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Abstract: Southern Taiwan has excellent solar energy resources that remain largely unused. This 
study incorporated a measure that aids in providing simple and effective power generation 
efficiency assessments of solar panel brands in the planning stage of installing these panels on 
roofs. The proposed methodology can be applied to evaluate photovoltaic (PV) power generation 
panels installed on building rooftops in Southern Taiwan. In the first phase, this study selected 
panels of the BP3 series, including BP350, BP365, BP380, and BP3125, to assess their PV output 
efficiency. BP Solar is a manufacturer and installer of photovoltaic solar cells. This study first 
derived ideal PV power generation and then determined the suitable tilt angle for the PV panels 
leading to direct sunlight that could be acquired to increase power output by panels installed on 
building rooftops. The potential annual power outputs for these solar panels were calculated. 
Climate data of 2016 were used to estimate the annual solar power output of the BP3 series per 
unit area. The results indicated that BP380 was the most efficient model for power generation 
(183.5 KWh/m2-y), followed by BP3125 (182.2 KWh/m2-y); by contrast, BP350 was the least efficient 
(164.2 KWh/m2-y). In the second phase, to simulate meteorological uncertainty during hourly PV 
power generation, a surface solar radiation prediction model was developed. This study used a 
deep learning–based deep neural network (DNN) for predicting hourly irradiation. The 
simulation results of the DNN were compared with those of a backpropagation neural network 
(BPN) and a linear regression (LR) model. In the final phase, the panel of module BP3125 was used 
as an example and demonstrated the hourly PV power output prediction at different lead times on 
a solar panel. The results demonstrated that the proposed method is useful for evaluating the 
power generation efficiency of the solar panels. 

Keywords: solar irradiation; photovoltaic solar energy; deep learning; prediction 
 

1. Introduction 

Solar photovoltaic (PV) energy systems generate electricity without causing pollution. 
Moreover, grid-connected PV cells can easily be installed on residential building roofs and 
commercial building walls [1]. In Taiwan, the solar energy industry has become popular; various 
PV power generation systems can be installed in buildings for improving energy-use efficiency. 
Because Taiwan is located in a subtropical region, it receives abundant sunlight and is suitable for 
developing solar energy. Solar cells, also known as PV cells, directly convert solar energy to 
electricity. Solar energy has become an alternative energy used in Taiwan because it does not cause 
environmental pollution or noise. 

Solar cells convert sunlight to electricity through the PV effect, in which an appropriate 
energy-level design is employed to effectively absorb sunlight and convert it to electric voltage and 
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currents; this conversion process is known as photovoltaics. Numerous semiconductor materials are 
available for solar power generation. Silicon, a prominent raw material for solar cells, is 
commercially divided into monocrystalline, polycrystalline, and noncrystalline silicon. 
Monocrystalline and polycrystalline silicon materials exhibit the same power generation 
mechanism despite differences in their crystal structures. The cell temperature mainly depends on 
the irradiance intensity and ambient temperature [2]. Semiconductors are temperature-sensitive; 
after the cell temperature exceeds 25 °C, each increase of 1 °C reduces the overall efficiency of 
monocrystalline, polycrystalline, and noncrystalline silicon cells by 0.71%, 0.5–0.66%, and 0.2–0.3%, 
respectively [3]. Currently, polycrystalline silicon solar cells are dominating the solar cell market, 
representing 90% of the market sales, with a 20–30% market growth. In 2017, silicon-based solar cells 
could generate PV power of up to 55 GW; this value is estimated to reach 100 GW by 2020 [4]. 

Solar power generation is a form of environmentally friendly power generation method, in 
which no greenhouse gases, such as carbon dioxide, are generated. However, solar radiation is 
absorbed, reflected, or refracted by clouds of varying thicknesses after entering the atmosphere, 
which cause an inconsistency in solar radiant energy sources. When the density of energy collected 
by a set of solar panels is low, several additional solar panels must be installed, which increases 
their investment costs. Approximately 45% of the cost of a silicon cell solar module is determined 
by the cost of the silicon wafer. Thus, efforts are being made to use less silicon in the manufacture of 
solar cells [5]. Therefore, appropriate solar panels must be selected while developing a rooftop PV 
system in Taiwan. Previous studies have evaluated PV power generation panels of various 
geometries for different buildings [6–8]. For example, Jeong et al. [9] used amorphous silicon PV 
panels to develop prototype models of blinds with smart photovoltaic systems. Mahmud et al. [10] 
presented an environmental lifecycle assessment of a solar PV system by using single crystalline Si 
solar cells and a solar thermal system that used evacuated glass tube collectors. Kouhestani et al. 
[11] used a multi-criteria approach based on geographic information systems and light detection 
and ranging (LiDAR) to estimate rooftop PV electricity potential of buildings in an urban 
environment. Additionally, for evaluating the solar panel suppliers, several studies have used 
multi-criteria decision making (MCDM) approaches in various fields of science and engineering 
[12,13]. For example, Wang and Tsai [14] presented a fuzzy MCDM approach using a fuzzy 
analytical hierarchy process model and data envelopment analysis for selecting solar panel 
suppliers for a photovoltaic system design in Taiwan. 

Seasons, daytime length, the Earth’s revolution and rotation, and climate changes affect the 
reception of solar energy [15]. The Earth’s revolution and rotation are regular and can be accurately 
calculated using mathematical models, but the atmospheric conditions (e.g., clouds, temperature, 
and wind velocity) of Taiwan, which has an island climate, change rapidly and are difficult to 
forecast. Therefore, solar radiation must be accurately predicted in advance to accurately evaluate 
the total power generated through rooftop PV systems and their overall efficiency. A surface solar 
radiation prediction model should be established for this purpose. 

The aforementioned problems indicate that efficient and prompt evaluation of the power 
generation efficiency of specific solar panel brands is essential in planning the installation of rooftop 
PV systems in Taiwan. Therefore, this study has three objectives: (1) evaluation of the potential 
annual power outputs of selected solar panels, (2) prediction of future hour-based solar radiation 
levels, and (3) assessment of the annual power for a specific solar panel when the forecasting 
horizon increases. The study site was Tainan (Figure 1), where the average annual solar irradiance 
was 1.65 MWh/m2-y according to the statistical data from 2010 to 2016. Tainan, which has a stable 
climate and frequent sunshine, is suitable for solar power generation in all seasons. 
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Figure 1. Map of Tainan, Taiwan. 

Most rooftop PV systems in Taiwan are fixed. Therefore, the solar radiation received by solar 
panels at different inclination angles must be estimated. The amount of solar radiation incident on a 
solar thermal collector or a PV panel is strongly affected by its installation angle and orientation 
[16]. Over the past decade, various models have been proposed for predicting solar radiation on 
inclined surfaces [17–20]. Maleki et al. [21] reviewed several models for estimating solar radiation 
components on horizontal and inclined surfaces. As indicated by [16], all these models require 
hourly global irradiations and hourly horizontal diffuse solar irradiations. 

Moreover, relevant literature on surface solar irradiation prediction, PV power estimation, and 
current state-of-the-art studies were reviewed [22–34]. Studies have used machine learning 
algorithms, such as k-nearest neighbor (kNN) [35,36], multilayer perceptron [37–40], and wavelet 
neural network [41]; some compared or combined multiple machine learning models in the 
prediction results. For instance, Urraca et al. [42] compared the prediction results of support vector 
regression with those of random forests, linear regression (LR) and kNN. Yousif et al. [43] 
compared a self-organizing feature map with multilayer perceptron and support vector machine for 
forecasting energy production in PV panels. The aforementioned studies have successfully applied 
their methods in either forecasting future solar resource or estimating solar resource. 

Deep learning is a specific subfield of machine learning intended to enable machines to 
simulate the manner in which the human brain thinks, and its operational model is based on 
neuroscience [44]. Deep learning is designed to use a neural network structure to represent input 
and target data. These models use multiple feature extraction layers and learn the complex 
relationships within the data more efficiently [45]. Recent studies have successfully employed deep 
learning models in predicting energy efficiency. For instance, Li et al. [46] developed an extreme 
deep learning approach to improve building-energy consumption–prediction accuracy. Ryu et al. 
[47] applied deep neural network (DNN)-based load forecasting models and applied them to a 
demand-side empirical load database. Ghimire et al. [45] used the DNN and deep belief network, 
the two fundamental categories of DL algorithms, coupled with satellite-derived data to predict 
monthly global solar radiation. Because deep learning models are applicable for predicting time 
series, DNN was adopted herein to predict hourly solar radiation to effectively determine the 
amount of power generated by solar cells. 

2. Methodology 

In this section, methodology used for developing a usable scheme for evaluating the annual 
power produced by various solar panels installed on the rooftop of buildings and developing a 
surface solar radiation prediction model for PV power generation panels is described. Next, we 
described the following methods: (1) calculation of the potential annual power outputs for the 
selected solar panels, (2) derivation of solar radiation prediction models, and (3) evaluation of 
power prediction errors on the future of solar panels. 
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Figure 2 illustrates a flow, which comprises a series of analysis steps. The methodology can be 
grouped three phases: In phase I, several solar panels were selected for comparison. Solar radiation, 
module temperature, and power conversion efficiency affect solar cell power output. Therefore, 
these three parameters were used to derive a formula for ideal PV power generation. Conventional 
rooftop solar panels can be installed at an inclined angle to maximize the irradiance absorption 
according to the locations of their installation. Thus, the suitable tilt angle for the PV power 
generation panels leading to direct sunlight can be achieved to increase power output of the panels 
installed on building rooftops. Therefore, the potential annual power outputs of these solar panels 
can be calculated. 

In phase II, the surface solar radiation prediction model, which was developed for predicting 
hourly solar irradiation in the future, was created. First, the model input and output attributes from 
the ground weather data and solar position parameters are preprocess. A traditional training–
validation–testing procedure is adopted for formulating the surface solar radiation prediction 
model. A DNN is used to create a solar radiation prediction model, and a backpropagation neural 
network (BPN) and a LR model are implemented as benchmark models. Finally, the testing data set 
is simulated using the optimal trained model, and the forecast results are evaluated according to 
the performance measures. 

In phase III, the hourly PV power outputs on a solar panel were simulated. The solar radiation 
prediction model was used to predict the hourly solar radiation, and the hourly amount of power 
generated by the solar panels was calculated using the process in phase I. Finally, the solar panels 
were evaluated according to the errors made by the predicted power outputs on various lead times. 

 

Figure 2. Flow of evaluation of power outputs of a solar panel. 
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3. Selection of Solar Panels 

The PV system is a well-recognized system and is widely used to convert the solar energy for 
electric power generation applications [48]. A cell is defined as a semiconductor device that 
converts sunlight into electricity. A PV module refers to numerous cells connected in series, and in 
a PV array, modules are connected in series and in parallel [49]. PV cells represent the fundamental 
conversion unit of a PV power generation system. Solar insolation, PV cell temperature and 
operating voltage strongly influence the PV output current and power characteristics [50]. 

The most critical components of PV power generation systems are PV cells. The quality of 
these cells directly affects the efficiency and lifetime of a PV system. This study focused on the solar 
panels manufactured by BP Solar. BP has been involved in solar power since 1973. Its subsidiary, 
BP Solar, is a manufacturer and installer of photovoltaic solar cells headquartered in Madrid, Spain, 
with production facilities in United States, Spain, India, China and Australia [51]. The BP3 series 
solar panel is an advanced PV module that incorporates polycrystalline cells by using SiN coating 
to provide high efficiency. For evaluation, different BP3 series solar panel types, namely BP350, 
BP365, BP380, and BP3125, were selected. Table 1 lists the characteristics of the BP3 series solar 
panels; in particular, BP3125 generated the highest amount of power (125 W). 

Table 1. Characteristics of BP3 series solar panel products. 

Module Maximum 
power (Pmax) 

Voltage at 
Pmax 

Current at 
Pmax 

Temperature 
coefficient of power 

Dimension of 
module 

BP350 50 W 17.3 V 2.89 A −0.5%/°C 
839 mm × 537 

mm 

BP365 65 W 17.6 V 3.69 A −0.5%/°C 
1111 mm × 502 

mm 

BP380 80 W 17.6 V 4.55 A −0.5%/°C 
1204 mm × 537 

mm 

BP3125 125 W 17.6 V 7.1 A −0.5%/°C 1510 mm × 674 
mm 

3.1. Deriving Ideal PV Power Generation 

Irradiance is a major factor affecting the amount of solar cell–generated power. The higher the 
irradiance, the higher the amount of power a solar cell generates. Accordingly, the relationship 
between irradiance and amount of solar cell–generated power is as follows [52]: 

P = G×A×η (1) 

where P indicates the amount of power generated by a solar cell, G indicates the clear-sky global 
horizontal irradiance (W/m2), A indicates the area of the solar cell (m2), and η indicates the power 
conversion efficiency (%). The standard environmental parameters for solar panels are G0 = 1000 
W/m2 and Tc0 (module temperature of the solar panel) = 25 °C. 

By using Equation (1), the power conversion efficiency of a solar panel at the module 
temperature of 25 °C is calculated as follows: 

 = P𝐺 × 𝐴  (2) 

where Pmax indicates the maximal power output by a solar panel module. 
Equation (2) yields the η value at the module temperature of 25 °C. Pmax and A0 can be 

referenced from the characteristic data of the four BP3 series solar panels as listed in Table 1. The 
value of η for BP350, BP365, BP380, and BP3125 was 11.1%, 11.7%, 12.4%, and 12.3%, respectively. 

Higher solar cell module temperature results in lower power generation efficiency. 
Specifically, for BP3 series solar panels, when the module temperature exceeds 25 °C, each 
additional 1 °C reduces the overall efficiency by λ = −0.5%/°C. The efficiency change ε in this 
condition is accordingly expressed as follows: 
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ε = λ⋅(Tc − 25)⋅η (3) 

This formula is used to further evaluate the amount of power output after temperature 
changes: 

P = G⋅A⋅(η − ε) (4) 

Applying Equation (3) to Equation (4) we obtain the following: 

P = G⋅A⋅[1 − λ (Tc − 25)]⋅η (5) 

As indicated, the operating cell temperatures of PV modules directly affect the performance of 
the PV system. Temperature of PV cells is one of the most important parameters for assessing the 
long term performance of PV module systems and their annual amounts of electrical energy 
production [53]. Therefore, estimating the operating temperature of a PV module is required. 
Several mathematical equations for PV module temperature have been found in the literature (e.g., 
[54–58]). These proposed approaches used empirical formulas to derive the PV cell temperature 
from the environmental variables, such as ambient temperature, irradiance, and wind speed [5]. A 
detailed comparison among these empirical formulas was reported by [59,60]. Because Taiwan has 
an island climate, wind velocity must be factored in. For simplicity, a mathematical model 
proposed by [61] was employed to account for ambient temperature, irradiance, and wind speed: 

Tc = Ta + 0.0138⋅(1 + 0.031⋅Ta)(1 − 0.042⋅Vw)⋅G (6) 

where Vw is the wind speed. 

3.2. Equation for Irradiance Received by Inclined Solar Panels 

Most available solar radiation data around the world are global solar radiations on a horizontal 
surface. In practice, solar collectors (flat plate thermal or PV collectors) are tilted; thus, computing 
the solar radiation incident on such tilted planes is necessary [16]. As calculated in Equation (5), G 
represents clear-sky global horizontal irradiance. The amount of solar radiation received by solar 
panels at an inclination must be estimated to accurately calculate their power output. 

According to [62], the theoretical global irradiance with the solar panels at a tilted position 
(Gtilt) can be estimated using the following expression: 

cosΘ= + ⋅tilt C CG D I  (7) 

where DC is the diffuse horizontal irradiance; IC is the direct irradiance; and Θ the solar incident 
angle, defined as the angle between the sun and the normal line of the solar panels. 

In Equation (7), DC is calculated as follows [63]: 

cosθ= − ⋅C C CD G I  (8) 

where GC is the clear-sky solar irradiance and θ is the zenith angle. 
In Equation (7), the solar incident angle Θ on the inclined solar panel should also be estimated; 

Θ is expressed according to the latitude of the panel (λ), declination angle (δ), and hour angle (ω) as 
shown in the following equation: 

( )1cos cos( ) cos cos sin( ) sinΘ β λ δ ω β λ δ−= − ⋅ ⋅ − − ⋅  (9) 

where β indicates the horizontal inclination angle of the panel. 

3.2. Estimating the Power Output of the Inclined Solar Panels 

This study focused on the weather station in Tainan (22°99′ N and 120°20′ E). The station is 
under the jurisdiction by the Central Weather Bureau of Taiwan and records hourly surface climate 
data, including clear-sky global horizontal irradiance, ambient temperature, and wind velocity. The 
year 2016 was designated as the simulation year. The hourly clear-sky global horizontal irradiance 
data recorded in the station were applied in the formulas specified in Section 3.2 to calculate the 
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hourly irradiance received the inclined solar panels. According to [39], the maximal annual global 
irradiance at Southern Taiwan occurred at β ranging from 20° to 22°. Thus, this study selected β = 
21° as the tilt angle of solar panels for the BP3 series. 

The process of evaluating the selected BP3 series solar panels started with the simulation of 
hourly irradiance captured by the inclined solar panels. Figure 3a illustrates the simulation results 
of the hourly solar radiation at the spring and autumn equinoxes and summer and winter solstices 
in 2016. The formula for the ideal PV power generation was subsequently implemented to estimate 
the power generated by the solar panels. Figure 3b depicts the power output of the four solar panel 
modules when β = 21°. Figure 4 illustrates the simulated total power output by the panels in 2016. 
Figure 4a displays the single module power output; in particular, BP3125 exhibited the highest 
power generation efficiency (185.4 KWh-y), whereas BP350 was the least efficient module in power 
generation (74.2 KWh-y). To estimate the PV power output per unit area in a reasonable manner, 
the power output by each module was divided by the its area to identify its unit area PV power 
output (Figure 4b). In particular, BP380 exhibited the highest unit area power output (183.5 
KWh/m2-y), followed by BP3125 (182.2 KWh/m2-y); BP350 exhibited the lowest unit area power 
output (164.2 KWh/m2-y). 

 

Figure 3. Spring and autumn equinoxes and summer and winter solstices in 2016: (a) Hourly solar 
radiation; (b) Estimated hourly output power of BP3 series modules. 
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Figure 4. Simulated annual power output by the BP3 series: (a) Single module; (b) Unit area. 

4. Hourly Solar Radiation Prediction 

As indicated by [16], the efficiency or productivity of such a system depends on the temporal 
fluctuations of energy input and output. Therefore, an hourly solar radiation prediction model was 
established to further simulate the hourly power output of the solar panels in future for subsequent 
analysis. 

4.1. Experimental Data 

Data on surface climate and sun positions were applied in establishing the solar radiation 
prediction model. In addition to the 2016 data, the 2010–2015 hourly climate data from the weather 
station were implemented. Seven surface climate parameters related to solar radiation were 
selected: air pressure on the ground (hPa), ground temperature (°C), relative humidity (%), and 
surface wind velocity (maximum 10 min mean, 10 m above the surface) (m/s), precipitation within 1 
h (mm), sunshine duration (h), and surface solar radiation (Wh/m2); all data were recorded hourly. 
Sunshine duration, a measure of the time interval for which sunshine is observed in 1 h (at the 
study location), was used as a climatological indicator of cloudiness. In total, 61,368 data points 
were organized. Table 2 presents the seven attributes selected and their statistics with mean, 
standard deviation, maximum, and minimum values; all variables in the database were measured 
hourly. 

Table 2. Weather attributes and statistics at the Tainan station. 

Attribute Air pressure on 
the ground 

Ground 
temperature 

Relative 
humidity 

Surface wind 
velocity 

Precipitation Sunshine 
duration 

Surface solar 
radiation 

Unit hPa °C % m/s mm h Wh/m2 
Mean 1009.8 24.60 74.38 2.97 0.21 0.23 188.87 

Std. dev. 5.663 5.234 10.34 1.689 1.829 0.37 276.52 
Maximum 1029.6 35.8 100 19.5 90.5 1 1161.1 
Minimum 973.4 5.8 22 0 0 0 0 

Five sun position parameters were selected to illustrate the sun position data relative to the 
station over time, namely declination, hour, zenith, elevation, and azimuth angles. These 
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parameters are based on the formula proposed by [62,63]. Table 3 lists the statistical data of the 
hourly sun positions from 2010 to 2016. 

Table 3. Solar position attributes and statistics at the Tainan station. 

Title 

Attribute 
Declination angle Hour angle Zenith angle Elevation angle Azimuth angle 

Unit Degree Degree degree Degree degree 

Mean −0.01 7.50 90 0 0 

Std. dev. 16.58 103.83 43.84 43.84 65.10 

Maximum 23.45 180 179.98 89.98 90.00 

Minimum −23.45 −165 0.02 −89.98 −90.00 

4.2. DNNs and Modeling 

The solar radiation prediction model was based on a DNN, which is a machine learning model 
that automatically identifies the representative features through linear or nonlinear transforms in 
multiple layers. A neural network, which is a mathematical model mimicking the neural system of 
an organism, features several layers of neurons, which sum the data inputted from the neurons of 
previous layers and convert them to output data through an activation function. Each neuron is 
linked to the neurons of the follow-up layer in a unique manner; the data output produced by the 
neurons from a layer are weighted and transmitted to the neurons of the follow-up layer [64]. 

DNNs consist of at least one hidden layer. Similar to shallow neural networks, DNNs establish 
models based on complex nonlinear systems; however, multiple hidden layers are included to 
enhance the learning efficacy of these models and thereby their prediction and categorization 
capability. Most DNNs are constructed as feedforward neural networks [65]. DNNs are trained 
through backpropagation. The weight updates between layers are calculated through stochastic 
gradient descent: 

𝑤 𝑡 + 1 = 𝛽𝑤 𝑡 + 
𝜕𝐸𝜕𝑤  (10) 

where wij (t) is the weight set connecting the layers i and j at time t; Δw is the weight correction; η is 
the learning rate; β is a momentum coefficient; and E is a cost function, which indicates the 
difference between the target and predicted values. In particular, η and β are hyperparameters for 
the adjustment of the spacing of weight correction. 

In the DNN training process, the weight set in the model can be optimized through a 
numerical method for minimizing learning target values. This is typically achieved through 
stochastic gradient descent, in which all weights in high-dimensional spaces descend by one 
dimension per step; the iteration is repeated multiple times to identify the optimal weight set. 

4.3. Modeling and Parameter Calibration 

A DNN was used to establish an accurate solar radiation prediction model. The model was 
established according to the data attributes mentioned in Section 4.1. The employed data were 
divided into two datasets: 2010–2015 data defined as the training set for model training and 
verification and 2016 data were designated as the testing set. Model training and verification were 
performed through 10-fold cross-validation, in which the training set was divided into 10 
subsamples, one of which was retained for model verification and the other nine were used for 
model training; in the verification process, each subsample must be verified. 

Building the prediction model requires setting up the neural network structure; in particular, 
the number of DNN layers, the number of neurons per layer, and the activation function must be 
defined. Parameter settings affect the efficacy of a DNN model; therefore, an optimized weight set 
is required for DNN training. Most activation functions are designed for nonlinear transformation 
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for information transfer in a complicated neural network. Conventional activation functions are 
designed as sigmoid functions or hyperbolic tangent functions. In DNNs, rectified linear unit 
function has been recently used to replace the sigmoid function, resulting in high performance and 
short training times, as reported by [66]. Moreover, the number of neurons in the hidden layer was 
determined according to [67] method: summing numbers of neurons in the input and output layers, 
subtracting 1 from this sum, and dividing this number by 2. 

The hyperparameters η and β were verified. Because both parameters range from 0 to 1, 
intervals of 0.1 were adopted in the verification; subsequently, the root mean square errors (RMSEs) 
between their output and target values were calculated. Figure 5 illustrates the verification results, 
in which minimal RMSEs for η and β (77.195 and 76.612 Wh/m2, respectively) were obtained when 
η = 0.2 and β = 0.2. In addition, the number of DNN layers was determined as 1–15. Figure 6a 
depicts the RMSEs of the model in the follow-up hour according to the number of layers. When the 
number of layers was 6, the RMSE decreased (74.846 Wh/m2). Figure 6b–d depicts the RMSEs at 
lead times of 3, 6, and 12 h, respectively, which were minimized when the numbers of layers were 
12, 6, and 11, respectively. 

 
Figure 5. Calibration of hyperparameters: (a) Learning rate; (b) Momentum coefficient. 

 

Figure 6. Calibration of hidden layer amount at lead times of (a) 1; (b) 3; (c) 6 and (d) 12 h. 

4.4. Forecast of Solar Radiation Prediction 

After the model parameters were verified, the testing set was used to predict solar radiation. 
The simulation results of the DNN model were compared with those of the benchmark models (i.e., 
BPN and LR models) to verify its quality. A typical BPN, which is a shallow neural network, with 
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three layers (i.e., an input layer, a hidden layer, and an output layer) is a feedforward neural 
network trained with the standard backpropagation algorithm [68]. 

Figure 7 illustrates the scatter diagrams of the predicted and observed values of DNN, BPN, 
and LR. In particular, Figures 7a–d depict the results at the lead times of 1, 3, 6, and 12 h, 
respectively. As the lead time increased, the predicted values of DNN became closer to the 
observed values than did those of BPN and LR. Regarding data correlation, all four figures depicts 
that DNN exhibited the highest coefficient of determination (R2), followed sequentially by those of 
BPN and LR. 

Regarding prediction errors, Figure 8 depicts the calculation results of the three mentioned 
models. At lead times of 1, 3, 6, and 12 h, DNN exhibited the lowest mean absolute errors (MAEs), 
indicating that its prediction errors were the lowest overall. Furthermore, DNN displayed the 
smallest RMSE. 

 
Figure 7. Scatter diagram of deep neural network (DNN), backpropagation neural network (BPN) 
and linear regression (LR) at the lead times of (a) 1; (b) 3; (c) 6 and (d) 12 h. 

 
Figure 8. Solar radiation prediction performance: (a) mean absolute error (MAE) and (b) root mean 
square error (RMSE). 
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5. Simulation of PV Power Generation 

BP3125 was used as the sample solar panel for estimating the PV power output at lead times of 
1–12 h. As mentioned previously, after the hourly solar radiation captured by the inclined BP3 
series solar panels was simulated using the clear-sky global horizontal irradiance data in 2016, it 
was used to estimate the hourly power output by the panels (Figure 3). The DNN-based solar 
radiation prediction model was subsequently employed to replace the predicted values with the 
observed values to calculate the hourly power output. 

Figure 9 depicts the time sequences of the simulation and predicted values of the power output 
by BP3125 at the spring and autumn equinoxes and summer and winter solstices in 2016. Figures 
9a–d depict the results at the lead times of 1, 3, 6, and 12 h, respectively. The simulation values 
indicated in Figure 9a represent the simulated power output of BP3125 from Figure 3b; the DNN, 
BPN, and LR values are the power output values calculated according to the clear-sky global 
horizontal irradiance estimated through the DNN, BPN, and LR models. Because solar radiation 
changes substantially each day, the results as depicted in Figure 9 do not represent the daily 
prediction results in the entire year. Therefore, the evaluation indices for the hourly predicted and 
simulation values from each model in 2016 were calculated. As shown in Figure 10, DNN exhibited 
the lowest MAEs and RMSEs at the lead times of 1, 3, 6, and 12 h; this revealed that DNN was the 
most satisfactory of the three models in predicting solar radiation. 
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Figure 9. Simulation and predicted values on the hourly power output of BP3125 at spring and 
autumn equinoxes and summer and winter solstices in 2016 at lead times of (a) 1; (b) 3; (c) 6 and (d) 
12 h. 
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Figure 10. Annual performance of predicted power outputs of module BP3125: (a) MAE and (b) 
RMSE. 

6. Usage and Limitations of the Methodology 

In this study, we demonstrated a methodology for developing a usable scheme for evaluating 
the annual power produced by various solar panels installed on the rooftops of buildings. Tainan, 
Taiwan, a subtropical region, was used as the experimental site. In practice, the proposed 
methodology can be used in regions that are suitable for generating and using solar energy. 
However, the different regions might not have the same climatic conditions as Tainan. Therefore, 
when using the proposed methodology in such regions, some parameters used in the PV module 
should be carefully adjusted to suit the local climatic conditions. For instance, when determining 
the PV cell temperature in these regions, the empirical formulas of PV cell temperature should be 
reselected because the PV cell temperature is affected by climatic variables, such as irradiance and 
wind speed. 

For examining PV panel brands (e.g., BP Solar), data of the panel manufacturer were obtained. 
The module products of this brand, such as BP350, BP365, BP380, and BP3125, were assessed for 
determining their PV output efficiency. When assessing the module products created by different 
manufacturers, the evaluation process also can be reproduced by the proposed approach. Thus, 
when the characteristics of the solar panel products are known (i.e., maximum power, voltage and 
current at maximum power, temperature coefficient of power, and dimension of module), the 
potential annual power outputs of solar panels can be calculated. 

When we developed a surface solar radiation prediction model for PV power generation 
panels, the solar radiation was estimated by using DNN and BPN, which are data-driven prediction 
models based on machine learning. A data-driven model is based on the analysis of the data 
regarding a specific system [69]. Thus, in the modeling process, we used data that were collected 
from ground-based meteorological stations. However, for regions without ground-based 
meteorological stations, machine learning-based solar radiation prediction models cannot be 
developed. Hence, the use of data from satellite measurements is suggested for constructing 
machine learning-based prediction models in these regions, without ground-based meteorological 
stations. 

7. Conclusions 

This study proposed a simple and effective model for evaluating the PV power generation 
efficiency of each brand of solar panels when planning the installation of rooftop PV systems. 
Tainan, which has a stable climate and constant sunshine and is suitable for solar power generation 
in all seasons, was selected as the experimental site. Four BP3 series solar panel types were selected 
for evaluation: BP350, BP365, BP380, and BP3125. 

In phase I, a formula for ideal PV power generation was derived for calculating the power 
conversion efficiency of each BP series module (11.1%, 11.7%, 12.4%, and 12.3% for BP350, BP365, 
BP380, and BP3125, respectively). Solar panels are installed at an inclined angle to maximize their 
reception of solar radiation. Thus, we determined the suitable tilt angle for the PV system leading to 
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direct sunlight that could be acquired to increase power output installed on building rooftop. 
Subsequently, the potential annual power outputs for these solar panels were calculated. The annual 
power output of the BP3 series solar panels per unit area was calculated according to the 2016 
climate data. The results indicated that BP380 was the most efficient module for annual power 
output (183.5 KWh/m2), followed by BP3125 (182.2 KWh/m2); BP350 was the least efficient module 
(164.2 KWh/m2). 

In phase II, to simulate hourly PV power generation with regard to meteorological uncertainty, 
the surface solar radiation prediction model was developed. The model inputs employed the solar 
position and meteorological information inputs. This study employed the deep learning–based 
DNN for predicting hourly irradiation. The prediction results of the DNN model were then 
compared with those of the BPN and LR models. A traditional training–validation–testing 
procedure was adopted for formulating the surface solar radiation prediction model. The results 
indicated that the DNN exhibited the lowest MAEs and RMSEs among all three models at the lead 
times of 1, 3, 6, and 12 h, highlighting its satisfactory prediction accuracy. In phase III, we used the 
panel of module BP3125 as an example and predicted hourly PV power outputs at different lead 
times on a solar panel. The evaluation indices for the hourly predicted and simulation values of each 
model in 2016 were calculated, revealing that DNN exhibited the lowest MAEs and RMSEs among 
all the three models at the lead times of 1, 3, 6, and 12 h. 

The approach proposed in this study was confirmed to be applicable to the evaluation of the 
power generation efficiency of solar panels and prediction of their hourly power output in an entire 
year. This approach is suitable for assessing the power generation efficiency of a rooftop PV system. 
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