal model at the typical operation
point, they are not equivalent when the operation point is deviated. Therefore, the robustness of LDCB
controller must be verified with deviations of input voltage, output voltage and load.

Closed-loop small signal model of the system under deviated operation point is given in Figure 8.
The LDCB controller is modeled at a fixed operation point of {vin, vout, R}, whereas the main power
stage operates at a deviated point of {vin

′, vout
′, R′}.
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Based on specifications in Section 5, the typical operation point is at
{vin = 20 V, vout = 10 V, R = 7.5 Ω}, and the LDCB controller is derived with this point. However, the
power stage can operate at other conditions. Thus, it is modeled with more than ±30% deviations
of operation point, i.e.,

{
vin
′
∈ [14 V, 26 V] , vout

′
∈ [7 V, 13 V], R′ ∈ [5 Ω, 10 Ω]

}
. The mismatched

operation point causes change of the closed-loop model, which is simulated to verify the robustness
of LDCB controller. With deviated operation point, zeros and poles of Fvl(z), Fvg(z) and Fvr(z) are
plotted in Figures 9–11 respectively.

As shown in Figure 9, two main poles of Fvl(z) locate at 0.639 ± j0.336, which are conjugate and
they dominate the output voltage transient response to a load step. When the input voltage increases
from 14 V to 26 V, migrations of the main poles indicate a higher bandwidth and damping factor. When
the load resistance and output voltage changes by ±30%, variations of the main poles are relatively
small. A zero at z = 1 shows that Fvl(z)

∣∣∣z=1 = 0 , which indicates zero DC gain to load. Therefore, the
output voltage steady state value is not influenced by the load resistance.

Under the same deviations of operation point, zeros and poles of Fvg(z) are given in Figure 10.
Migrations of two main poles are exactly the same as those in Figure 9. A zero at z = 1 indicates that
Fvg(z)

∣∣∣z=1 = 0 or differential characteristic, thus the output voltage steady state value is not influenced
by the input voltage.
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Zeros and poles of Fvr(z) under the same deviations are given in Figure 11. Migrations of the two
main poles are exactly the same as those in Figures 9 and 10. For Fvr(z), substituting z = 1 into (18)
gives Fvr(z)

∣∣∣z=1 = 1 , which indicates unity DC gain to the reference voltage. Therefore, the output
voltage tracks vref at steady state.

All above plots share the same poles, where two main poles indicate that the achieved bandwidth
is about 0.18π/T. This bandwidth is relatively high for DC-DC applications, and it suggests a transient
response time around 0.35/(0.18π/T) ≈ 6T. This matches with that of the results in Figure 7.

4.4. Robustness to Inductance Deviation

In order to verify the LDCB control robustness to inductance deviation, zero/pole trajectories are
simulated when the inductance deviates from 0.8L to 1.2L, as shown in Figure 12.
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In all simulated results, the poles remain inside the unit cycle, and the variations are relatively
small. This indicates that inductance deviation has minor influences to the output voltage transient
responses. For both Fvl(z) and Fvg(z), the zero at z = 1 is not changed, which indicates zero DC gain to
load and line voltage. Therefore, with deviated inductance, the output voltage steady state value is
still not influenced by load and line voltage. For Fvg(z), a zero outside the cycle moves inside, which
changes the gain at low frequency. However, the influence to line transient is minor, since line transient
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is dominated by the main poles. All results prove that LDCB control is capable to maintain the transient
performance with inductance deviation of ± 20%, which is an adequate margin for most inductors.

5. Experimental Results

All analyses and simulations prove the stability and robustness of the converter under LDCB
control. The results indicate a fast and stable transient response. In this section, transient performance
of the converter is further verified through experiments. A buck converter prototype is constructed as
the power stage, and the main specifications are given in Table 2.

Table 2. Main specifications of the buck converter.

Parameters Values

L 10 µH
C 40 µF

vin 20 V
vout 10 V

R 7.5 Ω (5 Ω~10 Ω)
T 10 µs

The switching frequency is 100 kHz, and the converter operates at DCM. A photograph of the
prototype is shown in Figure 13. The control board adopts a FPGA (Cyclone IV EP4CE22F17C6) to
carry out all control algorithms. The input and output voltages are sampled by ADC LTC2314.Energies 2019, 12, x FOR PEER REVIEW 13 of 17 
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In the following, different transients under conventional proportion-integral (PI) control, DCB
control and LDCB control are compared. Furthermore, the hardware and calculation lags under
different controls are also compared.

5.1. Output Voltage Transient Responses under Different Controls

The output voltage transient responses to load under different controls are verified when R steps
from 10 Ω to 5 Ω. According to analyses in Section 4, the output voltage under LDCB control deviates
by 0.085 V maximum under a unit R step, and it re-stabilizes in seven switching cycles. Therefore, the
output voltage is expected to deviate by −0.43 V maximum when R steps from 10 Ω to 5 Ω, and it
should re-stabilize in 70 µs. The experimental results are given in Figure 14. With PI control, the output
voltage deviates by −0.6 V maximum, and it re-stabilizes in 230 µs. The DCB and LDCB controls
achieve similar transient performance. Under either control, the output voltage re-stabilizes in 70 µs,
while the maximum deviations are very close. The results match with that of analyses in Section 4.
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Figure 14. Output voltage transient responses when the load steps from 10 Ω to 5 Ω (a) PI control (b)
discrete charge balance (DCB) control (c) linearized discrete charge balance (LDCB) control.

The output voltage transient responses to input voltage under different controls are verified when
vg steps from 20 V to 18 V, as shown in Figure 15. With PI control, the output voltage deviates by −0.24
V maximum, and it re-stabilizes in 130 µs. Based on analyses in Section 4, the output voltage under
LDCB control should deviate by −0.1 V maximum when vin steps from 20 V to 18 V, and it should
re-stabilize in 60 µs. In the experiment, both DCB and LDCB controllers achieved very small output
voltage deviations. The results highly match with that of simulations and analyses. With DCB and
LDCB controls, the output voltage returns to 10 V in two switching cycles. After a minor oscillation, it
re-stabilizes in 70 µs and 60 µs, respectively.
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Output voltage transient responses to the reference voltage under different controls are verified
when vref steps from 10 V to 10.5 V, as shown in Figure 16. With PI control, the output voltage tracks
vref in 80 µs, and an overshoot of 0.2 V, i.e., 40 %, is induced. The DCB and LDCB controllers achieve
similar results in this transient. Both output voltages track vref in 50 µs, and the result matches with
that of analyses in Section 4.



Energies 2019, 12, 3177 14 of 17

Energies 2019, 12, x FOR PEER REVIEW 14 of 17 

 

130μs

240mV

10V

AC

DC

70μs

110mV

10V

AC

DC

60μs

100mV

10V

AC

DC

Ch1: 5 V/div    Ch2: 200 mV/div    Time: 40μs/div Ch1: 5 V/div    Ch2: 200 mV/div    Time: 40μs/div Ch1: 5 V/div    Ch2: 200 mV/div    Time: 40μs/div  
(a)                               (b)                               (c) 

Figure 15. Output voltage transient responses when the input voltage steps from 20 V to 18 V (a) PI 

control (b) discrete charge balance (DCB) control (c) linearized discrete charge balance (LDCB) 

control. 

Output voltage transient responses to the reference voltage under different controls are verified 

when vref steps from 10 V to 10.5 V, as shown in Figure 16. With PI control, the output voltage tracks 

vref in 80 μs, and an overshoot of 0.2 V, i.e., 40 %, is induced. The DCB and LDCB controllers achieve 

similar results in this transient. Both output voltages track vref in 50 μs, and the result matches with 

that of analyses in Section 4. 

100μs
10V

AC

DC
50μs

10V

AC

DC 50μs
10V

AC

DC

Ch1: 5 V/div    Ch2: 200 mV/div    Time: 40μs/div Ch1: 5 V/div    Ch2: 200 mV/div    Time: 40μs/div Ch1: 5 V/div    Ch2: 200 mV/div    Time: 40μs/div  
(a)                              (b)                               (c) 

Figure 16. Output voltage transient responses when the reference voltage steps from 10 V to 10.5 V(a) 

PI control (b) discrete charge balance (DCB) control (c) linearized discrete charge balance (LDCB) 

control. 

5.2. Hardware and Lag Analyses for Different Control Algorithms 

Both DCB and LDCB controllers achieve much better transient performance than that of PI 

controller. Compared with DCB control, advantage of the proposed LDCB controller mainly lies in 

its simplified algorithm and improved parallelism, which save the hardware cost and reduce the 

calculation lag. Detailed comparisons of hardware and calculation lags under different controls are 

given in Table 3. All algorithms have been optimized with the least calculations, and they are based 

on the same FPGA control board, i.e., Cyclone IV EP4CE22F17C6 (operating at 200 MHz). 

Table 3. Hardware and calculation lags of different control algorithms. 

Control Algorithms PI DCB LDCB 

Adds 3 7 9 

Multiplies 2 4 6 

Divisions 0 2 0 

Square-roots 0 1 0 

Parallel calculations 1/5 4/14 12/15 

Total logic elements 2575 4339 2964 

Total registers 1866 3109 2232 

Figure 16. Output voltage transient responses when the reference voltage steps from 10 V to 10.5 V (a) PI
control (b) discrete charge balance (DCB) control (c) linearized discrete charge balance (LDCB) control.

5.2. Hardware and Lag Analyses for Different Control Algorithms

Both DCB and LDCB controllers achieve much better transient performance than that of PI
controller. Compared with DCB control, advantage of the proposed LDCB controller mainly lies in
its simplified algorithm and improved parallelism, which save the hardware cost and reduce the
calculation lag. Detailed comparisons of hardware and calculation lags under different controls are
given in Table 3. All algorithms have been optimized with the least calculations, and they are based on
the same FPGA control board, i.e., Cyclone IV EP4CE22F17C6 (operating at 200 MHz).

Table 3. Hardware and calculation lags of different control algorithms.

Control Algorithms PI DCB LDCB

Adds 3 7 9
Multiplies 2 4 6
Divisions 0 2 0

Square-roots 0 1 0
Parallel calculations 1/5 4/14 12/15
Total logic elements 2575 4339 2964

Total registers 1866 3109 2232
Calculations lag 350 ns 600 ns 275 ns

Sampling lag 300 ns 300 ns 300 ns
Overall lag 650 ns 900 ns 575 ns

Potential fmax 1.5 MHz 1.1 MHz 1.7 MHz

Conventional PI controller induces the minimum calculations, i.e., three adds and two multiplies,
which results in the least hardware cost, i.e., 2575 logic elements and 1866 registers. The DCB control
algorithm is complicated owing to the division and square root calculations, which lead to the highest
hardware cost, i.e., 4339 logic elements and 3109 registers. The LDCB controller requires nine adds
and six multiplies, resulting in a medium hardware cost of 2964 logic elements and 2232 registers.
Compared with conventional DCB controller, the LDCB controller reduces the hardware cost by
31.7% in logic elements and by 28.2% in registers. Furthermore, although LDCB controller requires
15 calculation elements, i.e., nine adds and six multiplies, 12 of them can be carried out in parallel.
The parallelism of LDCB controller results in the least calculation lag of 275 ns, which is even less
than that of PI controller. The overall lag is 575 ns, which provides potential for the highest switching
frequency of 1.7 MHz.

As a conclusion, the proposed LDCB controller achieves similar transient performance to that of
DCB controller. While algorithm of LDCB controller is simplified, resulting in a reduced hardware cost
and calculation lag. Furthermore, the reduced lag provides potential for a higher switching frequency
under the same hardware speed.
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6. Conclusions

This paper presents a LDCB control strategy for DCM buck converter. The control algorithm and
scheme are derived through linearizing conventional DCB controller. Since the LDCB controller has
the same small signal model as that of DCB controller, it achieves similar control loop bandwidth and
transient performance. Furthermore, benefiting from the simplified algorithm and parallel calculations,
the LDCB controller provides advantages of a simplified algorithm and a reduced calculation lag.
Compared with conventional DCB controller, the hardware cost is greatly reduced, where the logic
elements are reduced by 31.7%, and the registers are reduced by 28.2%. Besides, the calculation lag is
decreased from 600 ns to 275 ns, which provides potential for a higher switching frequency. The stability
under LDCB control is verified by closed-loop analyses, while ±30% deviation of operation point and
±20% deviation of inductance are introduced. In all deviated conditions, migrations of the main poles
are relatively small, which prove the robustness of LDCB control. Finally, experimental results shown
that the proposed LDCB controller achieves similar transient performance to DCB controller. While
compared with conventional PI controller, the LDCB controller reduces the transient response time by
more than 50%.
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