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Abstract: With the improvement of operation monitoring and data acquisition levels of smart meters,
mining data associated with smart meters becomes possible. Besides, precisely assessing the operation
quality of smart meters plays an important role in purchasing metering equipment and improving
the economic benefits of power utilities. First, seven indexes for assessing operation quality of smart
meters are defined based on the metering data and the Gaussian mixture model (GMM) clustering
algorithm is applied to extract the typical index data from the massive data of smart meters. Then,
the combination optimization model of index’s weight is presented with the subject experience of
experts and object difference of data considered; and the comprehensive assessment algorithm based
on the revised technique for order preference by similarity to an ideal solution (TOPSIS) is proposed
to evaluate the operation quality of smart meters. Finally, the proposed data-driven assessment
algorithm is illustrated by the actual metering data from Zhejiang Ningbo power supply company of
China and practical application is briefly introduced. The results show that the proposed algorithm
is effective for assessing the operation quality of smart meters and could be helpful for energy
measurement and asset management.

Keywords: smart meters; operation quality assessment; Gaussian mixture model (GMM); combination
weight optimization; revised technique for order preference by similarity to an ideal solution (TOPSIS)

1. Introduction

With the increase of customers’ requirements on power quality, power marketing has received
more and more attention from power companies [1,2]. As a foundation of power marketing, energy
metering provides basic data for accurate accounting of energy usage and energy revenue. Hence, the
operation quality of the smart meters will have an important impact on the data quality, the application
of electricity information acquisition system and the efficiency of power enterprises [3,4]. Therefore, it
is of practical significance to study the assessment algorithm of operation quality for smart meters [5,6].

At present, there are several models and algorithms for comprehensively assessing the operation
quality of smart meters produced by suppliers. These models and algorithms can be mainly divided
into three types: The first is to evaluate the smart meters and the suppliers based on a certain index.
The second is to propose multiple indexes of the smart meters from different aspects and then process
data with the simple additive weighting (SAW) [7] method to evaluate the equipment. However,
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different indexes have different impacts on the operation quality of smart meters, so the assessment
results of such algorithms are inaccurate if the importance of indexes is not considered. The third
is to apply the expert scoring algorithm [8], analytic hierarchy process (AHP) [9] and some other
subjective weighting methods to determine the weight of each index directly, which considers the
difference of indexes’ impacts on smart meters. However, the results are quite subjective due to the
limitation of experts’ knowledge and experience [10], which might lead to a large difference in the
results of operation quality assessment of smart meters by different experts. Moreover, the quality
assessment indexes of terminal meters for pre-operation quality, operation quality and maintenance
are proposed and the quality assessment model for whole-life-cycle is presented based on entropy
weight method and improved AHP in Reference [11]. In Reference [12], the hierarchical model and
method of quality assessment for the whole-life-cycle of smart meters is proposed based on triangular
fuzzy AHP and defect deduction method. In Reference [8], the whole-life-cycle quality assessment
model of smart meters is constructed and the quality assessment from the perspectives of different
suppliers, models, batches and single ones are realized. In Reference [13], an operation assessment
method of electric energy metering device is proposed based on health index. In Reference [14], the
status assessment indexes and models for electricity gateway meters are studied. In Reference [15], the
demand analysis, technical architecture and development platform of the reliability prediction system
of electricity meters based on cloud platform are introduced. In Reference [16], quality assessment
indexes such as positive difference rate, negative difference rate and zero difference rate of smart
meters are presented, the measurement assessment system of smart meters is constructed and the
real-time monitoring platform for smart meters are developed. The strengths and weaknesses of the
aforementioned methods are summarized in Table 1.

Table 1. Strengths and weaknesses of existing research about quality assessment of smart meters.

Research How Many
Indexes?

How to Determine the
Weights of Indexes? Strength Weakness

[7] Multiply SAW Very Simplest
Difference importance
of indexes is not
considered

[8] Multiply Expert scoring Simple
Result are subjective,
experience of experts is
required

[9] Multiply AHP Simple and better than
direct expert scoring

Result are subjective,
experience of experts is
required

[11] Multiply
Entropy weight

method and improved
AHP

Consider the subjective
and objective weight

together

Variations of data are
not considered

[12] Multiply
Triangular fuzzy AHP
and defect deduction

method

Consider the fuzzy
information

Objective weight is not
considered

[13] Single N/A Vivid
Single index cannot do
assessment
comprehensively

[14] Single N/A Simplest
Single index cannot do
assessment
comprehensively

[15] Single N/A Simplest
Single index cannot do
assessment
comprehensively

[16] Multiply SAW Very Simplest
Difference importance
of indexes is not
considered
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In summary, the current research on the quality assessment of smart meters is insufficient and
there are fewer studies on the ranking of the suppliers from the operation quality of smart meters.
Moreover, the current research is based on the hypothesis that the basic characteristics of smart meters
can be acquired but actually, how to extract these basic characteristics is still an issue.

In order to monitor the states of power-consuming in time and accurately, a large number of
smart meters have been installed at the user-side terminal, sending the metering and fault alarm data
periodically to the metering control center. Because the production batch and installation area of the
equipment are different and they have various models and interfaces, massive metering and fault
alarm information would be continuously generated by smart meters [11]. In addition, non-quality
factors such as environmental noise and electromagnetic interference may also lead to problems such
as bad data and null data. Therefore, using data analysis technology to cluster the collected raw data
first will help improve the data quality of smart meters [17,18]. Data analysis technology has gradually
been applied to the field of power systems, which mainly includes data processing and data analysis
algorithms. So far, data analysis technology has been gradually utilized to evaluate the operation
quality of smart meters comprehensively [19]. Therefore, based on the statistical characteristics of the
quality data of smart meters, this paper attempts to consider the probability of various fault alarm
events produced by smart meters as the superposition of multiple Gaussian distributions. The Gaussian
mixture model (GMM) [20,21] clustering algorithm is applied to discover the internal correlation
among the fault alarm data and to extract the typical indexes that characterize the operation quality of
the smart meters, thereby to reduce the storage scale and calculation complexity of the comprehensive
assessment model of smart meters.

The motivations of this work are summarized as follows:

a. The operation quality of the smart meters will influence the metering accuracy greatly, so it is of
significant to assess the quality of smart meters comprehensively.

b. Although there is some research about the assessment of smart meters, they have disadvantages
such as one-sidedness and subjective. Therefore, it is required to present a comprehensive
assessment algorithm including multiply indexes and combined weight methods to assess the
quality of smart meters.

c. There are massive data to be processed, therefore, it is necessary to utilize suitable
clustering method (i.e., GMM clustering method in this work) to reduce the scale of data
for further assessment.

Given this background, a GMM, combination weight model and revised TOPSIS (GCT)-based
algorithm is proposed in this paper. First, seven indexes are defined to indicate the operation quality
of the smart meters. The GMM clustering algorithm is used to extract the typical index data from
the massive data of the smart meters. In order to determine the weights of the seven indexes more
accurately, the combined optimization model is proposed based on AHP, the entropy weight method,
the correlation coefficient method and the variation coefficient method. Then, with the revised TOPSIS,
the operation quality of smart meters can be assessed comprehensively and sorted. Finally, the data of
smart meters from the power utility company of a district in Ningbo city, Zhejiang Province, China, are
adopted to verify the proposed algorithm. The application of the proposed algorithm in the actual
system of Zhejiang Province is also introduced briefly.

2. Index Mining of Operation Quality Assessment of Smart Meters Based on GMM
Clustering Algorithm

The electricity information acquisition system, which is shown in Figure 1, is deployed in most
of power utilities in China. It can be seen from Figure 1 that data of energy, instantaneous active
power and reactive power, amplitude of three-phase or two-phase currents and voltages and total
power factor are recorded by smart meters produced by various suppliers. Then, these data are
transmitted to collectors with RS-485 protocol. Next, the collected data would be further concentrated
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into concentrators by programmable logic controller (PLC) with wireless network. Finally, all data
would be transmitted to electricity information acquisition system through optical fiber, general packet
radio service (GPRS), the 4th generation of mobile phone mobile communication technology standards
(4G) and code division multiple access (CMDA) techniques.

Energies 2019, 12, x FOR PEER REVIEW 4 of 19 

 

 
Figure 1. Framework of the electricity information acquisition system. 

With the enhancement of information technology, these data can be employed to improve the 
accuracy of analysis for operation state of smart meters. Therefore, these data are gradually utilized 
to evaluate the operation quality of smart meters. Hence, seven indexes, which can represent the 
operation quality of smart meters from different aspects, are respectively defined as follows. 

When data are collected from the user-side by smart meters, bad data are generated due to 
factors such as abrupt change of current or voltage and electromagnetic interference. Therefore, 
before the data collected being delivered into the assessment system, the unavailable data should be 
eliminated first, leaving the available ones to perform the quality assessment. In fact, smart meters 
can only measure the power consumption accurately under normal conditions. If the change rates of 
current and voltage were too fast, then the data measured would be not accurate. Besides, smart 
meters are electronic device and the transmission process from meters to concentrator is based on 
wireless network, so the data measured would also be influenced if there were electrometric 
interference. All these phenomena would influence the accuracy of data measured by smart meters 
and the ability to defense this influence can be regarded as an index for assessing the quality of smart 
meters. The more the available data are, the better the quality of the smart meters will be. Therefore, 
the availability rate of data collection (ARDC) is defined as 

samp

samp

{E, P, Q, V, I, }
samp,

1
{E, P,Q, V, I, }

1

samp,
1

( )

100%

i

i
i i

N

i

N

i

m
T

M

T

λ

λα

Θ

Θ∈
Θ

=
Θ∈

=

⋅

= ×


 


 (1) 

where Nsamp is the total number of sampling points, Tsamp,i is the window length of the ith sampling; 

iM
Θ  and im

Θ  are respectively the total number of metering load data and the number of non-null 
load data. Θ ∈ {E, P, Q, V, I, λ } denotes the data of energy, active power, reactive power, amplitude 
of voltage and current and power factor, respectively. 

In actual operation, data may not be collected in a time period, which means that the data 
collection is incomplete. It will cause corresponding measurement errors generated by the metering 

Figure 1. Framework of the electricity information acquisition system.

With the enhancement of information technology, these data can be employed to improve the
accuracy of analysis for operation state of smart meters. Therefore, these data are gradually utilized
to evaluate the operation quality of smart meters. Hence, seven indexes, which can represent the
operation quality of smart meters from different aspects, are respectively defined as follows.

When data are collected from the user-side by smart meters, bad data are generated due to factors
such as abrupt change of current or voltage and electromagnetic interference. Therefore, before the
data collected being delivered into the assessment system, the unavailable data should be eliminated
first, leaving the available ones to perform the quality assessment. In fact, smart meters can only
measure the power consumption accurately under normal conditions. If the change rates of current
and voltage were too fast, then the data measured would be not accurate. Besides, smart meters
are electronic device and the transmission process from meters to concentrator is based on wireless
network, so the data measured would also be influenced if there were electrometric interference. All
these phenomena would influence the accuracy of data measured by smart meters and the ability to
defense this influence can be regarded as an index for assessing the quality of smart meters. The more
the available data are, the better the quality of the smart meters will be. Therefore, the availability rate
of data collection (ARDC) is defined as

α1 =

Nsamp∑
i=1

(

∑
Θ∈{E, P, Q, V, I, λ}

mΘ
i∑

Θ∈{E, P, Q, V, I, λ}
MΘ

i
· Tsamp,i)

Nsamp∑
i = 1

Tsamp,i

× 100% (1)
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where Nsamp is the total number of sampling points, Tsamp,i is the window length of the ith sampling;
MΘ

i and mΘ
i are respectively the total number of metering load data and the number of non-null load

data. Θ ∈{E, P, Q, V, I, λ} denotes the data of energy, active power, reactive power, amplitude of voltage
and current and power factor, respectively.

In actual operation, data may not be collected in a time period, which means that the data collection
is incomplete. It will cause corresponding measurement errors generated by the metering system. The
more completed the data collection is, the more accurate the measurement results of the smart meters
will be. Therefore, the collection rate of power data (CRPD) is defined as

α2 =

Nsamp∑
i=1

(

∑
Θ∈{E, P,Q, V, I, λ}

cΘ
i∑

Θ∈{E, P, Q, V, I, λ}
CΘ

i
· Tsamp,i)

Nsamp∑
i = 1

Tsamp,i

× 100% (2)

where CΘ
i and cΘ

i are respectively the number of data that should be collected theoretically and the
number of data actually collected during the ith sampling point.

Abnormal information is recorded by smart meters during operation. In fact, there are many
abnormalities w.r.t. smart meters and they can be divided into three categories according to experts’
experiences—serious abnormalities (e.g., energy meter breakdown); general abnormalities (e.g.,
abnormal power fluctuations, current imbalance, etc.); minor abnormalities (e.g., constant magnetic
field interference, load overcapacity, etc.). Therefore, the serious, general and minor abnormalities
(SAs, GAs and MAs) are respectively defined as

α3 =

Nsamp∑
i = 1

Fser,i (3)

α4 =

Nsamp∑
i = 1

Fgen,i (4)

α5 =

Nsamp∑
i = 1

Fmin,i (5)

where Fser,i, Fgen,i and Fmin,i are, respectively, the number of SAs, GAs and MAs of the metering
equipment during the ith sampling point.

The time between failures of smart meters refers to the time that can run before the first fault
occurs. It is an important index, which reflects the reliability of the smart meters. The longer the time
between failures is, the higher the operational reliability of the smart meters will be. Therefore, the
time between failures (TBF) is defined as

α6 =

Nsamp,F∑
i = 1

Tsamp,i (6)

where Nsamp,F is the first sampling point when Fser,i + Fgen,i + Fmin,i , 0.
In actual operation, the smart meter may continue to operate after self-reset or overhaul after a

fault occurs. However, during the time of failures, the smart meter stops working. The longer the time
of failures is, the greater the measurement deviation is and the worse the quality in the comprehensive
assessment will be. Therefore, the operating failure rate (OFR) is defined as

α7 =
TF

Trate
× 100% (7)
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where Trate and TF are the rated running time and fault outage time of the metering equipment,
respectively.

Because there are a large number of smart meters and their types are different [18], the data
of smart meters derived from the electricity information collection system cannot be applied to the
operation quality assessment directly. Hence, the data clustering method is used to explore the typical
characteristics of the operation quality of each supplier’s smart meters, so as to achieve a comprehensive
assessment. In fact, the operation quality of smart meters is affected by many independent factors,
such as the proficiency of workers in the production of the same batch, random errors in processing
operations and the temperature, humidity and pollution levels of operating environment for the
equipment. However, the impacts of these factors on the operation quality of the smart meters are
not critical. According to the central limit theorem [22], the sum of distribution of a large number of
independent random variables approximates the Gaussian distribution, so it can be considered that
the quality data of smart meters collected in the same batch conform to the Gaussian distribution.

For GMM, the Gaussian distribution probability density function is utilized to describe data. By
this data analysis technology, data are projected onto multiple Gaussian models and the probability
of the data on each Gaussian model is obtained. Then, the model with the highest probability is
selected to decompose a large data set into several small data sets that conform to the Gaussian
distribution [20,21]. Therefore, the Gaussian mixture model can be used for data clustering to extract
typical features from a data set. As mentioned before, for K batches of equipment under a smart meter
supplier, the index data can be considered as a superposition of K Gaussian distribution data sets.
Therefore, the Gaussian mixture model clustering algorithm is more suitable for mining the index data
of the operation quality of smart meters than other clustering algorithms that do not consider the data
distribution characteristics.

Assuming that the GMM is a mixture of K Gaussian distributions, each Gaussian distribution is
called a “component.” The linear addition of these “components” is the probability density function of
the GMM and is represented by

p(x) =
K∑

k = 1

ωkNk(x;µk; Σk) (8)

Nk(x;µk; Σk) =
1√

(2π)k
|Σk|

e−
1
2 (x−µk)

TΣ−1(x − µk) (9)

where ωk represents the weight of the kth multidimensional single Gaussian distribution and
Nk(x;µk; Σk) represents the probability density function of the kth multidimensional single Gaussian
distribution. x = (x1, x2, . . . , xN)

T is an auxiliary vector where xi (1 ≤ i ≤ N) represents a point for
smart meter i in the 7-dimensional coordinate system with its coordinates (α1, α2, α3, α4, α5, α6, α7).
α1,α2, . . . ,α7 are the indexes ARDC, CRPD, SAs, GAs, MAs and OFR defined in Equations (1)–(7). The
practical meaning of xi can be regarded as the representation for the quality of smart meter i. N is the
total number of smart meters to be clustered; µk is the expected vector of the kth Gaussian model and
Σk is the variance of the kth Gaussian model, respectively.

In the GMM clustering process, the parameters of each Gaussian distribution model need to be
estimated and the estimation is performed by the expectation maximum (EM) algorithm [23]. Therefore,
the steps of the GMM clustering algorithm for operation quality of smart meters’ data are as follows.
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(1) Let l = 0, θ(l)k = (µ(l)k , Σ(l)
k ) and Φ(l)

k = (ω
(l)
k ,θ(l)k ). Initiate the values of θ(l)k and Φ(l)

k randomly
and find the initial posterior probability of the ith sample point xi belonging to the kth Gaussian
model, which is represented by

p
(
k|xi, Φ(l)

)
=

ω
(l)
k pk

(
xi|θ

(l)
k

)
K∑

j = 1
ω
(l)
j p j

(
xi|θ

(l)
k

) (10)

(2) Substitute the initial posterior probability obtained in step (1) into the maximum likelihood
formula to obtain the GMM clustering parameters of the (l + 1)th iteration and as follows.

ω
(l + 1)
k =

1
N

N∑
i = 1

p
(
k|xi, Φ(l)

)
(11)

µ
(l+1)
k =

1

Nω(l+1)
k

N∑
i = 1

xi · p
(
k|xi, Φ(l)

)
(12)

Σ(l+1)
k =

1

Nω(l+1)
k

N∑
i=1

‖xi − µ
(l+1)
k ‖

2
p
(
k|xi, Φ(l)

)
(13)

(3) If ‖Φ(l + 1)
− Φ(l)

‖ < 10−5, terminate the iteration, determine Φ(l+1) as the estimated GMM
clustering parameter and continue to the next step. Otherwise, return to step (2);

(4) Obtain the probability of the ith sample point xi belonging to the kth Gaussian model by using
the following Bayesian probability formula.

p
(
θk|xi

)
=

ωkp
(
xi|θk

)
K∑

k = 1
ωkp

(
xi|θk

) (14)

According to the maximum Bayesian probability criterion, the ith sample point xi is assigned into
the Gaussian model of which the probability is maximized. When all the sample points of one supplier
are assigned into their respective Gaussian models following the above steps, the GMM clustering is
completed and the corresponding K cluster centers are obtained, that is, K typical points that reflect the
operation quality of the suppliers’ smart meters. The coordinates of these typical points are typical
values of the seven indexes. By obtaining the geometric center of the typical points under the same
supplier, a row of decision matrix for the operation quality assessment of smart meters can be formed.
A complete decision matrix of operation quality for smart meters, which will be discussed in Section 3,
can be formed by determining the geometric centers of all suppliers.

Thus, the redundant and unimportant information in the original metric data of the operation
quality assessment is discarded by the GMM clustering algorithm and the important data and typical
characteristics of the original data are retained. Therefore, the GMM clustering algorithm greatly
reduces the scale of the data and the calculation complexity of the comprehensive assessment of smart
meters but brings about little influence on accuracy.

3. Combined Weight Optimization Model for Smart Meters

After the employment of the GMM clustering algorithm, seven typical operation quality indexes
of the smart meters for each supplier can be obtained. These seven indexes characterize the operation
quality of the smart meters from various aspects. In order to consider the impact of each index
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comprehensively on operation quality assessment, it is necessary to select an appropriate method to
determine the importance (i.e., the weight) of each index. Weight determination methods commonly
used include AHP which considers the subjective experience of experts [24], the entropy weight
method which considers the degree of data dispersion [25,26], the correlation coefficient method which
considers the degree of data correlation [27] and the variation coefficient method which considers
the contrast strength of data [28]. In order to consider the degree of data dispersion, correlation,
contrast strength and subjective will of experts comprehensively, the combined indexes’ weights for
operation quality of smart meters are proposed. In this section, the normalization processing that
needs to be performed before weight determination is introduced first; then the above four weight
determination methods are introduced; finally, the combined optimization model of the operation
quality index of the smart meters is presented. In fact, the seven indexes defined in Section 2 would
not only be influenced by the quality of smart meters but also by many other factors such as quality of
power distribution, failure or poor quality of other equipment and external environment. It is hard
to completely discriminate among these factors to extract considerations regarding the quality of the
smart meters only. This problem is an inherent defect of data-driven algorithms and this paper try to
relive this problem by the combined weight optimization model. For instance, some indexes might be
largely influenced by factors unrelated with the quality of smart meters, then these indexes can be
given small weighs by experts in AHP weight method with their experiences.

Let D = (dij)B × L be the decision matrix of the operation quality assessment problem for smart
meters, where B denotes the number of the suppliers of smart meters, L denotes the number of the
indexes and dij denotes the jth index value of the ith smart meter supplier. Because different indexes
have different units and the indexes can be divided into two types: Benefit type and cost type, it is not
possible to directly compare the importance of each index. Therefore, they should be normalized by
using Equations (15) and (16) to get a normalized decision matrix.

d′i j =
di j −min

i

{
di j

}
max

i

{
di j

}
−min

i

{
di j

} ( j ∈ Ω1) (15)

d′i j =
max

i

{
di j

}
− di j

max
i

{
di j

}
−min

i

{
di j

} ( j ∈ Ω2) (16)

where min
i

{
di j

}
and max

i

{
di j

}
represent the minimum and maximum values of all smart meter suppliers

on the index j, respectively; Ω1 and Ω2 represent the sets of benefit indexes and cost indexes, respectively.
In this paper, Ω1 = {1, 2, 6} and Ω2 = {3, 4, 5, 7}.

The AHP, which is a subjective weighting method, obtains the weight of each index by comparing
the importance of two pairs of indexes [24]. Let L indexes be U = {u1, u2, . . . , uL} and use aij from 1 to 9
to denote the ratio of importance between indexes ui and uj on the operation quality of smart meters.
The larger the value is, the more important ui compared with uj is. In this way, a judgment matrix A
= (aij)L×L of the operation quality assessment problem of the smart meters can be obtained and the
judgment matrix has the following properties: aij > 0, aji = 1/aij, (i = 1, 2, . . . , L; j = 1, 2, . . . , L). Before
determining the weight of each index, the consistency test is performed on the judgment matrix A. If
the consistency test fails, the values of aij are contradictory and need to be re-assigned. If the test is
passed, the values of aij are consistent and the judgment matrix A can be used for determining the
indexes’ weights [24] as

wA
j = b j/

L∑
j = 1

b j ( j = 1, 2, . . . , L) (17)
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b j = 1/
L∑

i = 1

ai j ( j = 1, 2, . . . , L) (18)

where 0 ≤ wA
j ≤ 1 and

L∑
j=1

wA
j = 1.

In informatics, entropy is used to characterize the degree of disorder of the system and the degree
of dispersion of the data [25,26]. The larger the information entropy of the index is, the less information
it provides in the comprehensive assessment and the smaller the corresponding weight should be.
Conversely, the smaller the information entropy is, the larger the weight should be. Therefore, the
entropy of the operation quality index of the smart meters is defined as

H j = −κ
B∑

j = 1

fi j ln fi j ( j = 1, 2, . . . , L) (19)

where κ = 1/ ln B, fi j = d′i j/
B∑

i=1
d′i j and fi j ln fi j = 0 if fi j = 0. Therefore, the entropy weight of the jth

operation quality index of smart meters is defined as

wE
j =

1−H j

L−
L∑

j = 1
H j

( j = 1, 2, . . . , L) (20)

where 0 ≤ wE
j ≤ 1 and

L∑
j = 1

wE
j = 1.

In statistics, the correlation coefficient is used to measure the correlation between two variables,
including the Pearson correlation coefficient, Spearman correlation coefficient and Kendall correlation
coefficient. The Pearson correlation coefficient is more suitable for data with Gaussian distribution. [27],
so Pearson correlation coefficient [28] is utilized in this paper to detect the intrinsic correlation between
indexes. The greater the degree of correlation is, the greater the repeatability of the information
between the indexes is and the smaller the weight of the corresponding indexes should be; conversely,

the smaller the correlation is, the greater the weight should be. Assuming that d′x =
(
d′1x, d′2x, . . . , d′Bx

)T

and d′y =
(
d′1y, d′2y, . . . , d′By

)T
respectively represent the xth and yth column vectors of the normalized

decision matrix, the Pearson correlation coefficient between the xth and yth indexes is defined as

ρx,y =

B∑
i=1

(d′ix − d′x)(d′iy − d′y)√
B∑

i=1
(d′ix − d′x)

2
√

B∑
i=1

(d′iy − d′y)
2

(x, y = 1, 2, . . . , L) (21)

where d′x and d′y are the average values of d′x and d′y, respectively. Therefore, the weight based on
correlation coefficients is defined as

wC
j =

1/
L∑

i=1,i, j
ρi j

L∑
j=1

1/
L∑

i=1,i, j
ρi j

 ( j = 1, 2, . . . , L) (22)

where 0 ≤ wC
j ≤ 1 and

L∑
j=1

wC
j = 1.
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The variation coefficient method is an objective weighting method that determines the weight of
an index based on the strength of contrast among data [29]. The greater the variation of an index is, the
greater the contrast strength relative to other indexes is, the higher the importance of the assessment
object in the comprehensive assessment is and thus the greater its weight should be. Conversely, the
smaller the variation is, the smaller the weight should be. The variation coefficient of the index uj is
defined as

V j =

√√√
1
B

B∑
i=1

(
d′i j − d′ j

)2
/d′ j ( j = 1, 2, . . . , L) (23)

where d′ j denotes the average value of the vector
(
d′1 j, d′2 j, . . . , d′Pj

)T
. Therefore, the weight based on

variation coefficient is defined as

wV
j = V j/

L∑
j=1

V j ( j = 1, 2, . . . , L) (24)

where 0 ≤ wV
j ≤ 1 and

L∑
j=1

wV
j = 1.

Although the four subjective and objective methods are simple and easy to implement, they all
have some deficiencies. Only the experiences of experts are considered by the subjective weighting
method, which can easily lead to large subjective preferences. Only the actual data are employed
in objective weighting method and there are inevitable errors in actual data, which may lead to the
inconsistent assessment results in actual situation. In order to fully consider the subjective scoring based
on expert experience and modify the weights according to the characteristics of the data themselves,
a combined optimization model of index weight of operation quality for smart meters based on the
weight membership degree is presented as

max f (x) =
G∑

k=1

L∑
j=1
η
(
wk

j

)
s.t.

L∑
j=1

w∗j = 1

0 ≤ w∗j ≤ 1, j = 1, 2, . . . , L

(25)

where w∗j represents the combined weight of the jth operation quality index to be optimized, wk
j

represents the weight of the jth index obtained by the kth method and G represents the number

of weight determination methods; η
(
wk

j

)
is the membership function of the representation and is

represented by

η
(
wk

j

)
=

 w∗j/wk
j wk

j ≥ w∗j ≥ 0

(1−w∗j)/(1−wk
j) 1 ≥ w∗j ≥ wk

j
(26)

It can be seen that the larger the η
(
wk

j

)
is, the closer the wk

j and w∗j will be.

4. Comprehensive Operation Quality Assessment Algorithm of Smart Meters Based on
Revised TOPSIS

Once the combined weight of each operation quality index is determined, the comprehensive
operation quality assessment of the smart meters can be transformed into a multi-attribute decision
making (MADM) problem [30]. The revised TOPSIS, one of the MADM methods, measures the distance
between the variables by their included angle. Besides, the assessed smart meters are sorted according
to the closeness between them and the idealized target [31]. Therefore, the process of comprehensive
operation quality assessment of smart meters based on the revised TOPSIS is as follows.
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Form the assessment matrix of Q operation quality indexes corresponding to B suppliers of
smart meters

R = (ri j)B × L (27)

where ri j = w∗jd
′

i j.
Determine the ideal point and negative ideal point in the operation quality assessment of the

smart meters, which are respectively represented as

r+ =
(
r+1 , r+2 , . . . , r+L

)
(28)

r− =
(
r−1 , r−2 , . . . , r−L

)
(29)

where r+j = max
i

{
ri j

}
, r−j = min

i

{
ri j

}
and j = 1, 2, . . . , L.

Obtain the angular distance between the operation quality indexes of each supplier and the ideal
point/negative ideal point respectively, which are denoted as

β+i = arccos
r+ · ri
‖r+‖‖ri‖

i = (1, 2, . . . , B) (30)

β−i = arccos
r− · ri
‖r−‖‖ri‖

i = (1, 2, . . . , B) (31)

where ri=(ri1, ri2, . . . , riL) denotes the ith row vector of assessment matrix R.
Determine the assessment values of the operation quality of smart meters as

γi =
β−i

β+i + β−i
i = (1, 2, . . . , B) (32)

It can be seen from Equations (30)–(32) that the better the operation quality of the smart meters
produced by the ith supplier is, the closer the γi to 1 will be; conversely, the worse the operation quality
is, the closer the γi to 0 will be. Therefore, the assessment result of the operation quality of the smart
meters can be obtained according to the value of γi.

The overall process of the proposed GCT-based algorithm is shown in Figure 2.

Energies 2019, 12, x FOR PEER REVIEW 11 of 19 

 

( )1,2,...,i
i

i i

i B
βγ

β β

−

+ − ==
+

 (32) 

It can be seen from Equations. (30)–(32) that the better the operation quality of the smart meters 
produced by the ith supplier is, the closer the iγ  to 1 will be; conversely, the worse the operation 
quality is, the closer the iγ  to 0 will be. Therefore, the assessment result of the operation quality of 
the smart meters can be obtained according to the value of iγ . 

The overall process of the proposed GCT-based algorithm is shown in Figure 2. 

 

Figure 2. Flowchart of the proposed GMM, combination weight model and revised TOPSIS (GCT)-
based algorithm. 

5. Case Studies 

In order to verify the effectiveness of the proposed GCT-based algorithm, the data of smart 
meters from part of Ningbo power distribution systems, Zhejiang Province, China, are involved in 
this section for assessment. There are total 11,565 records in the original data set and 11,312 available 
records are retained after data pre-processing. The data are collected from smart meters produced by 
17 suppliers (i.e., NB_1, NB_2, …, NB_17) that located in Ningbo city and these suppliers are to be 
assessed. There are several equipment batches for each supplier and 58 batches in total. In this section, 
the data analysis of the operation quality of smart meters based on GMM clustering algorithm is 
performed first. Then, the effectiveness of the operation quality assessment algorithm based on the 
combined weight optimization model and the revised TOPSIS is demonstrated. Next, the 
comparisons among the proposed GCT-based algorithm and the algorithms based on SAW and AHP 
are given. Finally, the application of the algorithm in the actual system is briefly introduced. 

5.1. Comprehensive Assessment of the Operation Quality of Smart Meters Based on GCT Algorithm 

The data of 17 suppliers and their 58 batches are renumbered sequentially and the effectiveness 
of data processing by using the GMM clustering algorithm is analyzed by taking the supplier NB_12 
as an example. There are 6 batches under the supplier NB_12 with a total of 1514 smart meters, 
respectively. There are seven indexes for each smart meter and the standardized scatter diagram and 
GMM clustering result of the operation quality indexes from the supplier NB_12 are shown in Figure 
3. In Figure 3, the x-axes denotes the seven clusters (i.e., indexes 1α , 2α , ... and 7α ); and the y-axes 
denotes the typical values of 1α , 2α , ..., 7α  for NB_12. Each line denotes a typical smart meter that 
represents this supplier. It can be seen from Figure 3 that the operation quality data of the 1514 smart 
meters under the supplier NB_12 conform to the superposition of 6 multi-dimensional Gaussian 

Figure 2. Flowchart of the proposed GMM, combination weight model and revised TOPSIS
(GCT)-based algorithm.



Energies 2019, 12, 3690 12 of 20

5. Case Studies

In order to verify the effectiveness of the proposed GCT-based algorithm, the data of smart meters
from part of Ningbo power distribution systems, Zhejiang Province, China, are involved in this section
for assessment. There are total 11,565 records in the original data set and 11,312 available records are
retained after data pre-processing. The data are collected from smart meters produced by 17 suppliers
(i.e., NB_1, NB_2, . . . , NB_17) that located in Ningbo city and these suppliers are to be assessed. There
are several equipment batches for each supplier and 58 batches in total. In this section, the data
analysis of the operation quality of smart meters based on GMM clustering algorithm is performed
first. Then, the effectiveness of the operation quality assessment algorithm based on the combined
weight optimization model and the revised TOPSIS is demonstrated. Next, the comparisons among
the proposed GCT-based algorithm and the algorithms based on SAW and AHP are given. Finally, the
application of the algorithm in the actual system is briefly introduced.

5.1. Comprehensive Assessment of the Operation Quality of Smart Meters Based on GCT Algorithm

The data of 17 suppliers and their 58 batches are renumbered sequentially and the effectiveness of
data processing by using the GMM clustering algorithm is analyzed by taking the supplier NB_12
as an example. There are 6 batches under the supplier NB_12 with a total of 1514 smart meters,
respectively. There are seven indexes for each smart meter and the standardized scatter diagram and
GMM clustering result of the operation quality indexes from the supplier NB_12 are shown in Figure 3.
In Figure 3, the x-axes denotes the seven clusters (i.e., indexes α1, α2, . . . and α7); and the y-axes denotes
the typical values of α1, α2, . . . , α7 for NB_12. Each line denotes a typical smart meter that represents
this supplier. It can be seen from Figure 3 that the operation quality data of the 1514 smart meters
under the supplier NB_12 conform to the superposition of 6 multi-dimensional Gaussian distribution
models. In other word, the quality of smart meters produced by supplier NB_12 can be represented by
six typical smart meters. The typical values reflecting their seven indexes are shown in Table 2.
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Table 2. Typical values of the metering equipment’ supplier NB_12.

Supplier No. Typical Values

α1 α2 α3 α4 α5 α6 α7

NB_12

0.602 0.561 0.629 0.642 0.614 0.425 0.600
0.602 0.553 0.629 0.438 0.614 0.339 0.595
0.617 0.539 0.629 0.604 0.299 0.637 0.600
0.313 0.288 0.629 0.642 0.535 0.425 0.599
0.631 0.557 0.331 0.335 0.476 0.502 0.335
0.602 0.560 0.629 0.591 0.614 0.451 0.593

By applying GMM clustering to each supplier, typical smart meters of the corresponding supplier
can be obtained. As a result, the massive raw data of smart meters for operation quality assessment
have been compressed and typical features retained. Then, the decision matrix D′ can be determined
and its entries standardized are shown in Table 3 by gaining the geometric centers of the typical points.

Table 3. Entries of the normalized decision making matrix for operation quality assessment of
smart meters.

Supplier No. α1 α2 α3 α4 α5 α6 α7

NB_1 0.974 0.970 0.993 0.986 0.998 0.204 0.500
NB_2 0.980 0.995 1.000 1.000 1.000 0.026 0.992
NB_3 0.744 0.739 0.853 0.988 0.999 0.117 0.250
NB_4 0.809 0.784 0.970 0.987 1.000 0.400 0.455
NB_5 0.981 0.757 0.998 0.999 1.000 0.432 0.916
NB_6 0.985 0.936 0.999 0.994 1.000 0.502 0.750
NB_7 0.981 0.971 0.998 0.998 1.000 0.312 0.894
NB_8 0.825 0.830 0.918 0.827 1.000 0.122 0.500
NB_9 0.986 0.939 0.847 0.996 1.000 0.567 0.500

NB_10 0.981 0.918 1.000 1.000 1.000 0.791 0.977
NB_11 0.771 0.754 0.962 0.951 0.907 0.336 0.444
NB_12 0.970 0.738 0.989 0.992 0.998 0.207 0.667
NB_13 0.981 0.976 0.995 0.999 1.000 0.227 0.907
NB_14 0.981 0.702 0.957 0.998 0.988 0.159 0.667
NB_15 0.981 0.992 0.936 0.995 1.000 0.070 0.500
NB_16 0.981 0.961 1.000 0.999 0.997 0.165 0.967
NB_17 0.981 0.988 0.994 0.996 1.000 0.163 0.667

The weights determined by the AHP algorithm are shown in Table 4. In addition, the index
weights based on the entropy weight, the correlation coefficient, the variation coefficient and the
combined weight optimization model are also presented in Table 4. It can be seen from Table 4 that
the objective weight plays a certain role in correcting the subjective weight. According to the expert’s
experience, the SAs (i.e., α3) should be assigned with a large weight but the weights from the three
other objective weighting methods are much smaller since the values of α3 from different suppliers
in the original data are relatively close. Therefore, compared with other indexes, this index cannot
significantly distinguish the operation quality of the smart meters from each supplier. Thus, it should
be given a small weight.
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Table 4. Indexes’ weights determined by different methods.

Methods
Weight

α1 α2 α3 α4 α5 α6 α7

wA
j 0.090 0.099 0.384 0.110 0.033 0.162 0.122

wE
j 0.003 0.018 0.001 0.004 0.000 0.744 0.230

wC
j 0.133 0.199 0.100 0.123 0.137 0.214 0.094

wV
j 0.031 0.082 0.021 0.039 0.003 0.547 0.279

w∗j 0.041 0.067 0.065 0.040 0.033 0.558 0.196

Based on the combined weights, the assessment matrix R of the operation quality is formed by
using Equation (27). Then the operation quality of the smart meters is comprehensively assessed by
the revised TOPSIS. Finally, the results of the comprehensive assessment for operation quality of smart
meters are shown in Table 5.

Table 5. Results of comprehensive assessment for operation quality of smart meters.

Supplier No. Assessment
Value Rank Supplier No. Assessment

Value Rank

NB_1 0.363 14 NB_10 0.974 1
NB_2 0.411 11 NB_11 0.479 7
NB_3 0.360 15 NB_12 0.451 10
NB_4 0.476 9 NB_13 0.510 6
NB_5 0.705 3 NB_14 0.293 16
NB_6 0.555 5 NB_15 0.254 17
NB_7 0.581 4 NB_16 0.477 8
NB_8 0.370 13 NB_17 0.387 12
NB_9 0.813 2

It can be seen from Table 5 that the top 9 suppliers are as follows: NB_10, NB_9, NB_5, NB_7,
NB_6, NB_13, NB_11, NB_16 and NB_4, of which the supplier NB_10 gets the highest score whereas
the supplier NB_15 gets the lowest one. It can be seen from Table 3 that TBF index and the SAs index
of the supplier NB_10 are the largest ones among all the suppliers and the other five indexes of the
supplier NB_10 are all ranked in top 3 among the 17 suppliers, so the equipment operation quality of
the supplier NB_10 is the best. Although the supplier NB_15 has a relatively large value in the CRPD
index, all the values of the remaining 6 indexes are small, especially the value of TBF index, which
is 0.070 only. In the meantime, the combined weight of TBF index reaches 0.558, which is far more
important than the other indexes. Therefore, it is reasonable to judge the equipment operation quality
from the supplier NB_15 as the worst.

5.2. Comparisons with Existing Algorithms

In order to demonstrate the effectiveness of the proposed GCT-based algorithm, the results of the
equipment operation quality assessment based on SAW, AHP and the proposed GCT-based algorithm
are shown in Table 6, respectively.
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Table 6. Comparison of the proposed GCT-based algorithm with simple additive weighting and
analytic hierarchy process (AHP) based algorithms.

Supplier No. Rank

SAW AHP GCT

NB_1 17 17 14
NB_2 9 9 11
NB_3 16 16 15
NB_4 14 14 9
NB_5 3 3 3
NB_6 4 10 5
NB_7 5 4 4
NB_8 12 15 13
NB_9 2 2 2
NB_10 1 1 1
NB_11 15 7 7
NB_12 8 8 10
NB_13 6 5 6
NB_14 11 12 16
NB_15 13 13 17
NB_16 7 6 8
NB_17 10 11 12

It can be seen from Table 6 that the top 3 suppliers determined by the three algorithms are the
same and the top 9 suppliers are nearly the same. Hence, the rationality of this GCT-based algorithm
for assessing the comprehensive operation quality of smart meters is verified. In addition, it can be
seen from Table 5 that the worst two suppliers are NB_15 and NB_14 based on the proposed GCT-based
algorithm. It can be seen from Table 3 that the indexes’ values of supplier NB_14 are all small but
relatively higher than supplier NB_15, so it is reasonable that supplier NB_14 ranks the last but one.
The worst two suppliers of SAW-based and AHP-based algorithms are the suppliers NB_1 and NB_3.
As can be seen from Table 3, although the indexes of supplier NB_1 are all around or below the median,
there are 5 indexes’ values of supplier NB_1 obviously higher than those of supplier NB_3, so it is
unreasonable to judge the supplier NB_1 as the worst. As can be seen from Table 5, the supplier NB_6
is ranked in the 4th, 10th and 5th position by the SAW-based, the AHP-based and the GCT-based
algorithm, respectively. It can be seen from Table 3 that the supplier NB_6 is superior to the supplier
NB_12 in most indexes and supplier NB_12 is in the top 10 among the three algorithms, so the result
obtained by the AHP-based is unreasonable.

In summary, the subjective and objective weights are comprehensively considered in the GCT-based
algorithm proposed in this paper and the revised TOPSIS is utilized to perform assessments. Compared
with the equipment operation quality assessment of SAW-based algorithm and the AHP-based
algorithm, the top-ranked suppliers obtained by GCT-based algorithm is consistent with the results
of the other two algorithms, which indicates the effectiveness of this algorithm. By analyzing the
lower-ranked suppliers, the results of the proposed GCT-based algorithm are more reasonable than the
results based on the other two algorithms. Therefore, the GCT-based algorithm proposed in this paper
is more suitable for the operation quality assessment of smart meters.

5.3. Practical Application in Zhejiang Power Distribution Systems

After several tests in small-scale data sets, this assessment algorithm of equipment operation
quality has been embedded in the electricity information acquisition system of State Grid Zhejiang
Electric Power Company as a core algorithm and it has been in the trial operation since December
2017. In the system, the Ambari unified management tools and Hadoop cluster technology of the
big data acquisition and computing platform are also utilized for comprehensive assessment. So far,
there are more than 27.6 million records of smart meters (including 85 suppliers and 5684 batches)
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and 3.46 million records of collecting terminal (including 63 suppliers and 1324 batches) in Zhejiang
power distribution systems. Based on these data, the suppliers are assessed and the results are also
shown in Figure 4. It can be seen from Figure 4 that the top 10 supplier are listed as bar graph and the
distribution of score intervals are shown with pie graph, respectively. During several months of trial
operation of the system, the assessment results for operation quality of smart meters were accredited
by experts and engineers from power utilities.
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The novelties of the application of the proposed algorithm in Zhejiang power distribution systems
are two-fold: (a) The proposed algorithm is relied on measured data rather than the one by one
examination by maintenance personnel, which takes a step toward unmanned management. (b) In the
past, the function of quality assessment for smart meters is always developed individually and it is the
first time to embed this function into electricity information acquisition system. Therefore, it also takes
a step toward unified system and unified management.

6. Conclusions

Based on the GMM clustering algorithm and the combined weight optimization model considering
the subjective and objective weights, a data-driven comprehensive assessment algorithm for operation
quality of smart meters based on the revised TOPSIS is proposed in this paper and the actual data are
employed to perform case studies. The conclusions are as follows.

a. The massive data collected by the smart meters can be processed and the typical data can be
extracted by the GMM clustering algorithm. This data analysis technology can greatly compress
the data scale and speed up the calculation process.
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b. The experts’ experiences, the dispersion, correlation and contrast intensity of the data are
taken into account by the combined weight optimization model together for determining the
comprehensive importance of each index more reasonably.

c. The algorithm based on the revised TOPSIS is suitable for the comprehensive operation quality
assessment of smart meters. The results of case studies show that the algorithm is effective and
can provide scientific and reasonable support for energy measurement and assets management.

d. The proposed GCT-based comprehensive assessment algorithm is only relied on measured
data and do not need many personnel to examine the smart meters one by one. Therefore,
the proposed algorithm can save lots of labor force. Besides, with the deployment of big data
platform, the calculation time for 27.6 million records of smart meters and 3.46 million records of
collecting terminal are reduced to 6 h, which is 1/30 of the original one.

e. The proposed GCT-based algorithm could be helpful for the energy measurement and assets
management since the results in case studies show that it can give quantitative assessment for
smart meters. It is estimated that it helps save millions dollars for the State Grid Zhejiang Electric
Power Company.

Overall, by applying the proposed GCT-based comprehensive assessment algorithm, the typical
smart meters with their values of indexes are shown in Figure 3 and Tables 2 and 3 first, which represent
the quality of smart meters produced by each supplier. Then, the determined weights of indexes
are given in Table 4, which describe the importance of each index in the comprehensive assessment.
Finally, the assessment values and corresponding ranks are given in Table 5, which can support the
reasonable and economical purchase of smart meters for power utilities. To demonstrate the merits of
proposed algorithm, different algorithms are compared and the results are given in Table 6, analysis in
Section 5.2 shows that the proposed algorithm is more reasonable. To illustrate the effectiveness and
applicability of the proposed algorithm for big database, a practical application in Zhejiang power
distribution systems is introduced in Section 5 for demonstration.
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Abbreviations

GMM Gaussian mixture model
TOPSIS Technique for order preference by similarity to an ideal solution
SAW Simple additive weighting
AHP Analytic hierarchy process
GCT GMM, combination weight model and revised TOPSIS
ARDC Availability rate of data collection
CRPD Collection rate of power data
SAs Serious abnormalities
GAs General abnormalities
MAs Minor abnormalities
TBF Time between failures
OFR Operating failure rate
EM Expectation maximum
MADM Multi-attribute decision making
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PLC Programmable logic controller
GPRS General packet radio service
4G The 4th generation of mobile phone mobile communication technology standards
CMDA Code division multiple access
Notations
α1, α2, α3, α4, α5, α6, α7 Indexes: ARDC, CRPD, SAs, GAs, MAs, TBF, OFR
Nsamp Total number of sampling points
Tsamp,i Window length of the ith sampling

MΘ
i and mΘ

i
Total number of metering load data and number of non-null load data during the
ith sampling point

CΘ
i and cΘ

i
Number of data that should be collected theoretically and number of data
actually collected during the ith sampling point

Fser,i, Fgen,i and Fmin,i
Number of SAs, GAs and MAs of the metering equipment during the ith
sampling point

Nsamp,F The first sampling point when Fser,i + Fgen,i + Fmin,i,0
Trate and TF Rated running time and fault outage time of the metering equipment
ωk Weight of the kth multidimensional single Gaussian distribution

Nk(x;µk; Σk)
Probability density function of the kth multidimensional single Gaussian
distribution.

x = (x1, x2, . . . , xN)
T An auxiliary vector

xi Representation for the quality of smart meter i
N Total number of smart meters to be clustered
µk Expected vector of the kth Gaussian model
Σk Variance of the kth Gaussian model
p(·) Possibility density function
D Decision matrix of the operation quality assessment problem for smart meters
dij Elements of D
d′i j Normalized dij

B Number of the suppliers of smart meters
L Number of the indexes
Ω1 and Ω2 Sets of benefit indexes and cost indexes
A Judgment matrix
aij Elements of A
wA

j Weight of index j based on AHP
wE

j Weight of index j based on entropy
wC

j Weight of index j based on correlation coefficients
wV

j Weight of index j based on variation coefficient
H j Entropy of the operation quality index of the smart meters j
ρx,y Pearson correlation coefficient between the xth and yth indexes
V j Variation coefficient of the index uj
w∗j Combined weight of the jth operation quality index to be optimized
wk

j Weight of the jth index obtained by the kth method
G Number of weight determination methods

η
(
wk

j

)
Membership function of the representation

R Assessment matrix of quality indexes
ri The ith row vector of R

r+ and r−
Ideal point and negative ideal point in the operation quality assessment of the
smart meters

β+i and β−i
Angular distance between the operation quality indexes of each supplier and the
ideal point/negative ideal point

γi Assessment values of the operation quality for smart meter i
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