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Abstract: Synthetic inertia provision through the control of doubly-fed induction generator (DFIG)
wind turbines is an effective means of providing frequency support to the wider electrical network.
There are numerous control topologies to achieve this, many of which work by making modifications
to the DFIG power controller and introducing additional loops to relate active power to electrical
frequency. How these many controller designs compare to one-another in terms of their contribution
to frequency response is a much studied topic, but perhaps less studied is their effect on the
small-signal stability of the system. The concept of small-signal stability in the context of a power
system is the ability to maintain synchronism when subjected to small disturbances, such as those
associated with a change in load or a loss of generation. Amendments made to the control system
of a large-scale wind farm will inevitably have an effect on the system as a whole, and by making
a DFIG wind turbine behave more like a synchronous generator, which synthetic inertia provision
does, may incur consequences relating to electromechanical oscillations between generating units.
This work compares the implications of two prominent synthetic inertia controllers of varying
complexity and their effect on small-signal stability. Eigenvalue analysis is conducted to highlight
the key information relating to electromechanical modes between generators for the two control
strategies, with a focus on how these affect the damping ratios. It is shown that as the synthetic inertia
controller becomes both more complex and more effective, the damping ratio of the electromechanical
modes is reduced, signifying a decreased system stability.

Keywords: synthetic inertia; DFIG; small-signal stability

1. Introduction

Modern power systems are facing unprecedented levels of renewable energy penetration
motivated by government targets and potential reductions in cost per MWh. The introduction of
large scale wind power generation may lead to the decommissioning of conventional synchronous
generators which will have a negative impact on the stability of the system of a whole. Without the large
rotating masses and the associated inertia that these synchronous generators provide, the frequency
of the system will become more sensitive to disturbances. Additionally, type-3 and type-4 variable
speed wind turbines which are the most common topologies in new developments [1] are either
partially or fully decoupled from the grid through power electronic converters, meaning that their
inertia contributions cannot be ‘seen’ by the wider network. As the penetration of low inertia wind
energy increases, the effect on power system stability becomes an important issue which needs to be
analysed [2].

The concept of synthetic inertia is nothing new. Unlike a synchronous generator, the kinetic
energy stored in the wind turbine blades cannot be readily accessed and can only be released through
control action. The term synthetic comes from the fact that there is no instantaneous response to a drop
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in frequency in the wider network and all action is achieved through the power electronic converter.
The share of wind power is now so large that system operators are revising their grid codes such that
wind farms require frequency control capabilities in specific conditions [3].

This paper looks to gain insight into how different synthetic inertia control strategies compare
to each other in the context of small-signal stability by analysing the oscillatory electromechanical
modes between synchronous generators. Low frequency oscillation of local modes between nearby
generators and inter-area modes between generators in different areas can have detrimental effects
on transmission capacity and stability of the system as a whole [4]. It is hypothesised that, although
synthetic inertia control strategies provide the system with some much needed frequency support,
the different methods of achieving this may have unintended downsides in reducing the damping
ratio of the system and driving the network into the realms of instability.

1.1. Synthetic Inertia

This paper will focus on two methods of synthetic inertia provision, both of which work by
providing an artificially manipulated set-point to the active power controller. The effect of this new
set-point is to release a portion of the kinetic energy stored in the rotor and provide active power at
the expense of a reduction in rotational speed. Clearly, this method cannot be sustained indefinitely
due to the finite quantity of kinetic energy available, but to satisfy existing and proposed grid codes,
only a small percentage of rated power needs to be provided for a limited time, typically below
ten percent of the rated capacity [5–7]. For the purposes of this work, this value is exaggerated
for demonstration purposes up to a maximum of 20% of the rated wind farm capacity. Whilst not
impossible, this approach is unrealistic in a real-world environment but will be useful in demonstrating
the core concepts.

The first method of synthetic inertia control, shown in Figure 1a, is a one-loop design based on the
deviation of the system frequency from the nominal value [8,9]. This scheme is termed droop control
and regulates the active power output from a wind turbine proportional to the change in frequency.
There is a linear relationship between active power and frequency, and this control scheme adjusts the
power set-point according to the linear characteristic in (1).

∆P = − fmeas − fnom

R
(1)

where fmeas is the new frequency, fnom is the initial operating point and R is the droop constant.
The second control strategy to be considered is the two-loop design shown in Figure 1b.

This scheme provides a modified power reference which is proportional to frequency deviation
and lasts until nominal frequency is restored.The first loop acts when the rate of change of frequency is
high, while the ∆ f loop has a strong effect when the system frequency differs greatly from the nominal
value. The values of K1 and K2 are selected based on the desired level of synthetic inertia provided by
the DFIG. The effects of changing K1 and K2 are discussed in more detail in [10].

1.2. Modelling

The model used for simulation is based on a two-area network featuring three synchronous
machines and a wind farm. In the absence of an infinite bus, a load must be connected to the central
bus to balance the power flow and maintain synchronism. These components are connected to each
other via a set of network equations which define the admittance matrix of the system. A schematic
layout of the system is shown in Figure 2 which identifies the two areas. Tables A1 and A2 in
Appendix A give the parameters of the machines.
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(a)

(b)
Figure 1. (a) One-loop synthetic inertia control strategy, (b) Two-loop synthetic inertia control strategy.

The machines are sized such that generator 1 is five times larger in capacity than generators two
and three, rated at 1000, 200 and 200 MW, respectively. Generator 1 is fitted with a simple governor
to regulate rotor speed via an applied torque and to fix the network frequency at the nominal value.
Generator 1 is therefore termed the balancing machine. The DFIG represents an entire wind farm of
identical individual turbines with an aggregated power of 100 MW.

Figure 2. Two-area network used in simulation.
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The network model uses the transient model of a synchronous generator in the dq-reference frame
in which the stator dynamics are neglected. The resulting set of differential equations are fourth order:
two differential equations describe the rotor dynamics and the remaining two are used to describe
the rotor speed and angle [11]. The DFIG is modelled as a fifth order system in the dq-reference
frame. Since every element of the network is modelled in dq, the effects of the PLL can be neglected.
This is because operating in the dq reference frame is equivalent to having an ideal PLL. The full set of
network equations and parameters are provided in Appendix A.

Control of the DFIG is achieved by directly manipulating the rotor voltages in the dq-frame,
negating the need to model the back-to-back converter. This method is based on the internal mode
control presented in [12]. Since this paper is only focused on the active power controller which operates
entirely in the d-axis, further simplifications can be made by omitting any q-axis components relating
to reactive power.

2. Linearisation

Small-signal stability defined in the context of a power system is the ability to maintain
synchronism when subjected to small perturbations [13]. The term ‘small’ implies that the equations
describing the response may be linearised for analysis, which is the focus of this section.

The power system under consideration is given by a set of n linearly independent state variables
of the form in (2), where xi are the state variables, ui are the inputs to the model and t is time.
The complete set of differential equations is provided in Appendix A. The state variables are a
combination of physical quantities such as angle and speed, and other more abstract mathematical
variables associated with the differential equations that describe the dynamics of the system [13].

ẋ = fi(x1, ..., xn; u1, ..., um; t) i = 1, ... , n (2)

To begin the linearisation process, a set of equilibrium points must first be defined. These are the
points where all of the derivative terms are simultaneously zero, implying that the system is at rest
and all of the variables are constant with respect to time. Mathematically, this implies that f (x0) = 0,
with x0 being an operating point. Due to the complexity of a multi-machine system, the equilibrium
points of the model considered in this paper are determined from simulation. After a sufficiently
long settling time, a snapshot is taken of the state variables when they are in steady-state and saved
to file. This is done multiple times for different operating conditions and control strategies until a
complete set of equilibrium points exist for all scenarios. The system state equations are then obtained
by linearisation at an equilibrium point:∆ẋDFIG

∆ẋGOV
∆ẋSGn

 = A

∆xDFIG
∆xGOV
∆xSGn

 (3)

where

xDFIG =
[
ωr KiP λds λqs λdr λqr

]T
(4)

xGOV =
[

T1 T2 T3

]T
(5)

xSGn =
[
δn ωn E

′
dn

E
′
qn

]T
for n = 1, 2, 3 (6)

Here, ωr is rotor speed of the doubly-fed induction generator, KiP comes from the integral term in the
power controller, λ are the fluxes, Tn are from the transfer functions of the governor, δ and ω are the
angle and speed of the synchronous generators respectively and E

′
dq are the two-axis transient emfs of

the synchronous generators. For n = 3 generators, these states form a 21-order system.
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Small-signal stability analysis is concerned with the eigenproperties of the Jacobian matrix A,
which is of the form in (7). The entries in A give the coupling relationships between each of the
dynamic processes [14]. The eigenvalues of A are of the form in (8).

A =


∂ f1

∂x1
. . .

∂ f1

∂xn
. . . . . . . . .

∂ fn

∂x1
. . .

∂ fn

∂xn

 (7)

λi = σi ± jωi for i = 1, ..., n (8)

For a complex pair of eigenvalues, the real component gives the damping and the imaginary
component gives the frequency of oscillation. The frequency of oscillation is given by (9) and the
damping ratio is given by (10). The damping ratio is of particular importance as this determines the
rate of decay of the oscillations. A high damping ratio implies that any oscillations away from the
static equilibrium will decay quickly, whereas a low damping ratio implies the opposite. A high value
of ζ is desirable in the context of small-signal stability. It can be seen from Equation (10) that the value
of ζ is largely dependant on the real component of a particular eigenvalue, such that a more-negative
real component implies a higher damping ratio. This is analogous to the position of poles in control
theory, where the system is stable if the poles are in the left hand plane, and a more negative real
component results in a faster response. Note that it is also a necessary condition for stability that all
eigenvalues have a negative real part.

f =
ω

2π
(Hz) (9)

ζ = − σ√
σ2 + ω2

(10)

There is no one-to-one relationship between any single eigenvalue and a particular state because they
each belong to the system as a whole. It is therefore necessary to define the participation matrix P
which provides a numerical score of a particular eigenvalue against a specific state. The participation
matrix is generated from the matrices of right and left eigenvalues, Φ and Ψ respectively. Note that it
is standard practice to normalise these matrices such that ΨΦ = I.

Φ =
[
φ1 φ2 . . . φn

]
(11)

Ψ =
[
ψT

1 ψT
2 . . . ψT

n

]T
(12)

where the right and left eigenvectors are given by Equations (13) and (14) respectively.

Aφi = λφi = 0 (13)

ψiA = λψi = 0 (14)

φi =



φ1i

φ2i

. . .

φni


; ψi =

[
ψ1i ψ2i . . . ψni

]
(15)
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The modal matrices Φ and Ψ are then used to form the participation matrix P, the entries of which
will be used to determine the dominant eigenvalues for each state.

P =
[

p1 p2 . . . pn

]

where pi =


φ1iψi1

φ2iψi2

. . .

φniψin

 (16)

φki = kth row, ith column of modal matrix Φ.
ψik = ith row, kth column of modal matrix Ψ.

3. Results

The simulation will be run under three conditions in three different scenarios: no inertia control;
one-loop control from Figure 1a and two-loop control from Figure 1b, for the three network scenarios
defined below. The eigenproperties of the resulting state matrix will then be analysed to infer the
behaviour of each control strategy in the wider context of the network.

1. Base case—system is operating normally;
2. Heavy load—the governor fitted to generator 1 is limited such that it can no longer provide

additional power. The grid is now at full capacity and any imbalance between generation and
load will be strongly reflected in the frequency characteristic;

3. Weak interconnection—the tie-line connecting generator 1 to the rest of the system is reduced in
strength to represent a longer transmission line and a weaker grid.

3.1. Scenario 1—Base Case

For the base case of the model without any synthetic inertia control, the eigenvalues of A are
given in Table 1, which shows the real and imaginary components, the frequency and damping ratio of
each oscillatory mode and the associated dominant states as determined from the participation matrix.

From Table 1 it can be seen that there are several eigenvalues with rotor speed and angle as the
dominant states. The terms G() are used to specify the generators involved in each mode such that
G(1, 2, 3) affects all three generators from both areas, whereas G(2, 3) only applies to generators 2 and 3
which are confined to the same area. This demonstrates the concept of inter-area and local-area modes.

Since the mechanical dynamics of a DFIG are decoupled from the electric grid, they therefore
do not participate in the modes of oscillation and instead interact either by displacing synchronous
generators, or by interaction of the controllers with the damping torque of large generators [15].
This absence of coupling between the DFIG wind turbine and the synchronous generators is shown in
Table 1. In the absence of synthetic inertia control the terms in matrix A which couple the DFIG to the
synchronous generators are zero, meaning that the state variables of a wind turbine do not contribute
to the electromechanical oscillations between synchronous generators. When the DFIG is made to
behave more like a synchronous machine through synthetic inertia provision, a coupling is introduced
such that the DFIG contributes to these oscillations [16,17]. However, this effect is strongly tied to the
dynamics of the PLL and since this paper uses a purely dq-reference frame, the coupling is not seen
even when synthetic inertia control is introduced [14].

In scenario 1, the system appears as in Figure 2. The simulation is initialised for each of the
three control strategies using their respective equilibrium points for linearisation which results in a
state-space model. The time-domain response of the three control designs can be seen in Figure 3,
which shows an impulse being sent to the mechanical torque of generator 3 and the corresponding
effect this has on the rotor speed and hence electrical frequency. One-loop control shows improved
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recovery to a frequency disturbance as compared to no-control, while the two-loop improves on this
with an even more reduced frequency nadir.

Table 1. Eigenvalues of state matrix—base case.

Eigenvalue Real Imaginary Frequency Damping Dominant States

λ1,2 −0.399 ±368.00 58.569 0.001 λds,λqs

λ3,4 −4.116 ±80.19 12.763 0.051 λdr

λ5,6 −2.524 ±17.42 2.772 0.143 ∆δ, ∆ω G(2,3)

λ7,8 −2.315 ±15.06 2.397 0.152 ∆δ, ∆ω G(1,2,3)

λ9,10 −4.326 ±7.62 1.212 0.494 λqr

λ11 −3.566 - - - E
′

d G(1,2,3)

λ12 −3.351 - - - E
′

d G(2,3)

λ13,14 −0.156 ±2.31 0.368 0.067 T1, ∆δ, ∆ω G(1)

λ15 −1.962 - - - E
′

d G(1,2,3)

λ16 −0.376 - - - E
′
q G(2,3)

λ17 −0.345 - - - E
′
q G(1,2,3)

λ18 −0.157 - - - E
′
q G(1,2,3)

λ19 −0.100 - - - T2

λ20 −0.040 - - - T3

λ21 0.000 - - - Redundant
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Figure 3. Impulse response of electrical frequency to a change in mechanical torque. Graph shows the
deviation from the steady-state value.
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It can be seen from Table 1 that the system is stable, characterised by the negative real parts of
each eigenvalue. There are two rotor angle modes of oscillation: the inter-area mode of G(1,2,3) and
the local-area mode between G(2,3) identified from the table as λ5,6 and λ7,8. The mode shapes are
plotted in Figure 4a which shows the swinging of generator 1 with generators 2 and 3, and Figure 4b
which shows the swinging of generator 2 with generator 3.
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(a) Inter-area mode
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(b) Local-area mode

Figure 4. (a) Inter-area mode showing the swing of generator 1 with generators 2 and 3. (b) Local area
mode showing the swing of generator 2 with generator 3.

Figure 5 is a pole plot displaying the trajectories of the eigenvalues between the three control
strategies. The cluster of eigenvalues to the left of the graph, with real part ≈ −2.53, are those related
to the local area mode. These are unchanged between the three synthetic inertia control strategies
showing that the DFIG has no effect on local mode participation. The remaining eigenvalues belong
to the inter-area mode. As the control strategies are introduced, the eigenvalues shift further to the
right hand side representing a decreased stability characterised by a reduction in damping ratio. These
are given in Table 2 which shows how damping is reduced with the introduction of synthetic inertia.
The damping ratio is reduced from 0.152 in the no control run, to 0.151 and then 0.130 in the one-loop
and two-loop runs respectively. Similarly, the real component of the eigenvalue decreases from −2.335,
to −2.298 then −2.023. The results suggest that the more effective the synthetic inertia control becomes,
the lower the damping ratio for inter-area oscillations.

Table 2. Eigenproperties of dominant eigenvalues. Scenario 1—Base Case.

No Control One-Loop Two-Loop

Damping Ratio ζ ζ ζ

Local-area 0.143 0.143 0.143

Inter-area 0.152 0.151 0.130

Real Component σ σ σ

Local-area −2.524 −2.524 −2.524

Inter-area −2.315 −2.298 −2.023
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Figure 5. Pole-plot of dominant eigenvalues for ∆ω modes—scenario 1. The cluster to the left shows
the local-area mode which remains unchanged by different control strategies.

3.2. Scenario 2—Heavy Load

As described in the previous section, scenario 2 investigates the effect of different synthetic inertia
schemes on a heavily loaded network. In this simulation, the balancing mechanism is removed from
generator 1 such that the governor can no longer command the release of extra power in the event of a
disturbance. When one of the other generators is taken offline, as in this simulation, the frequency
does not recover and instead reduces to a new equilibrium.

The effects of synthetic inertia control on the electromechanical oscillations of the system are very
similar to those in the base case of scenario 1. Once again, the local-area modes are unaffected and
have therefore been omitted from any further analysis. The same pattern of reduced damping of the
inter-area mode can be seen in Table 3. As the control strategies become more sophisticated, the system
becomes less stable. The pole-plot in Figure 6 visualises the trend in Table 3 and shows a clear shift to
the right.

Table 3. Scenario 2—Heavy Load.

No Control One-Loop Two-Loop

Damping Ratio ζ ζ ζ

Local-area 0.143 0.143 0.143

Inter-area 0.153 0.152 0.131

Real Component σ σ σ

Local−area −2.522 −2.522 −2.522

Inter−area −2.329 −2.311 −2.034
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Figure 6. Pole-plot of dominant eigenvalues for ∆ω modes—scenario 2.

3.3. Scenario 3—Weak Grid

The final scenario investigates the effect of a weak grid on the system eigenvalues. Governor
action is restored to generator 1 but the tie-line connecting generator 1 to the rest of the network is
reduced in strength. This is achieved by increasing the value of the impedance to simulate a longer
transmission line. Such lines are common when a distant generating station must be connected to a
load centre over a considerable distance. The impedance between the bus at generator 1 and the central
has been increased from the initial value of ZG1old = 0.002 + j0.2 to ZG1new = 0.006 + j0.6, representing
a three-fold increase in impedance.

The effect on the system eigenvalues can be seen in Figure 7. Unsurprisingly, the system begins
much less damped than the base case of scenario 1. The eigenvalues find themselves further to the
right hand side towards increasing instability due to the weak grid criterion which has reduced the
overall damping of all oscillations. As the control strategies are applied, the same pattern of reduced
damping ratios can be seen to recur. Table 4 shows that the damping ratio of the inter-area mode is
reduced from 0.133 to 0.131 then to 0.102 for the no-control, 1-loop and 2-loop systems respectively.

Table 4. Scenario 3—Weak Grid.

No Control One-Loop Two-Loop

Damping Ratio ζ ζ ζ

Local-area 0.141 0.141 0.141

Inter-area 0.133 0.131 0.102

Real Component σ σ σ

Local−area −2.637 −2.638 −2.638

Inter−area −1.897 −1.872 −1.509
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Figure 7. Pole-plot of dominant eigenvalues for ∆ω modes—scenario 3.

4. Conclusions

This work has explored the effects of two different methods of synthetic inertia provision on
small-signal stability in the context of a power system. A three-generator model with an added
wind-farm was developed for the sole purpose of linearisation and small-signal analysis was
conducted to explore the eigenproperties of different controller topologies and their effects on the
electromechanical oscillations between generators. Three network scenarios were identified and tested,
these being: base case; heavily loaded system, and a weaker grid.

The results show a trend of decreasing small-signal stability as synthetic inertia is introduced,
with the more sophisticated two-loop synthetic inertia controller showing the greatest reduction.
These results are shown in Figures 5–7 and Tables 2–4, where the trajectories of the eigenvalues
demonstrate a decreasing damping ratio and a less-negative real part. The base case, heavy load and
weak grid simulations all mirror this effect. This suggests that the more a DFIG tries to emulate the
action of a synchronous generator, the more it participates in inter-area oscillations. Overall, this has
been characterised by a reduction in system damping ratio relating to those eigenvalues dominant to
the shared mechanical modes of the synchronous generators.

This study has focused on modelling and simulation, yet the real-world applications of this
study may present themselves in future electrical networks between the participation of wind farms
in synthetic inertia provision. There may exist a trade-off between the degree of participation in
frequency response and the greater instability associated with electromechanical oscillations. As the
penetration of low-inertial renewable energy systems increases, it is likely that the phenomena of
coupled oscillatory modes will become more apparent.
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Nomenclature

ωe Grid angular frequency
ωr DFIG rotor speed
f System frequency
Pmpp Power from maximum power tracker
Pin Power from inertia controller
Pre f Reference power sent to converter
K1,K2 Synthetic inertia gains
KiP Power controller gain
λds,λqs,λdr,λqr, Two-axis DFIG stator and rotor fluxes
K,T1,T2,T3 Governor gain and time constants
vds,vqs,vdr,vqr Two-axis stator and rotor voltage components
Rs,Rr stator and rotor resistance
Lls,Llr,Lm DFIG stator, rotor and mutual inductance
Tem,Tmech,Tdamp Electrical, mechanical and damping torque
J DFIG inertia constant
p DFIG pole pairs
Xd,Xq Two axis synchronous reactance
X
′

d,X
′
q Two axis transient reactance

T
′

d0,T
′
q0 Two axis transient time constant

H Inertia constant
D Damping constant

Appendix A

This section contains the equations used for modelling the various network elements as well as
the simulation parameters as shown in Tables A1 and A2.

The synchronous machines are modelled according to the dq-transient model in [11].
The following equations give the 4th order system.

vqs = E
′
q − Rsiq − Xdid (A1)

vds = E
′
d − Rsid − Xqiq (A2)

E
′
q =

1
T′d0

∫
[E f − E

′
q − id(Xd − X

′
d)] dt (A3)

E
′
d =

1
T′q0

∫
[E f − E

′
d − iq(Xq − X

′
q)] dt (A4)

Tem = −(E
′
qiq + E

′
did) (A5)

slip =
1

2H

∫
(Tem + Tmech − Tdamp) dt (A6)

δe =
∫
(ωr −ωe) dt (A7)

The governor model is taken from the IEEE Governor Standards in [18] titled ‘type-2 speed
governing model’ with gains and time constants given in Table A1.
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The DFIG is modelled as a 5th order system in the dq-reference frame according to [11] where the
fluxes are chosen as the state variables.

λqs =
∫

vqs − weλds −
Rs

Lls
(λqs − λmq) dt (A8)

λds =
∫

vds + weλqs −
Rs

Lls
(λds − λmd) dt (A9)

λqr =
∫

vqr − (we −ωr)λdr −
Rr

Llr
(λqr − λmq) dt (A10)

λdr =
∫

vdr + (we −ωr)λqr −
Rr

Llr
(λdr − λmd) dt (A11)

λmd = LM

(
λds
Lls
− λdr

Llr

)
(A12)

λmq = LM

(
λdq

Lls
−

λdq

Llr

)
(A13)

Tem =
3p
2
(λqridr − λdriqr) (A14)

ωr =
p
J

∫
(Tem − Tmech − Tdamp) dt (A15)

Table A1. Synchronous Machine Model Parameters.

Variable Gen 1 Gen 2 Gen 3

Rated Power (MW) 1000 200 200

Rated Voltage (kV) 18 18 18

Rs (pu) 0.0048 0.001 0.001

Xq (pu) 1.66 1.96 1.96

X
′
q (pu) 0.57 0.262 0.262

Xd (pu) 1.79 2.04 2.04

X
′

d (pu) 0.335 0.266 0.266

T
′
q0 (s) 0.41 0.9 0.9

T
′

d0 (s) 7.9 6.0 6.0

H (s) 3.77 2.7 2.7

D (pu) 2.0 2.0 2.0

Gov. K 50.0 - -

Gov. T1 (s) 0.1 - -

Gov. T2 (s) 0.1 - -

Gov. T3 (s) 0.04 - -

Gov. T4 (s) 0.04 - -
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Table A2. DFIG model parameters.

Rated Power (MW) 100 Llr (pu) 0.0996

Rated Voltage (kV) 18 Lm (pu) 3.935

Rs (pu) 0.0049 J (kg m2) 2.84 × 105

Rr (pu) 0.0055 D (pu) 0.01

Lls (pu) 0.0924 p 2
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