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Abstract: This paper proposed an ANN (Artificial Neural Network) controller to damp out inter-area
oscillation of a power system using BESS (Battery Energy Storage System). The conventional lead-lag
controller-based PSSs (Power System Stabilizer) have been designed using linear models usually
linearized at heavy load conditions. This paper proposes a non-linear ANN based BESS controller
as the ANN can emulate nonlinear dynamics. To prove the performance of this nonlinear PSS,
two linear PSS are introduced at first which are linearized at the heavy load and light load conditions,
respectively. It is then verified that each controller can damp out inter-area oscillations at its own
condition but not satisfactorily at the other condition. Finally, an ANN controller, that learned the
dynamics of these two controllers, is proposed. Case studies are performed using PSCAD/EMTDC
and MATLAB. As a result, the proposed ANN PSS shows a promising robust nonlinear performance.
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1. Introduction

As electro-mechanical oscillations between interconnected synchronous generators may cause
instability of the entire power system, Kunder [1,2] presented the local mode oscillation and inter-area
oscillation, and then proposed a two area four machine power system model. So far, this hypothetical
reduced power system model, the so-called IEEE 2 area 4 machine benchmark model, has been widely
used to study inter-area oscillation as real power systems are very large and complex.

Nowadays, local mode oscillations can be suppressed easily using typical PSSs (Power System
Stabilizer) as a supplementary control of generators. However inter-area mode oscillations are more
complex, and additional energy sources are required.

Therefore applications of various energy storage systems have been proposed to improve power
system stability such as SMES (Superconducting Magnetic Energy Storage) [3–8], BESS (Battery Energy
Storage System) [9], Super capacitor with SCADA (Supervisory Control And Data Acquisition) [10],
DFIM (Double-Fed Induction Machine), and Flywheel [11]. Regarding the BESS application, Du [9]
proposed a PAM (Pulse Amplitude Modulation) stabilizer.

As power systems are very large and complex non-linear systems by nature, linear models have
been used in small system stability analysis studies, which are usually linearized at some heavy load
operation points by now, including the above-mentioned studies [4–11].

This paper proposes a non-linear ANN based BESS controller as the ANN can emulate nonlinear
dynamics. To prove the performance of proposed nonlinear PSS, two linear PSS are introduced at first
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which are linearized at the heavy load and light load condition respectively. And then it is verified
that each controller can damp out inter-area oscillations at its own condition but not satisfactorily at
the other condition. Finally, an ANN controller, that learned the dynamics of these two controllers is
proposed. Case studies are performed using PSCAD/EMTDC and MATLAB.

As a result, the proposed ANN PSS shows a promising robust nonlinear performance.
Although mathematical analysis of the internal mechanism of ANN is impossible, the result

implies the application of ANN will be promising in power system control problems.

2. Lead Lag Controller for Damping Inter-Area Mode in 2 Area 4 Machine Benchmark Model

The power system of each country is different in size and composition, and the inter-area oscillation
occurs very rarely. As shown in Figure 1, the structure of the IEEE 2Area-4Machine Benchmark model
has a small and simple structure but it is well suited for the study using real power system parameters [2].
Therefore, many researchers are publishing the results of research based on the IEEE benchmark
model. In order to implement a case study, the test of the power system with an inter-area mode
was constructed by using the PSCAD/EMTDC. And detailed parameters used in PSCAD/EMTDC are
described in Appendix A.

In this paper, the proposed controller is compared with the conventional controller. As shown
in Figure 2, the inter-area oscillation can be confirmed from simulation results when a three-phase
ground fault occurs at 1 [sec] (duration of fault is 0.1 [sec]). Since the inter-area mode is difficult to
damp-out by using a PSS (power system stabilizer) installed in each generator, research on damping
the inter-area mode using an energy storage system was performed [9–11].

VSC (Voltage Source Converter) is an AC/DC converter to transmit power from the battery to
the power system. Unlike CSC (Current Source Converter), VSC is widely used for electric power
control for various purposes because switches in the VSC, including IGBT, etc., can control its on–off

switching, which makes it easy to control electric power and reduce noise [12]. Also, the VSC is
mainly used as a power conversion device for HVDC and renewable energy sources and is operated
by switching elements such as GTOs or IGBTs. Since each switch has a high switching frequency,
it can reduce the size of the filter used to suppress distortion of the waveform and can change the
power flow without changing the polarity of the DC side of the grid. Due to various converters and
theories, various control techniques have been developed so that reactive power and active power can
be individually controlled.
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The VSC controller consists of a high-speed internal current control loop that controls the AC
current and an external controller that provides the reference value of the AC current. The low speed
external controller includes AC, DC side voltage controllers, active and reactive power controllers,
and a frequency controller. Therefore, the reference value of the internal current is determined by
DC voltage, AC voltage, and active and reactive power control. Vector current control is the most
commonly used control technique in VSC and can control the active, reactive power individually.
As for the vector current, the voltage and current components of power system should be converted
into d and q components and analyzed in the rotary coordinate system [12]. To do this, Clark and Park
transforms are used and calculated as shown in the following matrix (1), (2). Each of the three phase
signals from the power system are xa, xb, xc and the matrix including xα, xβ components, calculated to
xd, xq components as the rotary coordinate system.
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[
xd(t)
xq(t)

]
=

[
cos(θ(t)) sin(θ(t))
−sin(θ(t)) cos(θ(t))

][
xα(t)
xβ(t)

]
(2)

The PSS for damping inter-area oscillation is added to the excitation system including the AVR as
shown in the Figure 3. The procedure for obtaining the PSS parameters is as follows.
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Step 1: Obtain ωn from the characteristic equation of the mechanical loop
The equation of the mechanical loop can be written as

Ms2 + Ds +ωbK = 0 (3)

whereωb is the system frequency in rad/sec andωn is the undamped natural frequency of the mechanical
mode and is given as

ωn =

√
Kωb
M

(4)

Step 2: Compute phase lag ∠Ge between U (PSS out) and ∆Tm (mechanical damping). Ge is the
transfer function.

Step 3: Design of phase lead lag compensator. The transfer function of phase lead compensator
Gc is

Gc =
(1 + sT1)

(1 + sT2)

(1 + sT3)

(1 + sT4)
(5)

For the full compensation ∠Ge + ∠Gc = 180
◦

.
Step 4: Gain setting the amount of damping introduced depends on the gain of PSS transfer

function at frequency. Ideally, the gain should be set at a value corresponding to maximum damping.
The desired PSS gain K is computed from

K =
2ζωnM
|Gc||Ge|

(6)

where ζ is the desired damping ratio.
However, the purpose of this paper is not to examine the damping effect according to damping

ratio. Therefore, this paper used parameters that have proved to be damping effect in IEEE benchmark
model. The load condition of the IEEE benchmark model is 2743 [MW], and the PSS parameters used
at this state are Tw = 10, T1 = 0.05, T2 = 0.02, T3 = 3 and T4 = 5.4 [2]. According to existing research
results, the effect of damping Inter-area oscillation is more effective when the damping control is
performed through the active power output control [9,10]. The active power control of the VSC is
determined by the Id_re f current signal in Figure 4. The lead lag controller is inserted into the VSC
vector control loop as shown in Figure 4 for output power control.

Energies 2019, 12, x FOR PEER REVIEW 4 of 14 

𝐺௖ = (1 + 𝑠𝑇ଵ)(1 + 𝑠𝑇ଶ) (1 + 𝑠𝑇ଷ)(1 + 𝑠𝑇ସ) (5) 

For the full compensation ∠𝐺௘ + ∠𝐺௖ = 180°. 
Step 4: Gain setting the amount of damping introduced depends on the gain of PSS transfer 

function at frequency. Ideally, the gain should be set at a value corresponding to maximum damping. 
The desired PSS gain K is computed from K = 2𝜁𝜔௡𝑀|𝐺௖||𝐺௘| (6) 

where 𝜁 is the desired damping ratio. 

 
Figure 3. IEEE Type-ST1 Excitation System with Power System Stabilizer (PSS). 

However, the purpose of this paper is not to examine the damping effect according to damping 
ratio. Therefore, this paper used parameters that have proved to be damping effect in IEEE 
benchmark model. The load condition of the IEEE benchmark model is 2743 [MW], and the PSS 
parameters used at this state are Tw = 10, T1 = 0.05, T2 = 0.02, T3 = 3 and T4 = 5.4 [2]. According to 
existing research results, the effect of damping Inter-area oscillation is more effective when the 
damping control is performed through the active power output control [9, 10]. The active power 
control of the VSC is determined by the 𝐼ௗ_௥௘௙ current signal in Figure 4. The lead lag controller is 
inserted into the VSC vector control loop as shown in Figure 4 for output power control. 

 
Figure 4. Voltage Source Converter (VSC) Control using Lead Lag Controller. Figure 4. Voltage Source Converter (VSC) Control using Lead Lag Controller.



Energies 2019, 12, 3372 5 of 13

Figure 5 shows the simulation results using parameters estimated under the condition of a system
load of 2743 [MW]. From the result of Figure 5, it can be confirmed that the inter-area oscillation
damping is possible even by the external active power output control instead of the generator excitation
system control. Figure 6 shows the result of changing the system load to 1734 MW in the same
condition as the simulation condition in Figure 5. Figure 6 shows that if the system state changes,
parameter modification is required to obtain the damping effect. The lead-lag controller parameter
was modified for the changed system state. The modified parameters are Tw = 10, T1 = 0.03, T2 = 0.02,
T3 = 2.8, and T4 = 5.4. Figure 7 shows the simulated results using modified parameters for light load
conditions. Figure 7 shows that if the system state changes, the damping effect can be obtained by
the parameters modification of the lead lag controller. Figure 8 shows the simulation results when
using the parameters of light load condition in the heavy load condition. In the results in Figure 8,
the controller parameters are meant to be modified to obtain a damping effect. Therefore, this paper
attempts to solve this problem by using artificial intelligence learning.
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3. A.I Controller for Damping Inter-Area Mode

Machine learning is a category of artificial intelligence that develops algorithms that allow
computers to learn by themselves.

As shown in Figure 9, machine learning can be classified with supervised learning, unsupervised
learning, and reinforcement learning. Although they commonly are learned through learning data,
they can be classified according to purpose of use. The supervised learning is used for learning
where the correct answer is given, and unsupervised learning is used for classification and clustering
without correct answers. Unlike these, reinforcement learning involves learning through rewards,
learning about a specific state, and rewarding it properly [13].
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This section presents the use of an AI controller for damping Inter-area oscillations. As this paper
dealt with nonlinearity of power system operating conditions, the artificial intelligence was applied to
design a controller that adapts to the nonlinearity of the system to be controlled automatically and
adjusts the parameters of the controller.

Controller for Damping Inter-Area Mode Using Supervised Learning Based Deep Learning

For the supervised learning, a data set for the appropriate output to the controller’s inputs
is needed. The dataset was utilized from 2Area-4Machine IEEE Benchmark model constructed in
PSCAD/EMTDC and the input, output data of the Lead Lag controller are used to train artificial
neural networks for damping Inter-area mode in the 2Area-4Machine model. Since the PSCAD
program has limitations on designing artificial neural networks and using deep learning algorithms
including learning, data exchange between two programs was performed through the interconnection
of PSCAD/EMTDC program and MATLAB simulation program. Both programs are able to exchange
data set with Fortran code based interconnection module in PSCAD/EMTDC program.

An artificial neural network mimics the neurons that make up the human brain. The results of
recent studies have shown that the performance of powerful pattern recognition and classification
has been verified. For this reason, various non-linear problems such as prediction and control of
complex systems can be solved if sufficient data and appropriate learning algorithms are designed [?
]. As shown in Figure 10, the unit neuron structure of the artificial neural network consists of input,
output, and bias. Each input (x1, x2, x3) is multiplied by a weight (ω1, ω2,ω3) corresponding to the
input signal respectively. Then, multiplied input is calculated by an activation function f (x), and finally
the bias (b) is added. Last but not the least, the output (y) is transmitted to the input signal of other
neurons. This paper uses the ReLU function as the activation function. As for the ReLU function,
the simple calculating process make learning time shorten and it was confirmed that the ReLU has
better performance than representative activation function Sigmoid when it is used for multi-layer
neural network.
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A single layer neural network has advantages for solving classification problems which can be
linearly separated. So Rosenblatt and Widrow proposed a multi-layer neural network to overcome this
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with BPA (back-propagation algorithm) and this theory was popularized. The BPA for a training the
multi-layer network uses the mean square error. When each input is applied to a network, the network
output is compared to the target value and the algorithm adjusts the network’s weights to minimize the
mean square error. In this paper, Delta rule based BPA was used to train multi-layer neural network.
The Delta rule is one of methods to adjust weights of neural network and usually it is used in the
backpropagation algorithm because the rule is simple but effective. The formula of the Delta rule is
like the Equations (7) and (8).

ωi j ← ωi j + αδix j (7)

δi = ϕ′υiei (8)

Each definition is like as follow:

x j = input f rom output o f other neuron node j
ωi j = weight multiplied to input x j

ei = error o f output node i
υi = sum o f weight value f rom output node i
ϕ′ = derivative o f activation f unction

As shown in Figure 11, the supervised learning was conducted by BPA. Also, input of neural
network for the controller has 11 delayed signals from transmission line of 2Area-4Machine model.
In order to implement BPA, correct value for error value was from Lead Lag controller output.
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4. Results of Deep Learning

As shown in Figure 12, the multi-layer artificial neural network trained by deep learning was
replaced with a lead lag controller used for damping Inter-area mode. Also, after adjusting the
parameters of the lead lag controller in different power system operating condition, the deep learning
was implemented. The simulation results were verified with using a trained ANN controller. As a
result, it was confirmed that even if one ANN controller is used, the oscillation generated in other
power system operating condition can be damped-out as shown in the following Figures 13 and 14.
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In order to damp-out the Inter-area oscillation, the conventional Lead Lag controller is used. However,
this controller has a limitation in adapting the controller parameters according to the change in power
system operating conditions as a linear controller. As shown in simulation result, the proposed ANN
controller having robustness can damp-out the oscillations.
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Also, to improve the learning efficiency of the artificial neural network, a concept of technique
called raster was used. Usually this is used for image recognition in order to simplify the learning data
which make it easy to train ANN. The Raster is a method for simplification which can transform an
image into a simple form of a two-dimensional structure by pixelating it. As complexity of the data is
reduced, the artificial intelligence such as deep learning and reinforcement learning can be trained
more effectively. Also, in deep running using the data such as images and images, CNN (Convolution
Neural Network) is used to process data sets optimized for learning in same way. Because of the
reason described above, this paper applied concept of Raster to embody deep learning. Since the input
value of ANN controller is not an image data set (different data type), there is a limit to applying
Raster directly.

In general, data of artificial neural networks used in image processing, industry, etc. are used as a
processed dataset by digitizing pixel values between 0 and 1 or other methods. From this point of
view, in this paper, learning was performed by changing the scale of the input data of the learning
model to less than 1. The processing of these datasets is called normalization, which can improve the
effectiveness of learning by adjusting error values. The compact data of supervised learning means it
was also applied by the same principle of simplification in training the deep neural network.

A comparison of the effects in two cases was confirmed from the Figures 15 and 16. In Figure 15,
the first graph shows that the output of the neural network couldn’t follow the output from the target
model which the second graph shows. On the other hand, in Figure 14, although the dataset of the
target model was changed by scaling, the output from the ANN controller could follow the output of
the target model as shown in second graph of Figure 16. These results show that the learning effect can
be improved by processing the dataset even if the artificial neural network is applied to the control
system or other learning models.
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5. Conclusions

This paper proposed a nonlinear BESS controller using ANN to damp-out the inter-area oscillation
in a power system, as the ANN can learn and emulate the nonlinear dynamics. To prove the
performance of this nonlinear PSS, two linear PSS are introduced which are linearized at the heavy
load and light load conditions, respectively. Then, it is verified that each controller can damp out
inter-area oscillations at its own condition but not satisfactorily at the other condition. Finally, an ANN
controller, that learned the dynamics of these two controllers is proposed. Case studies are performed
using PSCAD/EMTDC and MATLAB.

As a result, the proposed ANN PSS shows a promising robust nonlinear performance.
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Appendix A

IEEE 2area-4machine Model Data Set

Table A1. Bus Data and Power Flow Result.

Bus Number Bus Name Base kV Bus Type Voltage (pu) Angle (deg)

1 GEN G1 20 PV 1.0300 20.07
2 GEN G2 20 PV 1.0100 10.31
3 GEN G3 20 swing 1.0300 −7.00
4 GEN G4 20 PV 1.0100 −17.19
5 G1 230 PQ 1.0065 13.61
6 G2 230 PQ 0.9787 3.52
7 LOAD A 230 PQ 0.9610 −4.89
8 MID POINT 230 PQ 0.9486 −18.76
9 LOAD B 230 PQ 0.9714 −32.35

10 G4 230 PQ 0.9835 −23.94
11 G3 230 PQ 1.0083 −13.63

Table A2. Transmission Line Data.

From Bus To Bus ckt id R (%) X (%) Charging (%) Length (km)

5 6 1 0.50 5.0 2.1875 25
5 6 2 0.50 5.0 2.1875 25
6 7 1 0.30 3.0 0.5833 10
6 7 2 0.30 3.0 0.5833 10
6 7 3 0.30 3.0 0.5833 10
7 8 1 1.10 11.0 19.2500 110
7 8 2 1.10 11.0 19.2500 110
8 9 1 1.10 11.0 19.2500 110
8 9 2 1.10 11.0 19.2500 110
9 10 1 0.30 3.0 0.5833 10
9 10 2 0.30 3.0 0.5833 10
9 10 3 0.30 3.0 0.5833 10

10 11 1 0.50 5.0 2.1875 25
10 11 2 0.50 5.0 2.1875 25

Table A3. Generator Step-Up Transformer Data.

From Bus To Bus R (%) X (%) MVA Base Tap (pu)

1 5 0 15 900 1
2 6 0 15 900 1
3 11 0 15 900 1
4 10 0 15 900 1

Table A4. Load and Capacitor Bank Data.

Load Data Capacitor Bank Data

Bus P (MW) Q (MVAr) Bus Q (MVAr)

7 967 100 7 200
9 1767 100 9 350
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