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Abstract: This paper deals with rotary and linear synchronous reluctance machines and synchronous
permanent magnet machines. It proposes a general method appropriate for determining the two-axis
dynamic models of these machines, where the effects of slotting, mutual interaction between the slots
and permanent magnets, saturation, cross-saturation, and—in the case of linear machines—the end
effects, are considered. The iron core is considered to be conservative, without any losses. The proposed
method contains two steps. In the first step, the dynamic model state variables are selected. They are
required to determine the model structure in an arbitrarily chosen reference frame. In the second step,
the model parameters, described as state variable dependent functions, are determined. In this way,
the magnetically nonlinear behavior of the machine is accounted for. The relations among the Fourier
coefficients of flux linkages and electromagnetic torque/thrust are presented for the models written in
dq reference frame. The paper presents some of the experimental methods appropriate for determining
parameters of the discussed dynamic models, which is supported by experimental results.

Keywords: synchronous machines; dynamic models; nonlinear magnetics; parameter estimation

1. Introduction

Rotary electric machines perform rotary motion or rotation, the origin of which is the
electromagnetic torque produced in the machine. Linear electric machines perform linear motion or
translation. It is caused by the thrust produced in the machine. In the linear and rotary permanent
magnet synchronous machines (PMSMs), the torque or thrust that causes motion appears due to a
magnetic field which results from the interaction between magnetic excitations caused by the winding
currents and the permanent magnets. In synchronous reluctance machines (SRMs) the origin of motion
is a force or torque caused by the magnetic field resulting from the interaction of winding currents
and variable reluctance. Modern PMSMs make use of both phenomena in order to increase the thrust
or torque.

In the modern modeling of electric machines, the contribution of G. Kron [1–3], where he set a solid
and general theoretical background for modeling of electric machines, is often neglected. The generality
of Kron’s tensor-based approach was reduced by introducing matrices [4–6], where electric machines
are mostly treated as magnetically linear systems with neglected magnetically nonlinear properties.
However, these properties have to be included in the dynamic models of electric machines when a
good agreement between the measured and calculated results is required, or when these models are
applied in nonlinear control design for demanding applications.
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A constant saliency ratio and a variable inductance are applied in [7–9] to describe the effects of
saturation while the authors in [10] use two parameters to describe the magnetically nonlinear properties
of a synchronous machine. The authors in [11] show that only using one parameter seems to be
insufficient for a proper description of magnetically nonlinear properties of a PMSM. The characteristics
of flux linkages are applied in [12] to describe the magnetically nonlinear properties of a linear SRM.
The model proposed in [12] is used in the realization of nonlinear input-output linearizing control
in [13], where the magnetically nonlinear properties of the machine are considered. To represent a
conservative or loss-less system, the characteristics of flux linkages must fulfill the conditions described
in [14,15]. An energy function-based magnetically nonlinear model of an SRM is described in [16].
It is applied in the sensorless control realizations reported in [17,18]. The magnetically nonlinear
dynamic models of PMSMs based on the characteristics of flux linkages are presented in [19–21].
The authors in [22–24] demonstrate the use of magnetically nonlinear PMSM models in different control
applications. On the contrary, the authors in [25–32] use mainly magnetically linear models of PMSMs
for similar purposes. Different methods that can be used to determine the parameters of magnetically
nonlinear PMSM and SRM models are presented in [11,12], [16], [19–21] and [33–40].

The authors of some of the aforementioned papers often use the magnetically nonlinear dynamic
models of synchronous machines without explaining how these models were derived and how their
parameters were determined. Therefore, this paper proposes a general procedure for determining the
magnetically nonlinear dynamic models of rotary and linear PMSMs and SRMs, which is presented in
Section 2. The proposed procedure is completed by the descriptions of experimental methods that
can be applied for determining parameters of the obtained models. They are presented in Section 3.
The paper ends with the presentation of experimental results given in Section 4, and the Conclusion
given in Section 5. The novelties in this paper are related to the proposed straightforward method for
determining the structure of the magnetically nonlinear two-axis dynamic models of rotary and linear
PMSMs and SRMs written in dq references frame, to the presented relations among Fourier coefficients
of flux linkages and electromagnetic force/thrust, and partially to the experimental methods applied
for determining required parameters of the obtained dynamic models.

2. Dynamic Models

This section first explains the differences between the magnetically nonlinear properties of
ferromagnetic materials, and the magnetically nonlinear properties of an entire electric machine
observed from its terminals. Then the three-phase rotary PMSM is described with its three-phase
magnetically nonlinear dynamic model in a general form, where the effects of slotting, interaction
between the slots and permanent magnets, saturation, and cross-saturation are considered. The iron
core is considered to be a conservative, or loss-less, system [14,15], which means that the effects of iron
core losses are neglected. The three-phase model is then transformed into a model written in the dq0
reference frame, where the d-axis is aligned with the flux linkage vector due to the permanent magnets.
In this way, only the structure of the magnetically nonlinear model written in the dq0 reference frame
is obtained, whereas the model parameters must be determined either experimentally or, e.g., by
finite element analysis (FEA). Some of the suitable experimental methods are presented in Section 3.
The model flux linkages and the electromagnetic torque are expressed in the form of Fourier series.
The relations between the Fourier coefficients of flux linkages and the electromagnetic torque are
presented. The obtained magnetically nonlinear PMSM dynamic model written in the dq0 reference
frame is modified in order to be suitable for a proper description of PMSM performing linear motion,
where the end effects are an integral part of this model. By neglecting the effects of permanent magnets
in the obtained dynamic models of rotary and linear PMSMs, the magnetically nonlinear dynamic
models of rotary and linear SRMs are determined.
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2.1. Magnetically Nonlinear Behavior of an Electric Machine

When dealing with a ferromagnetic material, its magnetically nonlinear behavior can be described
by the B(H) characteristics, where B is the magnetic flux density while H is the magnetic field
strength [41]. The B(H) characteristics are normally determined experimentally for a specimen of the
material [39]. The differential permeability, given in the form of the partial derivative ∂B/∂H, can be
used to describe the local changes in the properties of an isotropic material along the B(H) characteristic.
Similarly, in the case of an anisotropic material, the changes in material properties influence the relation
between the flux density vector B and the magnetic field strength vector H, which can be described with
the differential permeability tensor ∂B/∂H. Unfortunately, the approach appropriate to describe the
magnetically nonlinear behavior of material is not appropriate to describe the resultant magnetically
nonlinear behavior of an entire electric machine, especially in cases where only those variables available
on the machine’s terminals can be used to describe the machine’s magnetically nonlinear behavior.

In an electric machine, different kinds of material can be combined [42–47] in order to reach
different goals. Different kinds of material, together with the machine’s geometry, influence the
resultant magnetically nonlinear behavior of the entire machine as it can be observed through the
variables measured on the machine’s terminals. These variables are the currents and voltages, while the
flux linkages can be determined by the integration of corresponding voltages. If the machine contains
only one winding, its magnetically nonlinear behavior can be described by the relation between the flux
linkage ψ and the current i, given in the form of ψ(i) characteristic. The local magnetically nonlinear
behavior of the machine along the ψ(i) characteristic is described with the partial derivative ∂ψ/∂i.
In the case of an electric machine that contains more windings, the currents and corresponding flux
linkages of all windings can be arranged in the current vector i and flux linkage vector ψ. The use of
linearly independent variables in both vectors is recommendable. The magnetically nonlinear behavior
of the machine can be described by the ψ(i) characteristics, while the partial derivative ∂ψ/∂i can be
used to describe the local magnetically nonlinear behavior along the ψ(i) characteristics.

2.2. Dynamic Model of a Rotary Three-Phase PMSM

A schematic presentation of the two-pole, three-phase PMSM is given in Figure 1 where the model
phase windings are placed in the magnetic axes of actual phase a, b and c stator windings.
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Figure 1. Schematic presentation of a two-pole, three-phase PMSM.

The d-axis is aligned with the magnetic axis of the flux linkage vector ψm due to the permanent
magnets placed on the rotor, while ψm denotes the length of ψm. The q-axis leads the d-axis for the
electric angle of π/2. The d-axis is displaced with respect to the phase a axis for an electric angle θ
which represents the (angular) rotor position.
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The mathematical description of the PMSM shown in Figure 1, written in its most general form
in the abc reference frame, defined with the magnetic axes of the phase a, b and c windings, is given
by (1) to (4):

uabc = Riabc +
d
dt
ψabc +

d
dt
ψmabc, (1)

J
d2θ

dt2 = te(ia, ib, ic,ψm,θ) − tl − b
dθ
dt

, (2)

uabc =


ua

ub
uc

, iabc =


ia
ib
ic

, R =


Ra

Rb
Rc

, (3)

ψabc =


ψa(ia, ib, ic,θ)

ψb(ia, ib, ic,θ)

ψc(ia, ib, ic,θ)

, ψmabc =


ψma(θ)

ψmb(θ)

ψmc(θ)

, (4)

where ua, ub and uc are the phase a, b and c voltages, ia, ib and ic are the phase a, b and c currents, Ra, Rb
and Rc are the phase a, b and c resistances, J is the moment of inertia, te is the electromagnetic torque, tl
is the load torque while b is the coefficient of friction. The phase a, b and c flux linkages caused by the
permanent magnets are marked with ψma, ψmb and ψmc, respectively. Similarly, ψa, ψb and ψc are the
phase a, b and c flux linkages caused by the magnetic excitation due to the stator currents.

The three-phase magnetically nonlinear PMSM dynamic model, given in a general form by (1)
to (4), is not intended to be used in the design of electric machines, but in dynamic simulations and
control design. It is given for a two-pole machine or two poles of a multi-pole machine. For PMSMs
with a higher number of the pole pairs (p > 1), the electromagnetic torque in (2) must be multiplied by
p and the relation between the mechanical angle θm and the electric angle θ = pθm must be considered.
The electromagnetic torque te in (2) depends on the stator currents ia, ib, ic, flux linkages due to
the permanent magnets ψm and the position θ. The presumption that the flux linkages due to the
permanent magnets are position-dependent, while the flux linkages due to the magnetic excitation with
the stator currents are current- and position-dependent, seems to be reasonable as a first approximation.
Both the position-dependent flux linkages due to the permanent magnets as well as the current- and
position-dependent flux linkages due to the stator current excitation are used in model (1)–(4) to
consider the effects of slotting, interactions between the slots and permanent magnets, saturation,
and cross-saturation. The characteristics of the current- and position-dependent flux linkages can be
determined either experimentally or by the FEA.

Most of the PMSMs used in electric drives are wye connected, which means that the currents ia, ib
and ic are linearly dependent. Since only the models with independent state variables can be used in
the control design, the model (1)–(4), written in the abc reference frame, is transformed into another
reference frame, where the state variables are independent while the obtained model is appropriate for
the control design. A usual choice is the dq0 reference frame, where the d- and q-axes shown in Figure 1
are orthogonal, while the 0-axis is orthogonal to both of them. Since the flux linkages (4) are nonlinearly
dependent on currents and position in order to consider the magnetically nonlinear behavior of the
PMSM, the well-known methods for derivation of magnetically linear PMSM models [4,5] cannot
be applied.

The procedure described in this work makes it possible only to determine the structure of the
magnetically nonlinear PMSM model written in the dq0 reference frame. The corresponding model
parameters in the form of current- and position-dependent characteristics of flux linkages have to be
determined separately using experimental or FEA-based methods.

Independently of (1) and (2), which describe the voltage balances and motion of the PMSM,
the voltage and current vectors uabc and iabc, as well as the position-dependent vector of flux linkages
due to the permanent magnets ψmabc, can be always written in a new reference frame. The relation
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between the vector written in the reference frame abc (•abc) and the one written in the reference frame
dq0 (•dq0) is given by the transformation matrix T (5) and Equations (6) and (7):

T =

√
2
3


cos(θ) − sin(θ)

√
2

2

cos
(
θ+ 4

3π
)
− sin

(
θ+ 4

3π
) √

2
2

cos
(
θ+ 2

3π
)
− sin

(
θ+ 2

3π
) √

2
2

 (5)

uabc = Tudq0; iabc = Tidq0; ψmabc = Tψmdq0; ψabc = Tψdq0; (6)

udq0 =


ud
uq

u0

, idq0 =


id
iq
i0

, ψmdq0 =


ψmd(θ)

ψmq(θ)

ψm0(θ)

, ψdq0 =


ψd(id, iq, i0,θ)

ψq(id, iq, i0,θ)

ψ0(id, iq, i0,θ)

 (7)

where indices d, q and 0 denote the currents, voltages and flux linkages written in the dq0 reference
frame. Again, ψmdq0 is the position-dependent flux linkage vector due to the permanent magnets,
while ψdq0 is the current and position vector dependent flux linkage vector due to magnetic excitation
of the stator currents. Before the relation ψabc = T ψdq0 can be written, the currents ia, ib and ic in
ψabc(ia, ib, ic, θ) (4) must be replaced with the currents id, iq and i0. This means that the flux linkage
vector ψabc, that describes magnetically nonlinear behavior of the PMSM, is expressed as a nonlinear
function ψabc(id, iq, i0, θ).

Considering (6) in (1) yields (8), while (11) is obtained after simple mathematical manipulations
in (9) and (10).

Tudq0 = RTidq0 +
d
dt

{
Tψdq0

}
+

d
dt

{
Tψmdq0

}
(8)

udq0 = T−1RTidq0 + T−1 d
dt

{
Tψdq0

}
+ T−1 d

dt

{
Tψmdq0

}
(9)

udq0 = T−1RTidq0 + T−1 d
dt
{T}ψdq0 + T−1T

d
dt

{
ψdq0

}
+ T−1 d

dt
{T}ψmdq0 + T−1T

d
dt

{
ψmdq0

}
(10)

udq0 = T−1RTidq0 + T−1 d
dt
{T}ψdq0 +

d
dt

{
ψdq0

}
+ T−1 d

dt
{T}ψmdq0 +

d
dt

{
ψmdq0

}
(11)

The form of the matrix equation that describes voltage balances in the magnetically nonlinear
PMSM dynamic model, written in the dq0 reference frame, is given by (11). Considering the balanced
stator resistances R = Ra = Rb = Rc in (3) and (5), (7), and (9) in (11) gives (12):


ud
uq

u0

 = R


id
iq
i0

+

∂ψd
∂id

∂ψd
∂iq

∂ψd
∂i0

∂ψq
∂id

∂ψq
∂iq

∂ψq
∂i0

∂ψ0
∂id

∂ψ0
∂iq

∂ψ0
∂i0


d
dt


id
iq
i0

+ dθ
dt .



∂ψd
∂θ
∂ψq
∂θ
∂ψ0
∂θ

+

−ψq

ψd
0

+

∂ψmd
∂θ
∂ψmq
∂θ
∂ψm0
∂θ

+

−ψmq

ψmd

0


 (12)

where the time derivatives are expressed by the partial derivatives using the chain rule. For the
wye connected PMSM, the current i0 from (7) can be expressed using (6) and the inverse T−1 of the
transformation matrix T (5), which gives (13).

ia + ib + ic = 0⇒ i0 =

√
2
3

1
√

2
(ia + ib + ic) = 0 (13)

Since i0 equals 0, all terms containing i0 in (12) can be eliminated. The machine’s neutral point
voltage u0 is caused by the locally changing saturation level inside the machine. Considering (12), u0

can be expressed by (14) as:
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u0 =
∂ψ0

∂id

did
dt

+
∂ψ0

∂iq

diq
dt

+
∂ψ0

∂θ
dθ
dt

+
∂ψm0

∂θ
dθ
dt

(14)

where on the right-hand side of (14) the dominant last term represents the changes of the flux linkage
vector component ψm0, caused by the changing position of the permanent magnets with respect to the
stator windings. The first three normally recessive terms appear due to the changes in ψ0 caused by the
changing id, iq and θ. In the cases when iron core losses are important, the changing flux linkages ψ0

and ψm0 can contribute to the increase of iron core losses. The effects of changing neutral point voltage
u0 are often neglected, since they are implicitly compensated by the closed-loop current controllers,
which force the currents id and iq to follow their references. Moreover, according to (12), u0 cannot
directly influence the d- and q-axis currents, voltages and flux linkages. After neglecting all terms
in (12) that contribute to u0, (12) changes to (15). Equation (15) describes the voltage balances in the
magnetically nonlinear two-axis dynamic model of PMSM written in the dq reference frame. The model
is completed by (16), describing motion while the torque equation is still missing.

[
ud
uq

]
= R

[
id
iq

]
+


∂ψd
∂id

∂ψd
∂iq

∂ψq
∂id

∂ψq
∂iq

 d
dt

[
id
iq

]
+

dθ
dt



∂ψd
∂θ
∂ψq
∂θ

+
[
−ψq

ψd

]
+


∂ψmd
∂θ
∂ψmq
∂θ

+
[
−ψmq

ψmd

] (15)

J
d2θ

dt2 = te − tl − b
dθ
dt

(16)

The electromagnetic torque te can be determined as a partial derivative of coenergy Wc [5] (17).

te
(
id, iq,θ

)
=
∂Wc

(
id, iq,θ

)
∂θ

(17)

To consider the effects of cogging torque in the cases when the stator currents id, iq are not flowing, it
is wise to describe the flux linkages due to the permanent magnets ψmd and ψmq as position-dependent
functions of a fictive excitation current. In this way, the coenergy can change with the position
even when id, iq are not flowing, while its partial derivative gives a position-dependent term in the
electromagnetic torque which represents the cogging torque. The calculation of coenergy could be
quite a demanding task especially in the cases when the flux linkages due to the permanent magnets
are position-dependent while the flux linkages due to the stator current excitation are current- and
position-dependent. Therefore, the expression for electromagnetic torque is determined from the
power balance (18), where the products of induced voltages ed, eq and currents id, iq in d- and q-axis are
given by (19).

dθ
dt

te = edid + eqiq (18)

edid = dθ
dt

(
∂ψd
∂θ +

∂ψmd
∂θ −ψq −ψmq

)
id

eqiq = dθ
dt

(
∂ψq
∂θ +

∂ψmq
∂θ +ψd +ψmd

)
iq

(19)

The comparison of the left-hand side and the right-hand side of (18), considering products (19),
gives (20).

te =

(
∂ψd

∂θ
+
∂ψmd

∂θ
−ψq −ψmq

)
id +

(
∂ψq

∂θ
+
∂ψmq

∂θ
+ψd +ψmd

)
iq (20)

Equation (20) represents a very good approximation for electromagnetic torque calculation.
It gives acceptable results with the exception of no current condition, where the cogging torque cannot
be calculated properly.

The magnetically nonlinear two-axis PMSM model is given by (15), (16) and (20). To consider
the magnetically nonlinear behavior of the PMSM, which means the effects of slotting, the interaction
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between the slots and permanent magnets as well as the saturation and cross-saturation,
the characteristics of flux linkages must be determined properly, which is discussed in the next
section. The next subsection describes the relations between individual harmonic components of the
flux linkages and electromagnetic torque.

2.3. Fourier Analysis of Flux Linkages and Torque

The position- and current-dependent flux linkages ψd and ψq, caused by the stator currents, are
given in the form of Fourier series (21) and (22) for different constant values of id and iq:

ψd = ψd0 +
N∑

h=1

(ψdch cos(hθ) +ψdsh sin(hθ)) (21)

ψq = ψq0 +
N∑

h=1

(
ψqch cos(hθ) +ψqsh sin(hθ)

)
(22)

where h is the harmonic order, N is the highest harmonic order while ψd0, ψq0, ψdch, ψqch and ψdsh,
ψqsh are the Fourier coefficients. Similarly, ψmd0, ψmq0, ψmdch, ψmqch and ψmdsh, ψmqsh are the Fourier
coefficients of the position-dependent flux linkages ψmd and ψmq, caused by the permanent magnets
and given in the form of Fourier series (23) and (24).

ψmd = ψmd0 +
N∑

h=1

(ψmdch cos(hθ) +ψmdsh sin(hθ)) (23)

ψmq = ψmq0 +
N∑

h=1

(
ψmqch cos(hθ) +ψmqsh sin(hθ)

)
(24)

The electromagnetic torque te can be expressed in the form of Fourier series (25), with the Fourier
coefficients Td0, Tch and Tsh.

te = Te0 +
N∑

h=1

(Tch cos(hθ) + Tsh sin(hθ)) (25)

Considering (21) to (24) in (20) leads to the relations between the Fourier coefficients of electromagnetic
torque and flux linkages described by (26) to (28), where h is the harmonic order.

Te0 =
(
(ψd0 +ψmd0)iq −

(
ψq0 +ψmq0

)
id
)

(26)

Tech = (ψdch +ψmdch)iq −
(
ψqch +ψmqch

)
id + h(ψdsh +ψmdsh)id + h

(
ψqsh +ψmqsh

)
iq (27)

Tesh = (ψdsh +ψmdsh)iq −
(
ψqsh +ψmqsh

)
id − h(ψdch +ψmdch)id − h

(
ψqch +ψmqch

)
iq (28)

The well-known equation for electromagnetic torque of a PMSM is obtained when only the DC
torque component (26) is applied. Such a description of electromagnetic torque is normally sufficient
for application at higher speeds, where the losses are not of primary interest, while the higher harmonic
order torque pulsation is filtered out through the mechanical subsystem of the PMSM and does not
influence the speed and position trajectories. However, in low-speed applications, the higher harmonic
order torque pulsation cannot be filtered out through the mechanical subsystem of the PMSM and
directly influence the speed and position trajectories. In such cases, the terms (27) and (28), containing
only a few dominant torque harmonics, can be substantial for a proper, often nonlinear, control design
and smooth tracking of position and speed references.
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2.4. Dynamic Model of Linear PMSM

In the case of linear PMSM, the angular position θ is expressed with the pole pitch τp and the
position x (29), while the electromagnetic torque te (20) and the moment of inertia J in (2) are replaced
with the thrust fe (31) and the mass m in (32). Considering these changes, the magnetically nonlinear
two-axis dynamic model of a linear PMSM is given by (29) to (32):

θ =
π
τp

x (29)

[
ud
uq

]
= R

[
id
iq

]
+


∂ψd
∂id

∂ψd
∂iq

∂ψq
∂id

∂ψq
∂iq

 d
dt

[
id
iq

]
+
π
τp

dx
dt



∂ψd
∂x
∂ψq
∂x

+
[
−ψq

ψd

]
+


∂ψmd
∂x
∂ψmq
∂x

+
[
−ψmq

ψmd

] (30)

fe =
π
τp

(
∂ψd

∂x
+
∂ψmd

∂x
−ψq −ψmq

)
id +

π
τp

(
∂ψq

∂x
+
∂ψmq

∂x
+ψd +ψmd

)
iq (31)

m
d2x
dt2 = fe − fl − f f (32)

where fl and ff are the load force and friction force, respectively. Equation (30) describes voltage balances,
(31) is the thrust expression, while (32) describes linear motion (translation). The expressions for the flux
linkages (21) to (24) preserve their forms while θ is replaced with x π/τp (29). Similarly, the expressions
for electromagnetic torque (25) to (28) change to (33) to (36), describing the position-dependent thrust
produced by the linear PMSM, where F0, Fch and Fsh are the Fourier coefficients of the thrust fe.

fe = F0 +
N∑

h=1

(
Fch cos

(
h
π
τp

x
)
+ Fsh sin

(
h
π
τp

x
))

(33)

F0 =
π
τp

(
(ψd0 +ψmd0)iq −

(
ψq0 +ψmq0

)
id
)

(34)

Fch =
π
τp

(ψdch +ψmdch)iq −
π
τp

(
ψqch +ψmqch

)
id +

π
τp

h(ψdsh +ψmdsh)id +
π
τp

h
(
ψqsh +ψmqsh

)
iq (35)

Fsh =
π
τp

(ψdsh +ψmdsh)iq −
π
τp

(
ψqsh +ψmqsh

)
id −

π
τp

h(ψdch +ψmdch)id −
π
τp

h
(
ψqch +ψmqch

)
iq (36)

The magnetically nonlinear dynamic model of the linear PMSM is given by (29) to (31). It is
completed by (33) to (36), required for the thrust calculation. In addition to the effects of slotting,
interaction between the slots and permanent magnets, saturation and cross-saturation, this model
implicitly also considers the end effects which are specific for the linear machines.

2.5. Dynamic Models of Rotary and Linear Synchronous Reluctance Machines

When the schematic presentations of the PMSM shown in Figure 1 and the one showing
synchronous reluctance machine (SRM) in Figure 2 are compared, and neglecting the actual designs of
the machines, the only substantial difference that can be pointed out is the missing permanent magnets
in the case of SRMs. Thus, the d-axis is defined with the axis of the lowest reluctance.

The magnetically nonlinear two-axis dynamic models of the rotary and linear SRMs can be
described with the same sets of equations as the models of corresponding PMSMs, omitting the flux
linkages due to the permanent magnets and their partial derivatives. Considering ψmd = 0, ψmq = 0,
∂ψmd/∂θ = 0, and ∂ψmq/∂θ = 0 in (15) and (20) leads to the magnetically nonlinear two-axis dynamic
model of a rotary SRM given by (37) describing voltage balances, (38) describing electromagnetic
torque, and (16) describing motion.
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[
ud
uq

]
= R

[
id
iq

]
+


∂ψd
∂id

∂ψd
∂iq

∂ψq
∂id

∂ψq
∂iq

 d
dt

[
id
iq

]
+

dθ
dt



∂ψd
∂θ
∂ψq
∂θ

+
[
−ψq

ψd

] (37)

te =

(
∂ψd

∂θ
−ψq

)
id +

(
∂ψq

∂θ
+ψd

)
iq (38)

Similarly, if ψmd = 0, ψmq = 0, ∂ψmd/∂x = 0, and ∂ψmq/∂x = 0 are considered in (30) and (31),
the magnetically nonlinear two-axis dynamic model of a linear SRM can be given by (39) describing
voltage balances, (40) describing thrust, and (32) describing motion.

[
ud
uq

]
= R

[
id
iq

]
+


∂ψd
∂id

∂ψd
∂iq

∂ψq
∂id

∂ψq
∂iq

 d
dt

[
id
iq

]
+
π
τp

dx
dt



∂ψd
∂x
∂ψq
∂x

+
[
−ψq

ψd

] (39)

fe =
π
τp

(
∂ψd

∂x
−ψq

)
id +

π
τp

(
∂ψq

∂x
+ψd

)
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3. Procedures for Determining Parameters of Dynamic Models

The magnetically nonlinear two-axis dynamic models of rotary and linear PMSMs and SRMs,
written in the dq reference frame, are given in Section 2. The magnetically nonlinear properties of the
discussed machines are described in the form of position-dependent characteristics of flux linkages due
to the permanent magnets and in the form of current- and position-dependent characteristics of flux
linkages due to the magnetic excitation of stator currents. These characteristics complete the models.
They can be determined using FEA or experimental methods. Some of the experimental methods that
can be applied for the rotary and linear machines are described in the next subsections. The other
parameters required in the model, like the stator resistance R, the moment of inertia J, the mass m,
and the coefficient of viscous friction b, are not discussed in this paper since they can be measured
directly or determined by some of the well-known methods.

3.1. Flux Linkages Caused by the Permanent Magnets

The tested three-phase PMSM is driven by another speed-controlled machine at the constant speed.
The position θ and the speed ω = dθ/dt are measured together with the waveforms of the three-phase
back electromotive forces (EMFs) ea, eb and ec available on the open PMSM terminals. Considering (5)
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to (7), the waveforms of ed, eq and e0 are calculated. Neglecting e0 and ψm0, and considering id = 0,
iq = 0, and ω = dθ/dt, (15) reduces to (41) and (42).

ed
ω

= −ψmq +
∂ψmd

∂θ
(41)

eq

ω
= ψmd +

∂ψmq

∂θ
(42)

After performing partial derivation of (41) and (42) with respect to θ, (43) and (44) are obtained.
The partial derivatives ∂ψmd/∂θ and ∂ψmq/∂θ expressed from (41) and (42) are considered in (43) and
(44), which gives (45) and (46) [19–21].

∂
∂θ

( ed
ω

)
= −

∂ψmq

∂θ
+
∂2ψmd

∂θ2 (43)

∂
∂θ

( eq

ω

)
=
∂ψmd

∂θ
+
∂2ψmq

∂θ2 (44)

∂2ψmd

∂θ2 +ψmd =
∂
∂θ

( ed
ω

)
+

eq

ω
(45)

∂2ψmq

∂θ2 +ψmq =
∂
∂θ

( eq

ω

)
−

ed
ω

(46)

The back EMFs ed and eq, as well as the flux linkages ψmd and ψmq, are expressed in the form of
Fourier series (47) to (50):

ed = ed0 +
N∑

h=1

(edch cos(hθ) + edsh sin(hθ)) (47)

eq = eq0 +
N∑

h=1

(
eqch cos(hθ) + eqsh sin(hθ)

)
(48)

ψmd = ψmd0 +
N∑

h=1

(ψmdch cos(hθ) +ψmdsh sin(hθ)) (49)

ψmq = ψmq0 +
N∑

h=1

(
ψmqch cos(hθ) +ψmqsh sin(hθ)

)
(50)

where h is the harmonic order and N is the highest harmonic order. The Fourier coefficients of the back
EMFs are denoted with ed0, edch, edsh and eq0, eqch, eqsh, while the ones describing the flux linkages are
denoted with ψmd0, ψmdch, ψmdsh and ψmq0, ψmqch, ψmqsh. After inserting (47) to (50) into (45) and (46),
and performing the required partial derivations of (47) to (50), (51) and (52) are obtained. They describe
the relations among individual Fourier coefficients of the flux linkages and back EMFs.

(
1− h2

)
(ψmdch cos(hθ) +ψmdsh sin(hθ)) =

hedsh + eqch

ω
cos(hθ) +

−hedch + eqsh

ω
sin(hθ) (51)

(
1− h2

)(
ψmqch cos(hθ) +ψmqsh sin(hθ)

)
=

heqsh − edch

ω
cos(hθ) +

−heqch − edsh

ω
sin(hθ) (52)

The comparison of the terms that multiply the same harmonic function on the left- and right-hand
side of (51) and (52) gives (53) and (54), where the Fourier coefficients of flux linkages are expressed
with the Fourier coefficients of back EMFs.
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ψmdch =
hedsh + eqch

(1− h2)ω
, ψmdsh =

−hedch + eqsh

(1− h2)ω
(53)

ψmqch =
heqsh − edch

(1− h2)ω
, ψmqsh =

−heqch − edsh

(1− h2)ω
(54)

Thus, the position-dependent characteristics of flux linkages ψmd and ψmq are completely defined
with the Fourier coefficients of the back EMFs measured on the open terminals of the tested PMSM.
To achieve acceptable results, it is often sufficient to consider the DC component supplemented by a
few dominant higher order harmonics.

3.2. Flux Linkages Caused by the Stator Currents

The characteristics of current- and position-dependent flux linkages ψd and ψq, caused by the
magnetic excitation of the stator currents, can be determined with tests performed at the locked rotor
of the PMSM, where dθ/dt = 0. The tested PMSM is supplied with a controlled voltage source inverter
(VSI). The current in the one axis is closed loop controlled in order to keep the constant value, while the
voltage in the orthogonal axis is changing in a stepwise manner. Considering the described conditions
and a constant value of the current iq, the first row of (15) is reduced to (55).

ud = Rid +
∂ψd

∂id

did
dt

= Rid +
dψd

dt
(55)

The stepwise changing voltage ud and the responding current id, measured during the test, are
applied to determine the time behavior of the flux linkage ψd(t) by numerical integration (56):

ψd(t) = ψd(0) +

t∫
0

(ud(τ) −Rid(τ)) dτ (56)

where ψd(0) is the initial d-axis flux linkage due to the permanent magnets and remanent flux.
If ψd(0) is considered to have a value of 0, the flux linkage ψd(t) (56) contains only changes around
pre-magnetization ψd(0) = ψmd caused by the permanent magnets. ψd(t) can be presented as a current
id(t) dependent function given in the form of a hysteresis loop ψd(id) at the constant values of iq
and θ. A family of hysteresis loops ψd(id) is obtained by repeating the described procedure for
different amplitudes of the stepwise changing voltages ud. The end points of individual hysteresis
loops are used to define a unique characteristic ψd(id). If the described procedure is repeated first for
different constant values of the closed-loop controlled current iq, and after that for different positions
of the locked rotor θ, the current- and position-dependent characteristics ψd(id, iq, θ), required in
(15) and (20), can be determined over the entire range of operation. Similar procedure is applied to
determine the characteristics ψq(id, iq, θ). It must be pointed out that ψd(id, iq, θ) and ψq(id, iq, θ) are
the characteristics of flux linkages caused by the magnetic excitation of the stator current. Implicitly,
these characteristics also contain the effects of pre-magnetization caused by the permanent magnets,
considered as ψd(0) = ψmd (56) and similarly ψq(0) = ψmq.

The proposed method for determining the characteristics of flux linkages is robust, if the resistance
R in (56) is determined and updated from the steady state current and voltage after each voltage
step change

4. Experiments and Results

In this section, the descriptions of the applied experimental set-up, tested objects and presented
results are given.
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4.1. Experimental Set-Up and Tested Machines

The applied experimental set-up is schematically presented in Figure 3. It consists of the tested
rotary (or linear) PMSM or SRM, controlled VSI, current measurement chains based on LEM current
sensors, voltage measurement chains based on differential probes, torque sensor and measurement
chain, external source of torque in the form of speed or torque controlled machine acting as an active
load, and control system dSPACE 1103 PPC, which is used for the open-loop voltage control and
closed-loop current control of the tested machine performed in the dq reference frame.
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A photograph of the experimental set-up applied to determine the magnetically nonlinear
characteristics of the tested rotary SRM and PMSM at locked rotor is shown in Figure 4. The tested
synchronous machine shaft is connected to the mechanical brake with a clutch as shown in the
photograph on the right-hand side in Figure 4. However, when the back-EMFs are measured, as is
described in the next subsection, the mechanical brake is replaced by a speed-controlled driving motor,
providing a constant angular speed. The stator terminals with connected differential probes are open
which enables the measurement of the back-EMFs with differential probes.Energies 2018, 11, x FOR PEER REVIEW  13 of 22 
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Similarly, Figure 5 shows the experimental set-up applied for experimental work on linear
synchronous machines [12,48].
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Two prototypes of rotary machines were built, with the aim of confirming the here-proposed
methods experimentally. The stator of a standard 1.1 kW induction motor (frame size 90) with a
four-pole three-phase winding in wye connection was employed. Two equal reluctance rotors with
flux barriers were constructed. Permanent magnets of Nd-Fe-B type were inserted in the flux barriers
of one of the rotors, thus producing a pure SRM and an interior PMSM; these were employed in the
experimental study. The cross-sections of the aforementioned rotors are schematically represented in
Figure 6.
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The third tested object is a prototype of a linear SRM with a short moving primary and a long
secondary as shown in Figure 7 [48].
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4.2. Determining Flux Linkages Caused by the Permanent Magnets

The procedure for determining these flux linkages is described in Section 3.1. Figure 8 shows
the position-dependent three-phase back EMFs ea, eb and ec measured on the open terminals of the
tested PMSM driven by another speed-controlled machine. Figure 9 shows the back EMFs ed, eq and e0

determined from ea, eb and ec shown in Figure 8, by (6) considering the inverse of the transformation
matrix (5). After performing the procedure described in Section 3.1, considering only the dominant
harmonics up to the harmonic order 30, the position-dependent characteristics of flux linkages shown
in Figure 10 are determined.
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Figure 8. Back EMFs ea, eb and ec measured on the open terminals of the tested PMSM.
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Figure 9. Back EMFs ed, eq and e0 calculated from the measured back EMFs ea, eb and ec.
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Figure 9 clearly shows that the back EMFs ea, eb and ec are transformed into ed, eq and e0, where
e0 , 0. In the given case the machine terminals are open, and no currents are flowing. Thus, e0 equals
the last term on the right-hand side of (14) and changes the neutral point voltage (u0 = e0). In the wye
connected machines i0 (13) cannot flow and cannot influence the voltages ud and uq in (12), although
u0 , 0. Therefore, (12) can be reduced to (15), which means that u0 is neglected, although it exists.
The model obtained in this way is correct. However, in the case of control scheme realization (Figure 3),
the neutral point voltage u0 changes all the time, which means that the current controllers compensate
the influence of u0 implicitly when minimizing the error between reference and measured d- and q-axis
current trajectories.

From the results shown in Figure 10, it is evident that both ψmd(θ) and ψmq(θ), change with the
position θ. The flux linkage ψmd(θ) changes around its DC component, while ψmq(θ) changes around
the value 0.

Figure 11 show the comparison of measured and finite element analysis (FEA) determined phase
a back EMF ea at a constant angular speed of the rotor. The calculated results were obtained by an in
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house developed program solution for 2D FEA, which is a further development of the one applied
in [11].
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4.3. Determining Flux Linkages Caused by the Stator Currents

This procedure, which can be applied to determine the current- and position-dependent
characteristics of flux linkages, caused by the stator currents, is described in Section 3.2.

The rotor is locked at a given position, while the current id is closed-loop controlled to keep a
constant value. Figure 12 shows the applied voltage uq and the responding current iq measured during
the experiment. Figure 13 shows the flux linkage ψq(t) determined by numerical integration (56).
The corresponding characteristic ψq(iq) in the form of a hysteresis loop is shown in Figure 14.
The hysteresis loops determined for different amplitudes of the stepwise changing voltages uq are
shown in Figure 15, while Figure 16 shows a unique ψq(iq) characteristic for the constant value of
id = 0 A. Figures 17 and 18 show the characteristics ψd(id) at iq = 0 A in the form of a hysteresis loop
and in the form of a unique characteristic, respectively. The comparison of characteristics ψd(id) and
ψq(iq) determined for the SRM and PMSM is shown in Figures 19 and 20.
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Figure 12. Stepwise changing voltage uq(t) and responding current iq(t) measured on the tested SRM
for id = 0 A.
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Figure 13. SRM: flux linkage ψq(t) calculated using uq(t) and iq(t) shown in Figure 9.
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Figure 14. SRM: flux linkage characteristic ψq(iq) at id =0 A given in the form of a hysteresis loop.
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Figure 16. SRM: unique flux linkage characteristics ψq(iq) at id =0 A.

Energies 2018, 11, x FOR PEER REVIEW  17 of 22 

 

 
Figure 16. SRM: unique flux linkage characteristics ψq(iq) at id =0 A. 

 
Figure 17. SRM: flux linkage characteristics ψd(id) at iq =0 A given in the form of a hysteresis loop. 

 
Figure 18. SRM: unique flux linkage characteristics ψd(id) at iq =0 A. 

The characteristics ψd(id) and ψq(iq) shown in Figure 16 are centered. They are given for the SRM. 
The same characteristics are shown in Figure 17 for the PMSM. They are not centered, due to the pre-
magnetization in the form of ψmd(θ) and ψmq(θ) shown in Figure 8. However, this pre-magnetization 
is not shown explicitly in Figure 17. As mentioned before, the initial flux linkage due to the remanent 
flux and permanent magnets is considered with the value 0. Thus, the pre-magnetization is shown in 
Figure 17 rather indirectly through the increased saturation level in comparison to the SRM, shown 
in Figure 16. The increased saturation level decreases the slope of the ψd(id) and ψq(iq) characteristics 
shown in Figure 17. 

(a)  (b)  

Figure 19. SRM: hysteresis loops. ψd(id) at iq = 0 A (a) and ψq(iq) at id = 0 A (b). 

−8 −4 0 4 8
−1.2

−0.6

0

0.6

1.2

i (A)

ψ
 (

V
s)

−8 −4 0 4 8
−1.8

−0.9

0

0.9

1.8

i (A)

ψ
 (

V
s)

−8 −4 0 4 8
−1.8

−0.9

0

0.9

1.8

i (A)

ψ
 (

V
s)

−8 −4 0 4 8
−2

−1

0

1

2

i (A)

ψ
 (

V
s)

−8 −4 0 4 8
−2

−1

0

1

2

i (A)

ψ
 (

V
s)

Figure 17. SRM: flux linkage characteristics ψd(id) at iq =0 A given in the form of a hysteresis loop.
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Figure 18. SRM: unique flux linkage characteristics ψd(id) at iq =0 A.
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Figure 19. SRM: hysteresis loops. ψd(id) at iq = 0 A (a) and ψq(iq) at id = 0 A (b).
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Figure 20. PMSM: hysteresis loops. ψd(id) at iq = 0 A (a) and ψq(iq) at id = 0 A (b).

The characteristics ψd(id) and ψq(iq) shown in Figure 16 are centered. They are given for the SRM.
The same characteristics are shown in Figure 17 for the PMSM. They are not centered, due to the
pre-magnetization in the form ofψmd(θ) andψmq(θ) shown in Figure 8. However, this pre-magnetization
is not shown explicitly in Figure 17. As mentioned before, the initial flux linkage due to the remanent
flux and permanent magnets is considered with the value 0. Thus, the pre-magnetization is shown in
Figure 17 rather indirectly through the increased saturation level in comparison to the SRM, shown in
Figure 16. The increased saturation level decreases the slope of the ψd(id) and ψq(iq) characteristics
shown in Figure 17.

The flux linkages from Figure 20 are shown in Figure 21 as unique magnetically nonlinear
characteristics determined in the same way as in [12]. Please note, that the flux linkage due to the
permanent magnets ψd(0) = ψmd, which appears in (56), is in this case considered with the value 0.

Based on the unique flux linkage characteristics ψd(id) and ψq(iq) from Figure 21, the dynamic
inductances Lsd = ∂ψd/∂id and Lsq = ∂ψq/∂iq are calculated numerically. The comparison of
experimentally and FEA determined dynamic inductances presented in Figure 22 shows an
acceptable agreement.
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Figure 21. PMSM: unique magnetically nonlinear characteristics ψd(id) at iq = 0 A (a) and ψq(iq) at id =

0 A (b).
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Figure 22. PMSM: FEA and experimentally determined dynamic inductances Lsd (a) and Lsq (b).

4.4. Low-Speed Kinematic Control of Linear SRM

The proposed models, as well as the experimental methods applied to determine model parameters
in the form of position- and current-dependent flux linkages [12], are confirmed by the comparison
of measured (Figure 23) and dynamic model calculated (Figures 24 and 25) trajectories of individual
variables in the case of linear SRM kinematic control. The next set of results demonstrates the
importance of higher order harmonic components in the thrust equation (33) in the case of low speed
kinematic control. The tested linear SRM is shown in Figure 7. Its position x is changed for one pole
pitch τp. The position x, current id, speed v = dx/dt, and current iq, measured during the experiment, are
shown in Figure 23. The calculations are performed with the proposed dynamic model of linear SRM
given by (39), (32), (33) under the same conditions as the experiment shown in Figure 23. Figure 24
shows the calculated speed v and current iq for the case when 24 higher order harmonic components
are considered in (33). The same calculated variables are given in Figure 25 for the case when only DC
components are considered in (33). The results presented clearly show that the higher order harmonic
components of the thrust can substantially influence the calculated trajectories of the speed v and
current iq, which can be important in the case of low-speed kinematic control.



Energies 2019, 12, 3519 19 of 22

Energies 2018, 11, x FOR PEER REVIEW  19 of 22 

 

trajectories of individual variables in the case of linear SRM kinematic control. The next set of results 
demonstrates the importance of higher order harmonic components in the thrust equation (33) in the 
case of low speed kinematic control. The tested linear SRM is shown in Figure 7. Its position x is 
changed for one pole pitch τp. The position x, current id, speed v=dx/dt, and current iq, measured during 
the experiment, are shown in Figure 23. The calculations are performed with the proposed dynamic 
model of linear SRM given by (39), (32), (33) under the same conditions as the experiment shown in 
Figure 23. Figure 24 shows the calculated speed v and current iq for the case when 24 higher order 
harmonic components are considered in (33). The same calculated variables are given in Figure 25 for 
the case when only DC components are considered in (33). The results presented clearly show that 
the higher order harmonic components of the thrust can substantially influence the calculated 
trajectories of the speed v and current iq, which can be important in the case of low-speed kinematic 
control. 

(a)  (b)  

(c)  (d)  
Figure 23. Kinematic control of linear SRM: measured position x (a), current id (b), speed v = dx/dt (c) 
and current iq. (d). 

(a)  (b)  

Figure 24. Kinematic control of linear SRM: calculated speed v = dx/dt (a) and current iq (b) considering 
N=24 higher order harmonics in thrust calculation (33). 

(a)  (b)  

Figure 25. Kinematic control of linear SRM: calculated speed v = dx/dt (a) and current iq (b) considering 
only DC component in thrust calculation (33). 

5. Conclusion 

The main contribution of this paper is a proposed general method for deriving magnetically 
nonlinear two-axis dynamic models of synchronous machines, which is applied to derive the 
dynamic models of rotary and linear PMSMs and SRMs. 

0.5 1 1.5 2

0

0.02

0.04

0.06

0.08

  t [s]

  x
 [

m
]

0.5 1 1.5 2
0

10

20

  t [s]

  i
d 

[A
]

0.5 1 1.5 2

−0.1

0

0.1

  t [s]

  v
 [

m
/s

]

0.5 1 1.5 2
−5

0

5

  t [s]

  i
q [

A
]

0.5 1 1.5 2

−0.1

0

0.1

  t [s]

  v
 [

m
/s

]

0.5 1 1.5 2
−5

0

5

  t [s]

  i
q [

A
]

0.5 1 1.5 2

−0.1

0

0.1

  t [s]

  v
 [

m
/s

]

0.5 1 1.5 2
−5

0

5

  t [s]

  i
q [

A
]

Figure 23. Kinematic control of linear SRM: measured position x (a), current id (b), speed v = dx/dt (c)
and current iq. (d).
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Figure 24. Kinematic control of linear SRM: calculated speed v = dx/dt (a) and current iq (b) considering
N=24 higher order harmonics in thrust calculation (33).
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Figure 25. Kinematic control of linear SRM: calculated speed v = dx/dt (a) and current iq (b) considering
only DC component in thrust calculation (33).

5. Conclusion

The main contribution of this paper is a proposed general method for deriving magnetically
nonlinear two-axis dynamic models of synchronous machines, which is applied to derive the dynamic
models of rotary and linear PMSMs and SRMs.

The proposed method consists of two steps. In the first step, only the structure of the magnetically
nonlinear dynamic model is determined, while in the second step, the current- and position-dependent
characteristics of flux linkages are determined experimentally by measurements on the machine’s
terminals. With these characteristics, the effects of slotting, interactions between the slots and permanent
magnets, saturation, cross-saturation as well as the linear machine specific end effects are considered;
and this without any prior knowledge of the machine properties required in FEA-based methods.
Some of the experimental methods suitable for determining the aforementioned characteristics of flux
linkages are presented in the paper. The flux linkages, electromagnetic torque and thrust are described
in the form of Fourier series, where the relations among their Fourier coefficients are given in the form
of equations.

The proposed approach to the modelling of synchronous machines, together with the experimental
methods applied for determining magnetically nonlinear characteristic of flux linkages, is confirmed
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through the comparison of measured and calculated results, given for the low speed kinematic control
of a linear SRM. The results presented clearly show the impact of considered order of higher harmonics
in the thrust calculation on current and speed trajectories.
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