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Abstract: Hydrocarbon reserve evaluation is the major concern for all oil and gas operating companies.
Nowadays, the estimation of oil recovery factor (RF) could be achieved through several techniques.
The accuracy of these techniques depends on data availability, which is strongly dependent on the
reservoir age. In this study, 10 parameters accessible in the early reservoir life are considered for
RF estimation using four artificial intelligence (AI) techniques. These parameters are the net pay
(effective reservoir thickness), stock-tank oil initially in place, original reservoir pressure, asset area
(reservoir area), porosity, Lorenz coefficient, effective permeability, API gravity, oil viscosity, and initial
water saturation. The Al techniques used are the artificial neural networks (ANNSs), radial basis
neuron networks, adaptive neuro-fuzzy inference system with subtractive clustering, and support
vector machines. Al models were trained using data collected from 130 water drive sandstone
reservoirs; then, an empirical correlation for RF estimation was developed based on the trained
ANN model’s weights and biases. Data collected from another 38 reservoirs were used to test the
predictability of the suggested AI models and the ANNs-based correlation; then, performance of the
ANNSs-based correlation was compared with three of the currently available empirical equations for
RF estimation. The developed ANNSs-based equation outperformed the available equations in terms
of all the measures of error evaluation considered in this study, and also has the highest coefficient of
determination of 0.94 compared to only 0.55 obtained from Gulstad correlation, which is one of the
most accurate correlations currently available.

Keywords: hydrocarbon reserve estimation; oil recovery factor; water drive sandy reservoirs;
artificial intelligence

1. Introduction

The petroleum industry is characterized by the need to make critical investment decisions under
several uncertainties. Different techniques are currently applied to diminish these uncertainties in key
areas such as reserve estimation, data management, and/or reservoir characterization.

Oil recovery factor (RF) is the most significant parameter for all exploration and development
(E&P) companies mainly during the early reservoir life, because several investment decisions are
based on the amount of hydrocarbon, which could be obtained from the target asset with the available
techniques and operational practices [1].

The fact that RF is affected by several engineering and geological aspects makes the estimation of the
RF very complicated, since no clear approach that considers all these aspects is available. Understanding
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all the technical and non-technical parameters associated with the reservoir nature, technologies in use,
economic conditions, and other factors is necessary for the reserve evaluation process.

Currently, there are mainly six available techniques for oil reserve estimation. (1) Analogy is
based on comparing the geological and petrophysical properties of poorly defined or newly discovered
reservoir to old ones, and setting an oil recovery factor range for the new asset based on those of the
similar assets [2]. (2) Volumetric calculations [3] calculate the stock-tank oil initially in place (STOIIP)
first based on the asset dimensions, fluid properties, and rock parameters by assuming the reservoir
is sealed; then, based on the recovery mechanism of the reservoir, the reserve could be estimated.
(3) Material balance calculations [3—6] require oil, water, and gas production data, as well as data related
to water encroachment from the reservoir. (4) The application of decline curve analysis [5,7] also
requires production data. (5) Numerical reservoir simulation combines both material balance equations
and fluid flow equations to estimate hydrocarbon reserve [3,4]. (6) Lastly, several empirical correlations
are currently available, and the accuracy of these correlations depends mainly on data availability [8,9].
The first two techniques are applicable early in the reservoir life, but they are not accurate; the accuracy
of the recovery factor prediction could be increased by including production data into calculations and
applying one of the last three techniques.

Data availability, which is strongly dependent on the reservoir age, is significantly affecting the
accuracy of the RF estimation techniques. The highly accurate techniques require huge production
data which restricts their applicability to the late reservoir life. On the other hand, the techniques
applied during early reservoir life are not highly accurate.

2. Background of Empirical Correlations Used for Recovery Factor Estimation

In 1945, The American Petroleum Institute (API) initiated a data collection process aiming to
correlate the recovery factor with reservoir rock parameters and the properties of the produced fluid.
Then, an investigation was conducted by a special study committee on well spacing. They examined
data from 103 oil reservoirs, 25% of which are depletion-drive reservoirs, and the remaining are
water-drive reservoirs from sandstone, limestone, and dolomite formations.

Craze and Buckley [10] listed 19 parameters that have a major effect on recovery efficiency for
103 reservoirs. They reported that the rock properties, fluid properties, mode of production, drive
mechanism, and structural aspects are highly affecting the oil recovery factor. Ten years later, Guthrie
and Greenberger [8] suggested an empirical correlation (Equation (1)) to calculate the oil RF from a
water-drive reservoir using five factors that affect the oil recovery in sandstone reservoirs:

R, = 0.114 + 0.2721og (k) + 0.256(S,) — 0.136 log (11, ) — 1.538(2) — 0.00035(1) )

where R, is the oil recovery factor (fraction), k represents the reservoir permeability (mD), Sy, is the
water saturation (fraction), u, is the oil viscosity (cp), ¢ represents the reservoir porosity (fraction),
and  denotes the reservoir thickness (ft).

Muskat and Taylor [11] studied the effect of the rock characteristics and the reservoir fluid on
oil production from gas-drive reservoirs. They reported that the increase in oil viscosity significantly
decreased the ultimate oil recovery, while Arps and Roberts [12] found that the ultimate recovery
increases with oil gravity, except for the higher solution gas—oil ratios.

Between 19561984, API published many correlations for RF calculation based on real performance
data from producing fields rather than on theoretical or laboratory data. Equation (2) was suggested
by the API for evaluating the oil RF from water-drive reservoirs:
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where B,; and By, represent the oil formation volume factor at the original and abandonment reservoir
pressures (STB/bbl), respectively, u,; is the original oil viscosity (cp), uy; denotes the water viscosity



Energies 2019, 12, 3671 30f13

at reservoir pressure (cp), and p; and p, are the original and abandonment reservoir pressures
(psi), respectively.

Gulstad [9] used multiple linear regression techniques to study the determination of the oil
RE. Out of his work, he developed RF models for water-drive and solution gas-drive reservoirs in
both sandstone and carbonate formations. He observed that the STOIIP is strongly correlated to
the RF in both water and solution gas-drive reservoirs. Although the author pointed out that the
heterogeneity is an important factor to be considered when developing the RF model, he did not
include the heterogeneity, claiming that there is no specific parameter that could be used to clarify it.
The Gulstad [9] model for water-drive sandstone reservoirs is shown in Equation (3) below:

R, = ~274.94 + 0.44(STOIIP) — 56.70In(y1,) — 119.45In(Sy) + 0.04(pep )

®)
—4.73( o) + 4.38(oa) + 0.24(STOIIP ) — 0.88(T)

where STOIIP is the stock-tank oil initially in place at the original reservoir pressure as reported
by the operator (STB/NAF), u,, is the oil viscosity at the bubble point pressure (cp), Py, denotes
the pressure at the end of the primary recovery (psig), toi and o denote the viscosity of the oil
at the original and abandonment reservoir pressures (cp), T represents the reservoir temperature
(°F), and STOIIP . is the calculated value of the STOIIP at original reservoir pressure, assuming a
volumetric reservoir (STB/NAF).

3. Applications of Artificial Intelligence in the Petroleum Industry

Since the early 1990s, artificial intelligence (Al) techniques have had many applications in
several scientific and engineering fields, including the petroleum industry. Currently, Al has been
being used by petroleum engineers and geologists to solve problems related to unconventional
resources evaluation [13,14], predicting the bubble point pressure [15], real-time estimation of
the drilling fluids rheological parameters [16,17], estimating rock mechanical parameters [18,19],
reservoir characterization [20-22], optimizing the rate of penetration [23], evaluating the wellbore
casing integrity [24,25], drilling hydraulic optimization [26], pore pressure and fracture pressure
estimation [27,28], and others.

Adrian and Chukwueke [29] applied the artificial neural networks (ANNSs) to predict the oil RF
for water-drive Niger Delta reservoirs. The authors used data from 94 reservoirs in the Niger Delta
in this study. They divided the data into three groups: 60% of the data was used to train the ANNs
model, 20% was used to validate the model, and the remaining 20% was used to test the trained
model. They used the backpropagation network to build the model, and the porosity, permeability,
reservoir original and abandonment pressures, oil formation volume factor, oil viscosity, connate water
saturation, and connate water viscosity as input parameters to predict the oil RF. Although this model
was able to estimate the RF more accurately compared to the available correlations, the authors were
not able to extract an empirical equation out of it, which restricts the use of this model by others.

Noureldien and El-Banbi [1] generated two ANN models for RF estimation. The first model
(simple model) utilizes readily available data of net pay, STOIID, the original reservoir pressure, asset
area, porosity, Lorenz coefficient, effective permeability, API gravity, oil viscosity, and initial water
saturation. This simple model predicted the RF with an absolute average percentage error (AAPE)
of 9.5%. The second model (sophisticated model) utilized additional operational and technological
parameters. This model has a prediction accuracy of 8.0% for the testing dataset, but since it requires
the availability of operational and technological parameters, its application early in the reservoir life
is restricted.

Onolemhemhen et al. [30] came up with three models to predict the oil RF for water drive, solution
gas drive, and secondary recovery with water injection in the Niger delta. The authors used the data
from 136 reservoirs to develop their models. They pointed out that no correlation existed between
the porosity, permeability, reservoir thickness, water viscosity, initial water saturation, temperature,
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and the RFE. Hence, the authors did not include any information related to the reservoir formation and
formation-water properties, which are believed to affect the accuracy of these models drastically when
applied on different environments.

In this study, four Al techniques—the ANNSs, radial basis neuron networks (RNNs), adaptive
neuro-fuzzy inference system with subtractive clustering (ANFIS-SC), and support vector machines
(SVM) were used to estimate oil RF based on 10 parameters (net pay, STOIIP, the original reservoir
pressure, asset area, porosity, Lorenz coefficient, effective permeability, API gravity, oil viscosity,
and initial water saturation), which are readily available for all assets at their early stages; the use
of these parameters was suggested recently by Noureldien and El-Banbi [1] for RF prediction using
ANNSs. Noureldien and El-Banbi [1] did not extract an empirical correlation from their model, while in
this study, the extracted weights and biases of the optimized ANNs were used to develop an empirical
equation that could be easily programmed and used for RF estimation. The predictability of the
developed empirical equation will be compared with three available empirical correlations from the
works of literature.

4. Materials and Methods

A dataset of 173 lessons was collected from literature for this study [1,9]. The datasets were
analyzed statistically, and outliers were removed based on the standard deviation (SD) where any data
point out of the range of +0.3 SD was considered as an outlier. Five lessons were removed from the
data based on the SD criteria. Then, the remaining datasets (from 168 lessons) were used to develop the
Al models. These models were trained using 77% of the data, and the remaining (23%) were used to
test the trained models. The parameters used to generate the Al models (10 parameters) are explained
in Table 1.

Table 1. The parameters used to generate the artificial intelligence (AI) models. API: American
Petroleum Institute.

Group Parameter Definition
Asset Si Asset area Asset size in terms of its areal extent and reservoir size.
sset oize STOIIP The estimated value of the stock-tank oil initially in place.
Net pay thick () The net thickness of oil-saturated sand within the entire reservoir.
Porosity (¢) The pore volume relative to the total bulk rock volume of the rock.
Rock Parameters Lorenz coeff. Represents the vertical heterogeneity of the reservoir.
Initial water saturation (Sy;) Value of initial water saturation.
Permeability (k) Absolute permeability from core analysis.
Fluid Properties AP API gravity from PVL.
Qil viscosity (o) Measured or calculated oil viscosity.
Reservoir Energy Reservoir pressure (p) Reservoir pressure, referenced at 10,000 ft TVD.

These parameters could be divided into four groups (asset size, rock parameters, fluid properties,
and reservoir energy). Table 2 summarizes the statistical description of the data (130 reservoirs) used
to train the Al models. It shows the ranges of training data: asset area from 446 to 15,515 acres, STOIIP
from 5.0 to 1072.5 MMSTB, porosity from 0.12 to 0.32, connate water saturation from 0.16 to 0.31,
permeability from 15 to 1270 mD, API gravity from 23.0 to 42.2° AP, oil viscosity at reservoir conditions
from 0.16 to 2.59 cp. These ranges represent the applicable ranges for the developed models. Later on,
the testing data must fall within the same ranges as the training data to predict the RF with acceptable
accuracy. Figure 1 compares the relative importance of the parameters used in this study to train the
Al models developed to estimate the RF; as shown in this figure, all parameters have a moderate to
high correlation coefficient with the oil RF.



Energies 2019, 12, 3671 50f13

Table 2. The statistical description of the data used to train the Al models developed in this study.

Input Parameters Min Max Mean Mode Range SD Cogf.'of R?
Variation
Asset Area (acres) 446 15515 4787.5 3970 15069 3094 0.646 0.352
STOIIP (MMSTB) 5.00 1072.5 326.6 88 1067.5 279.1 0.854 0.249
Net Pay “h” (ft) 129 471.45 152.9 25.7 458.6 107.8 0.705 0.399
Porosity (fraction) 0.12 0.32 0.234 0.23 0.2 0.04 0.173 0.326
Lorenz Coefficient (fraction) 0.15 0.77 0.442 0.24 0.62 0.118 0.268 —-0.390
Syi (fraction) 0.16 0.31 0.225 0.2 0.15 0.036 0.16 —-0.362
Permeability “k” (md) 15.0 1270 450 1000 1255 318.3 0.707 —-0.224
API (degree) 23.0 42.20 34.50 33.0 19.2 4.446 0.129 0.228
Oil Viscosity (cp) 0.16 2.59 0.874 0.6 2.43 0.548 0.627 0.528
P “@10,000 TVD” (psi) 1672 11470 5833.7 7000 9798 2286.4 0.392 0.446
R? is the coefficient of determination.
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Figure 1. The relative importance of the parameters used to train the Al models developed in this
study to estimate the recovery factor (RF).

The first technique used in this study is the backpropagation ANNs. The suggested model is
selected based on the lowest AAPE and highest R? after testing different combinations of the ANNs
model design parameters, such as the number of hidden layers, the number of neurons per layer,
the training functions, the transferring functions, and the number of iterations. Inserted for loops were
constructed to test the predictability of the ANNs model using different combinations of these design
parameters, where every design factor was represented by one loop. The number of the hidden layers
was optimized in the range from one to three layers. The effect of the number of neurons in each hidden
layer was tested in the range of 5 to 25 neurons. The effect of different training functions (trainlm,
traingdm, traincgf, trainbr, and traingda) and two transfer functions—namely, the tan-sigmoid function
and pure line function—were also evaluated. An empirical correlation will be developed based on the
extracted weights and biases of the ANN optimized model.

The second model used in this study is the RNNs model, which is optimized on the design
parameters of the mean squared error goal (Goal), the maximum number of neurons (MN), the spread
of radial basis functions (Spread), and the number of neurons to add between displays (DF).
The optimization process was conducted in the same way as that followed earlier to optimize
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the ANNs model. ANFIS-SC was also used to obtain the recovery factor, which is optimized for the
radius of the cluster. The last technique considered in this study is the SVM, which is optimized for the
kernel type, kernel option, epsilon value, lambda, and C.

5. Results and Discussion

The use of one hidden layer with five neurons, the trainlm (Levenberg—-Marquardt) function
to train the model, and one output layer with a tan-sigmoid transfer function was found to give
the optimum predictability of the suggested model with R? and AAPE values of 0.95 and 5.80%,
respectively, based on the training dataset. Then, the trained model was used to develop the empirical
correlation in Equation (4), which predicted the oil RF for the testing data with R?> and AAPE values of
0.94 and 7.92%, respectively. Figure 2 is a cross-plot that compares the actual and predicted RF for
training and testing datasets using ANNSs. For the testing set, the predictability of the ANNs-based
equation over-performed all other Al models in term of AAPE and R? of the tested data. Equation (4)
was developed on the same base as that followed by Mahmoud et al. [13].

N J
Z wz_itansig(z w1-i,;Yj+ bli)

i=1 =1

RF = + by ()

where RF is the recovery factor (dimensionless), N represents the total neurons in the hidden layer
(dimensionless), ] is the total number of input parameters (dimensionless, in this case, 10 inputs are
used as summarized in Table 1), w; is the hidden layer weights (dimensionless), b is the hidden layer
bias (dimensionless), w, denotes the output layer weights (dimensionless), b, represents the output
layer weights (dimensionless, the extracted weights and biases of the hidden and output layers are
summarized in Table 3), Y represents the normalized input parameters (dimensionless). The use of an
equation form (such as that in Equation (4)) for determining the desired output (the RF in this case) is
explained before by many authors e.g., Mahmoud et al. [13].
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Figure 2. Predicted vs. actual RF based on the artificial neural network (ANN) model (a) training
dataset, (b) testing dataset.

The second model used in this study is the RNN model. As a result, the use of a goal of zero,
spread of 3.0, MN of 16, and DF of 4.0 was found to give the lowest AAPE of 6.86% and the highest
R? 0.95 based on the same training data. The R? of 0.95 as per RNNs is higher than that of the ANN
model. However, when the RNN model is applied to the testing dataset, it gave the lowest R> among
all the techniques used (R? = 0.88). The AAPE for testing data is 8.78%, which is also higher than that
obtained by the ANN model. The cross-plots of the actual and predicted RF using the RNN model on
both the training and testing datasets are shown in Figure 3.
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Table 3. The proposed ANN-based weights and biases for RF calculations with Equation (4).

Input Layer Output Layer
Weights (w1) Btzs)es Wa(elgl;ts Bias (by)
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 1 w2
i=1 4215 3.82 11.27 -57.13 —8.42 2359  -10.34 27.35 50.09 40.05 —2.06 0.07
No. of i=2 40.32 4.05 ~7.60 8.91 -5.01 9.13 11.68 -14.11 16.53 -21.10 ~1.48 0.18
N 0.0 i=3 -11.13 10.73 -10.68  -2331 -1.18 23.48 32.23 6.22 —41.03  -19.40 227 0.29 ~0.49
eurons ;i _y -0.29 1.14 -0.13 0.07 ~0.59 -1.05 0.07 0.11 1.34 0.68 0.39 0.59
i=5 2.34 0.54 0.83 0.14 0.92 —4.49 0.12 -9.08 4.76 0.55 2.60 -0.38
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Figure 3. Predicted vs. actual recovery factor based on the radial basis neuron network (RNN) model
(a) training dataset, (b) testing dataset.

The suggested ANFIS-SC model was optimized based on the cluster radius value. The results
show that the ANFIS-SC model with the cluster radius of 0.7 has the lowest AAPE for a training dataset
of 4.83% and a very high R? of 0.98. The tested dataset with this model also exhibits a good R? with
actual oil recovery (R? = 0.91) and relatively low AAPE of 8.53%, as shown in Figure 4.
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Figure 4. Predicted vs. actual recovery factor based on adaptive neuro-fuzzy inference system with
subtractive clustering (ANFIS-SC) model (a) training dataset, (b) testing dataset.

The highest R? for the training dataset was achieved by the SVM model (R? = 0.99), as shown in

Figure 5, with a relatively low AAPE of 5.11% for the optimum SVM, which has the following design
parameters (lambda is 1078, epsilon is 2.0, the kernel is Gaussian with the kernel option of 1.7, verbose
of zero, and the C is 2500). This design parameters combination was selected using the same way
followed earlier to optimize the ANN model. Applying the optimized SVM model on the testing
dataset showed the highest AAPE value of 10.44% and relatively low R? value of 0.90. Figure 5 is a
cross-plot that compares the actual and predicted RF for the training and testing datasets using the
optimized SVM.
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Figure 5. Predicted vs. actual recovery factor based on the support vector machine (SVM) model
(a) training dataset, (b) testing dataset.

Table 4 summarizes the values of R* and AAPE for the training and testing datasets between the
actual and predicted recovery factors estimated through the four Al techniques used in this work.
This table indicates that the ANN-based correlation predicted the RF for the testing dataset with the
highest R? and lowest AAPE compared to all the other Al models.

Table 4. Coefficient of determinations between actual and predicted RF and the absolute average
percentage error (AAPE) in predicting the RF by different Al techniques.

Training Testing
R? AAPE (%) R? AAPE (%)
ANNSs 0.95 5.80 0.94 7.92
RNNs 0.95 6.86 0.88 8.78
ANFIS-SC 0.98 4.83 0.91 8.53
SVM 0.99 5.11 0.90 10.44

The performance of three available empirical correlations for RF estimation from water-drive
sandstone reservoirs was compared with the prediction capability of the suggested ANN-based
correlation, as shown in Figure 6. The ANN-based correlation over-performed all the other empirical
equations in terms of the coefficient of determination with R? values of 0.95, 0.40, —0.18, and 0.55
between the actual and estimated RF predicted using the ANN-based correlation, Guthrie and
Greenberger correlation, API correlation, and Gulstad correlation, respectively. Figure 6 also compares
the results of the deviation in RF values estimated using the ANNSs correlation and the other three
empirical correlations considered in this work from actual ones for the testing dataset. It indicates that
the estimated RF by ANNs model has a lower deviation compared to all the other correlations studied,
with a deviation of between —10% to +20% maximum. The low deviation of the RF estimated using
the ANN-based correlation is attributed to the high accuracy of this equation, which is trained using
130 data points.

Figure 7 compares the error in the estimated RF from the ANNs-based equation with those of
empirical correlations through different error measures (AAPE, RMSE, and R?). All the measures used
to quantify the errors indicate that the ANNs-based correlation has the lowest error and the highest
correlation with the real RE. Appendix A summarizes the relationships used to calculate the errors.
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Figure 6. Cross-plot of the predicted and actual RF estimated by ANN-based, Guthrie and Greenberger,

API, and Gulstad correlations.
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Figure 7. Comparison of AAPE, root mean square error (RMSE), and R? of ANNs-based, Guthrie and

Greenberger, API, and Gulstad correlations for the testing data.

6. Conclusions

Recovery factor (RF) estimation is a very complicated problem. In this paper, four artificial
intelligence (AI) models of the artificial neural networks (ANNSs), radial basis neuron networks,
adaptive neuro-fuzzy inference system with subtractive clustering, and support vector machines were
optimized to predict RF by using 10 parameters regarding the reservoir rock and fluid properties
readily available early in the reservoir’s life. The ANNSs is the best Al model to predict the RF because
of its lowest AAPE of 7.92% and the highest R? of 0.94 for the predicted RF for the testing dataset
(38 reservoirs). For the first time, an empirical correlation for RF prediction was developed based on
the ANNs model, which could be modeled and used easily to predict the RE. The developed correlation
outperformed the published correlations in terms of all measures of error evaluation considered in
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this study; as well, it also has the highest R? of 0.94 compared to only 0.55 obtained from Gulstad
correlation, which is one of the most accurate correlations currently available.
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Nomenclature

AAPE Absolute Average Percentage Error
Al Artificial Intelligence

ANFIS-SC Adaptive Neuro-Fuzzy Inference System with Subtractive Clustering
ANNs Artificial Neural Networks

API American Petroleum Institute
STOIIP Stock-Tank Oil Initially in Place

R2 Coefficient of Determination

RF Recovery Factor

RF, Actual Correlation Factor

RFm Estimated Correlation Factor
RNNs Radial Basis Neural Networks
RMSE Root Mean Square Error

SD Standard Deviation

SVM Support Vector Machines
Appendix A

Absolute Average Percent Error (AAPE)

N
1 |RFa|i - |RFm|i
AAPE = — _—
N;( IRF;

X 100) (A1)

The Coefficient of Determination (R%)

3 [[IRE); ~ REa] - [[RE]; - R, ]|
R2 = =t (A2)

\/ gl[ung],- - R_a]zgl[[RFmJi ~RE.|

Root Mean Square Error (RMSE)

N
RMSE = J ﬁ;HRFa]i ~ [REn),)? (A3)

where in all previous equations a and m denote actual and estimated, respectively.
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