
energies

Article

A Comprehensive Inverter-BESS Primary Control for
AC Microgrids

Michele Fusero 1, Andrew Tuckey 2, Alessandro Rosini 3,* , Pietro Serra 1, Renato Procopio 3 and
Andrea Bonfiglio 3

1 Grid Edge Solutions ABB S.p.A., 16145 Genova, Italy; michele.fusero@it.abb.com (M.F.);
pietro.serra@it.abb.com (P.S.)

2 Grid Edge Solutions ABB Australia Pty Ltd.; andrew.tuckey@au.abb.com
3 Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture,

University of Genoa, 16145 Genova, Italy; renato.procopio@unige.it (R.P.); a.bonfiglio@unige.it (A.B.)
* Correspondence: alessandro.rosini@edu.unige.it

Received: 26 July 2019; Accepted: 1 October 2019; Published: 9 October 2019
����������
�������

Abstract: This paper proposes the design of a comprehensive inverter-BESS primary control capable
of providing satisfactory performances both in grid-connected and islanded configurations as required
by international standards and grid codes, such as IEEE Std. 1547. Such control guarantees smooth
and fast dynamic behavior of the converter in islanded configuration as well as fast power control
and voltage-frequency support in grid-connected mode. The performances of the proposed primary
control are assessed by means of EMT (ElectroMagnetic Transients) simulations in the dedicated
software DIgSILENT PowerFactory® (Germany, Gomaringen) . The simulation results show that
the proposed BESS (Battery Energy Storage System) primary control is able to regulate frequency
and voltage in Grid-Forming mode independently of the number of paralleled generators. This is
achieved adopting a virtual generator technique which presents several advantages compared to
the conventional one. Moreover, the proposed control can be switched to Grid-Support mode in
order to provide fast control actions to allow frequency and voltage support as well as power control
following the reference signals from the secondary level.

Keywords: primary control; BESS; microgrid; Grid Forming; Grid Support; Inverter Control; Grid
Support; DIgSILENT PowerFactory; EMT simulations

1. Introduction

The need of pollutant and greenhouse gasses emission reduction and the promising increase
of Renewable Energy Sources (RES) have made Microgrids (MG) one of the most interesting and
challenging structure for industrial and academic researchers [1]. Several definitions have been
provided for a MG but the most effective defines it as a group of interconnected loads and distributed
energy resources with clearly defined electrical boundaries that acts as a single controllable entity
with respect to the grid and can connect and disconnect from the grid to enable it to operate in both
grid-connected or island modes [2]. It is easy to understand that one of the main topics in this field
is the control system, and it is well known that it can be structured with a hierarchical structure [3].
Tertiary level control is an energy-production level that must be able to manage the power flow
between the MG and the main grid [4]. Secondary level ensures that all the electrical variables into the
MG are within the required values and it can include a synchronization control loop to seamlessly
connect or disconnect the MG to or from the distribution system [5]. Primary control is typically a
communication-less control layer; it is normally implemented in a decentralized manner in order to
properly control voltage and frequency and/or active and reactive powers [6]. Finally, inner control

Energies 2019, 12, 3810; doi:10.3390/en12203810 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-3187-7078
https://orcid.org/0000-0003-3142-8598
http://www.mdpi.com/1996-1073/12/20/3810?type=check_update&version=1
http://dx.doi.org/10.3390/en12203810
http://www.mdpi.com/journal/energies


Energies 2019, 12, 3810 2 of 19

loops are adopted to regulate the output voltage and to control the current while maintaining the
system stable. Considering the normative aspect, IEEE Std. 1547 [7] clearly defines the inverter’s
primary control functionalities that can be essentially clustered in two operational configurations
(i) Grid-Following Operation or Grid Support Mode (GSM) and (ii) Grid-Forming Operation. In GSM,
the inverter is controlled as a current source in which the main control goals are to supply the load
connect to the MG and to participate in frequency and voltage support [8,9]; for these reasons, GSM is
the typical configuration in grid-connected state. Grid-Forming Operation is typically exploited in
islanded mode where the inverter can be either the voltage and frequency master (stand-alone mode) or
allow parallel operations with other Distributed Energy Resources (DERs). An obvious consequence of
this high penetration of inverter-interfaced DERs is the reduction of total inertia and damping because
most of the proposed control methods for Grid-Forming inverters, e.g., droop control methods [10],
provides barely any inertia or damping support for the MG. For this reason, one of the most performing
primary control technique for Grid-Forming inverters is the Virtual Synchronous Machine (VSM) or
the Virtual Generator Mode (VGM) [11] where the control acts on the inverter in order to mimic the
dynamical behavior of a traditional synchronous generator [12–15] virtually adding some inertia and
frequency damping to the system and accordingly, improving MG stability and [16], since inertia
response is the result of rotating heavy mass and it is proportional to the rotor speed, the VGM concept
can also directly improve the frequency response [17]. In [14,18–20], the VGM primary control is
developed using the complete model of the synchronous generator and this makes the algorithm
complex and the controller tuning difficult. Simpler design models for the VGM control are proposed
in [21–24], where only the inertial behavior of a synchronous generator is considered by imposing the
swing equation in the primary controller.

In [25], a VGM control technique is proposed showing how it can theoretically provide all the
required functionalities of Grid-Forming inverters (according to IEEE Std. 1547) and also presenting
some practical applications of VGM control technique for Battery Energy Storage System (BESS) around
the world.

Considering all these aspects, the aim of this paper is to present a new primary control for BESS
able to guarantee good performances in grid-connected and islanded configurations providing:

• Regulation of frequency and voltage in Grid-Forming mode independently of the number of
paralleled generators using the VGM technique in order to mimic the dynamic behavior of
synchronous generators;

• Ability to guarantee black-start of the MG in Grid-Forming mode;
• Correct active and reactive power sharing in parallel with other DERs;
• Fast control actions in grid-connected mode to allow providing frequency and voltage support

(GSM) as well as power control following the reference signals from the secondary level control;
• Synchronization and connection of the BESS to the external main grid or to other DERs in islanded

mode with minimum transients;

The results will show that the new primary control proposed in this paper is also interesting not
only from an academic point of view, but also from an industrial one for these aspects:

• The BESS converter is able to work both in VGM and in GSM guaranteeing the possibility to work
in parallel with other DERs or an external main grid;

• The primary control can be switched from Grid-Forming mode to Grid-Support mode and vice
versa without converter power interruption;

• Considering the Grid-Support mode, the proposed control is able to provide fast actions to the
MG because this functionality is implemented in the primary level and not in the secondary one;

• When the support to the MG is not necessary, the control is able to use control signal coming from
the secondary level control in order to satisfy other tasks reported in IEEE Std. 1547 such as State
of Charge management, power smoothing, and compliance with power flow constraints imposed
at the connection point with the external Main Grid (peak lopping);
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• Considering the Grid-Forming operating mode, the proposed VGM technique is a PI-based
one, which means that the tuning procedure can be easily manged by operators and not just by
control engineers.

In summary, all these aspects and the level of detail in which they have been implemented and
presented in the paper represent the main contribution of the work and a good starting point for
actual implementation on industrial controller (which is the final aim of the ABB/University of Genoa’s
final goal).

The paper is organized as follows: in Section 2, a description of the BESS primary control is
proposed in both the operating configurations. The test case MG implemented in the dedicated power
system simulator DIgSILENT PowerFactory® is detailed in Section 3, while simulation results and
comments are provided in Section 4. Some conclusive remarks are presented in Section 5.

2. Primary Control Method Description

The aim of this section is to provide an effective description of the proposed primary level BESS
control: as stated before, it can provide a correct BESS converter regulation both in Grid-Forming
and Grid-Support operating modes as it will be detailed in the following subsections. As one can
see from Figure 1, the BESS converter has a R-L-C filter at its output (R f , L f and C f ) and the primary
control needs some measurements from the field in order to guarantee optimal performances in the two
operating modes. In detail, these measurements are active power PBESS

meas and reactive power QBESS
meas at the

output of the BESS converter, the RMS value of the controlled voltage Vmeas, the controlled frequency
fmeas and phase angle θmeas coming from a Phase Locked Loop (PLL) control function synchronized
at the connection bus to the MG. The output of the BESS primary control are the reference voltages
vαre f and vβre f in the α-β stationary reference frame for the Grid-Forming operating mode and the d-q

reference frame currents iGSM
d,re f and iGSM

q,re f for the Grid-Support operating mode. In order to generate the

control signals for the BESS converter vinv
d,re f and vinv

q,re f , voltage and current control loops are mandatory,
more precisely when the Grid-Forming operating mode is required, voltage and current control loops
are used in a cascade configuration, while in Grid-Support operating mode only the current control
loop is required. In the next subsection, VGM and GSM techniques as well as voltage and current
control loops are described in detail.
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Figure 1. Proposed BESS (Battery Energy Storage System) primary control scheme.
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2.1. Grid-Forming Operating Mode: VGM

Considering the Grid-Forming operating mode, the VGM technique presented in [25] is exploited
and its control block diagram is reported in Figure 2 where AVR (Automatic Voltage Regulator)
and Rotor Flux Model make the reactive power/voltage magnitude similar to that of a synchronous
generator. More precisely, the Rotor Flux Model, modeled as an integrator with a gain Kψ, responds to
the reactive power QBESS

meas at the output of the inverter with an initial voltage variation of VVGM
re f to

model the machine flux variation through the following virtual electrical dynamic equation:

dVVGM
re f

dt
= Kψ

(
QBESS

AVR −QBESS
meas

)
(1)

where QBESS
AVR is the control action of the BESS converter AVR. Then, the AVR brings the RMS voltage

at the output of the inverter Vmeas back to its set point Vset. Similarly, the Inertia model and the
Frequency Governor make the VGM similar to a synchronous generator active power/frequency
dynamics. In particular, the Inertia model, described by an integrator and by two gains KH for the
inertia itself and Kd for the damping effect, reacts to the active power PBESS

meas at the output of the inverter,
drawing energy from the inertia and slowing the rotational speed of the virtual generator ωVGM

re f using
the following virtual mechanical dynamic equation:

dωVGM
re f

dt
= KH

(
PBESS

GOV − PBESS
meas −Kdω

VGM
re f

)
(2)

where PBESS
GOV is the regulating action of the BESS converter Governor. Then, the Governor brings back

the frequency fmeas to its set point fset. To allow operation in parallel with other sources, the control
includes droop factors mdroop and ndroop to achieve power sharing control in the steady state; while for
stand-alone operation, the droop coefficients are usually set to zero. Then, in order to guarantee the
black-start capability [26] of the MG using the BESS, two different selectors are implemented in the
control diagram:

• If the measured RMS voltage Vmeas is zero, the primary control is able to understand the
necessity to provide a black-start procedure; so, imposing the logic signal named Bl-St equal
to 1, the VGM channel is bypassed and the MG is energized using a ramp voltage reference
VBl-St

re f and the rated angular frequency ωn.

• When the voltage reaches a specific percentage k% of the rated voltage Vn, the VGM control
channel is activated (reset of the control integrators) and the selectors switch to the VGM
control actions VVGM

re f and θVGM
re f .

Summarizing the above, voltage and frequency references logic for the black-start procedure is:

if 0 ≤ Vmeas ≤ k%Vn

Bl− St = 1⇒ Vre f = VBl−St
re f & θre f = θBl−St

re f
if Vmeas ≥ k%Vn

Bl− St = 0⇒ Vre f = VVGM
re f & θre f = θVGM

re f

(3)

Finally, the control actions are transformed in the α-β stationary reference frame.
As a final remark, it is worth pointing out that the tuning procedure of the VGM control is

based on a “trial and error” strategy due to the intrinsic simplicity of the proposed primary controller.
For example, the inertia parameter KH of the virtual generator is set in order to have a precise frequency
dynamic after an active power step. Then, the governor parameters are set in order to guarantee a
desired time response.
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Figure 2. Proposed VGM (Virtual Generator Mode) control model for Grid-Forming operating mode.

2.2. Grid-Support Operating Mode: GSM

Considering now the grid-connected operating mode, the proposed control must provide fast
control actions to allow frequency and voltage support (GSM-fV) as well as power control following the
reference signals from the secondary level control (GSM-PQ). To meet these control requests, the block
diagram in grid-connected mode is depicted in Figure 3.
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In grid-connected mode, the BESS inverter is controlled starting from the measurements of
frequency and voltage at the inverter output, i.e., fmeas and Vmeas, respectively. Based on an error
between measurements and respective setpoints, it is possible to carry out the target values of active and
reactive powers PGSM-fV

re f and QGSM-fV
re f through user-defined P-f envelope curve and Q-V envelope curve,

respectively. Considering, for example, the P-f envelope curve, it is described by maximum (PGSM-PQ
re f ,max )

and minimum (PGSM-PQ
re f ,min ) active power references and by threshold frequency errors ±∆ f1 and ±∆ f2.

The same characterization is done for the Q-V envelope curve. As stated before, the control also gives
the possibility to track the reference values coming from the secondary level regulation, i.e., PGSM-PQ

re f

and QGSM-PQ
re f , so the two blocks “P setpoint aggregation and limits” and “Q setpoint aggregation
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and limits” are implemented. Then, the d-q axis currents set points iGSM
d,re f and iGSM

q,re f are generated by
closed-loop controllers which use the voltage measurement Vmeas. Then, they are processed by the
BESS inverter Current controller as depicted in Figure 1.

2.3. Voltage and Current Inner Control Loops

In this subsection, the inner control loops of the BESS converter are presented in order to provide a
detailed description of the entire control system. Voltage control loop is depicted in Figure 4, and as one
can see, it is based on PI regulators described by proportional gain KPV and integral gain KIV . Its main
control objective is to regulate the output voltage of the inverter by minimizing the errors between the
references vBESS

d,re f , vBESS
q,re f and the measurements vBESS

d , vBESS
q . Moreover, Virtual Impedance strategy is

added to the voltage control loop through algebraic manipulation of the α-β voltage reference signals
coming from primary controller as follows:

vαre f ,v = vαre f −
(
RviBESS

α −XviBESS
β

)
(4)

vβre f ,v = vβre f −
(
RviBESS

β + XviBESS
α

)
(5)

with Rv and Xv being virtual resistance and reactance, respectively. This modification enables the
output impedance to be set (by parameters, or adaptively) and this is usually made predominantly
inductive to ensure a strong coupling between active power and frequency, a strong coupling between
reactive power and voltage and an inherent decoupling between these two relationships, even in LV
microgrids [25]. The outputs of the voltage controller are the inverter output current references iVGM

d,re f

and iVGM
q,re f .
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Figure 4. Voltage controller for BESS converter.

Current control loop is instead depicted in Figure 5: due to the fact it is used not only in VGM,
but also in GSM operating mode, two selectors are implemented in order to choose the d-q current
references coming from the VGM (iVGM

d,re f and iVGM
q,re f ) or from the GSM (iGSM

d,re f and iGSM
q,re f ). The current

controller is based on PI regulators described by proportional gain KPC and integral gain KIC and it acts
on the system in order to control the converter output current by minimizing the errors between the
references and the measured current described by iinv

d and iinv
q . The outputs of the current controller

are the inverter voltage modulation signals in the d-q reference frame vinv
d,re f and vinv

q,re f .
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3. DIgSILENT PowerFactory® Model for Testing

3.1. Synchronous Diesel Generator Model for Paralleling Operation

As stated in the introduction section, the proposed BESS control is implemented in the widely
used power system simulator DIgSILENT PowerFactory® in order to have reliable and high-fidelity
simulation results. Due to the fact that in Grid-Forming operating mode the BESS inverter must be the
voltage/frequency master in stand-alone configuration and must allow parallel operations with other
DERs, a Synchronous Diesel Generator (SDG) model has been included in the simulated power system;
the SDG model is briefly described below starting from the conceptual model depicted in Figure 6.
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Figure 6. Synchronous Diesel Generator (SDG) conceptual model.

As one can see, it consists of three main elements: Synchronous Generator EMT model is available
from PowerFactory library [27], while the Diesel Engine with Governor and Excitation System models
are depicted in Figures 7 and 8, respectively.
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Figure 7. Diesel Engine and Governor model for the SDG.
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Figure 8. Exciter and Automatic Voltage Regulator model for the SDG.

The frequency-active power regulation of the SDG is realized using a Governor whose inputs
are the electrical speed fSDG and the active power measurement PSDG

e . Droop coefficient fdroop is
implemented to guarantee the correct power sharing in islanded mode and in parallel with the BESS
unit. A PID regulator generates the torque input for the diesel generator, which is modeled by the
combustion gain Kc, the fuel dynamics time delay Tr, and by a first order dynamic where Ta models
the engine fuel system time constant [11]. The voltage-reactive power regulation is performed by an
AVR where RMS voltage and reactive power measurements are the inputs and where the droop logic
is implemented by the use of the coefficients udroop. The AVR output is then processed by the exciter,
which is modeled by a first order dynamic with time constant equal to Tex [28].

3.2. Test MG Layout and Parameters

In order to test the performances of the proposed BESS primary control, the test case MG reported
in Figure 9 is used. The main element in the MG is the BESS unit, which is connected to the MG
via inverter. The storage component of the BESS is modeled as ideal DC voltage source and so its
internal dynamics are neglected. Similarly, the inverter model, provided by DIgSILENT PowerFactory®

library, is considered as an ideal controlled AC voltage source. The inverter is interfaced to the MG
with a R-L-C filter modeled by the parameters R f , L f and C f , respectively, and with a unitary-ratio
transformer TBESS. The SDG exploits the DIgSILENT PowerFactory® synchronous generator model
and it is connected to the MG Point of Common Coupling (PCC) using longitudinal impedance

.
ZSDG.

An external grid is connected to the MG through a medium voltage/low voltage transformer TMV-LV in
order to test the Grid support and the paralleling functionalities. Load center bus is connected to the
PCC with a line

.
Zline while Load1 is connected to Load center bus using a cable

.
Zcable. MG data are

reported in Table 1.
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Table 1. Test case microgrids (MG) parameters.

BESS Converter Data SDG Data Load Data Line and Cables Data at fn

ABESS 500 kVA ASDG 1250 kVA Pn(Load 1) 300 kW
.
ZSDG 0.007 + j0.0008 Ω

Vn 400 V (AC-side) cosϕn 0.8 Qn(Load 1) 100 kVAr
.
Zline 0.014 + 0.0016 Ω

fn 50 Hz Vn 400 V Pn(Load 2) 50 kW
.
Zcable 0.0037 + j0.0004 Ω

R f 0.044 Ω fn 50 Hz Qn(Load 2) 0 kVAr

L f 0.088 mH

C f 50 µF

4. Simulations Results

4.1. Black Start and Load Step in a Stand-Alone Configuration

This is the first functionality that the BESS primary control has to satisfy. IEEE 1547.4 Std. gives a
clear definition of the black-start, i.e., the ability to start local generation with no external source of
power. During this phase, the main grid and the diesel generator are disconnected from the MG and
no load is connected. As described in the previous section, the BESS is controlled in Grid-Forming
operating mode and the VGM control is bypassed imposing voltage and frequency reference signals.
As one can see from Figure 10, the three-phase voltages at the controlled node of the MG perfectly
follow the ramp reference signal Vre f , and the zoomed box highlights the correct dynamic behavior
when the VGM control channel is activated with the switch of Vre f from VBl-St

re f to VVGM
re f and of θre f

from θBl-St
re f to θVGM

re f and with the reset of the integrators of the VGM control.
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Figure 10. Controlled BESS bus voltage time profiles during black-start procedure.

When the black-start procedure ends (the ramping time is defined through a parameter and in
this case it was chosen to last 1 s), a load step event is implemented in the simulation in order to test
the dynamic response of the BESS in VGM mode in terms of voltage and frequency in a stand-alone
configuration. As one can see from Figure 11, after the load step occurred at t = 4 s, frequency and
voltage have a time profile in which it is possible to note the effects of the inertia model and of the
governor regulating action for the frequency and of rotor flux model and AVR regulating action for
the voltage. In this simulation, the droop coefficient mdroop and ndroop are equal to zero because the
power sharing functionality is not required in a stand-alone configuration, and for this reason, after the
transient, frequency and voltage return to their rated values (namely 50 Hz for the frequency and 400 V
for the voltage). Moreover, it is possible to notice the effect of the virtual impedance implemented in
the voltage control loop of the converter; in fact, in the final steady state, the reference value VVGM

re f
is greater than the controlled inverter output voltage Vmeas. Finally, Figure 12 reports the active and
reactive powers’ time profile after load step contingency (Pload and Qload), and it is possible to see how
the BESS is able to supply the load power request with a fast and smooth dynamic response.
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stand-alone configuration.

4.2. VGM Operating Mode With Setpoints Variation

As stated in the introduction, when the VGM operating mode is activated, the BESS converter has
to provide fast regulation of voltage and frequency. In these simulations, the main grid is connected to
the MG and the load request is totally fed by the main grid. The BESS converter is then connected to
the MG in Grid-Forming operating mode without active and reactive powers production. In order to
highlight the advantages of the proposed VGM control technique, a comparison with the conventional
droop control for Grid-Forming operating mode is proposed. When this conventional control technique
is adopted, all the macro blocks of the proposed controller (i.e., the AVR, the Rotor Flux Model,
the Governor and the Inertia Model) are bypassed avoiding all the dynamics introduced by the
virtual generator scheme. So, the control signals Vre f and θre f with the conventional droop control
technique become: 

Vre f = Vset − ndroopQBESS
meas

θre f = 2π
t∫

0

[
fset(s) −mdroopPBESS

meas (s)
]
ds

(6)

The first simulation results are depicted in Figure 13: in this scenario, the frequency setpoint fset

is fixed at the MG rated value, while the voltage setpoint Vset changes from 400 V to 410 V at t = 2 s,
then from 410 V to 390 V at t = 6 s and finally from 390 V to 400 V at t = 10 s. As one can see, the set
point is correctly followed by the controlled RMS voltage Vmeas with good time response and minimum
overshoots (the droop parameters mdroop and ndroop are equal to zero in this simulation since there are
no other DERs to share the load request). The second panel shows instead reactive powers time profile,
and it is possible to see that an increase/decrease of the controlled voltage corresponds to a BESS
converter reactive power production/absorption, which is balanced by the main grid, due to the strong
coupling between voltage and reactive power. Considering the comparison, the conventional droop
control has a faster time response because there is no effect of the virtual generator dynamics, but it
has two main drawbacks: (i) voltage steady-state errors due to the absence of an AVR in the droop
control to compensate the effect of the virtual impedance implemented in the voltage controller (the
greater the output current of the BESS converter, the greater the voltage steady-state error, as apparent
in Equations (4) and (5)) and (ii) large initial overshoots in the reactive power time profiles as detailed
in Figure 14.
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Then, in order to test the possibility of managing the BESS converter active power production by
changing the frequency setpoint, in the second scenario the voltage setpoint Vset is fixed to the rated
value while the frequency setpoint fset changes from 50 Hz to 50.1 Hz V at t = 2 s, then from 50.1 Hz
to 49.9 Hz V at t = 6 s and finally from 49.9 Hz to 50 Hz at t = 10 s. Due to synchronism with Main
Grid requirement, the frequency droop factor mdroop is activated. As one can see from Figure 15, the
frequency setpoint is not tracked (first panel), but varying its value it is possible to correctly manage
the BESS active power production (second panel), which is correctly balanced by the Main Grid. Also,
in this test case, conventional droop control guarantees a faster active power regulation due to the
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lack of the virtual inertia of the VGM control technique but, as one can see from Figure 16, the droop
control creates a greater frequency variation in the very first transient.
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4.3. Paralleling Action and Load Sharing

The aim of this simulation is to show how the BESS converter can be connected to an islanded
MG where a diesel generator is already online in Grid-Forming operating mode and to also show
the correct power sharing functionality. As one can see from Figure 17, at t = 0.1 s a live-start of
the BESS converter is activated: as one can see, the controlled voltage (vBESS

AN , vBESS
BN , vBESS

CN ) starts to
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follow the connection bus voltages (vMG
AN , vMG

BN , vMG
CN ) and, at t = 0.2 s, the phase reference output of

the primary control θVGM
re f is synchronized with the measured phase angle θmeas at the connection bus

to the MG. Finally, at t = 0.25 s, the AC-breaker of the BESS converter is closed and in Figure 18 is
possible to notice a really limited power transient quantifiable in a transient current less than 1% of the
BESS-converter-rated value current.
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Then in order to test the proper active and reactive power sharing between the diesel generator and
the BESS, a load step contingency is implemented at t = 4 s. Figure 19 shows active and reactive powers
time profile and it is possible to highlight the correct active and reactive power sharing according to
the rated apparent power of the two units. The proper active power sharing can be guaranteed by the
relation ABESSmdroop = ASDG fdroop, while a correct reactive power sharing can be achieved if the droop
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factors ndroop for the BESS and udroop for the diesel generator are correctly set in order to overcome the
mismatch in the connection impedances to the MG of the two units. The virtual impedance Rv+ jXv
affects the reactive power sharing only during the transient, because in steady state its effect is nulled
out by the BESS AVR regulating action on the controlled voltage Vmeas. Instead, Figure 20 shows
frequencies and RMS voltages time profile during the load step contingency and it is possible to
highlight the inertial behavior of the BESS converter and voltage and frequency deviations from the
respective rated values according to the droop logic in the proposed primary control.
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4.4. Grid Support Action

In this subsection, the results of the BESS converter controlled in GSM operating mode are
presented in detail. The first simulation is carried out in order to test the correct behavior of the
proposed primary control in GSM-fV, i.e., when the active/reactive power references come from the
envelope curves. In order to highlight the positive effects of the BESS converter in support mode, two
different MG configurations are considered:

• In the first configuration, the BESS converter is not connected to the MG. Two different loads,
namely Load1 and Load2, are connected to the MG with Pload,1 = 300 kW, Qload,1 = 100 kVAr
and Pload,2 = 50 kW (pure resistive load). Loads are supplied by the SDG, while the main grid
is disconnected.

• In the second configuration, the BESS is connected to the MG in GSM-fV mode ready to provide
voltage and frequency support after MG contingencies.

At t = 2 s, Load1 is disconnected to the MG and simulation results are depicted in Figures 21 and 22.
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As one can see after the load disconnection, MG frequency f PCC and voltage VPCC (measured at
PCC) start to increase: if the BESS is connected in GSM mode, when voltage and frequency exceed the
threshold values ∆ f1 and ∆V1, respectively, the BESS converter starts to absorb active and reactive
power according the implemented envelope curves. It is easy to notice that the dynamic response in
terms of frequency and voltage with BESS converter controlled in GSM-fV mode (solid lines) is better
with respect to the response without BESS connected to the MG (dashed lines). Finally, Figure 23 shows
the correct response of the primary controller in GSM-PQ mode, i.e., when the active and reactive
power references PGSM-PQ

re f and QGSM-PQ
re f are not provided by envelope curve, but are sent by the system

controller. In this configuration, the SDG is not connected, while the MG is connected to the main grid:
the primary controller is able to correctly track powers references guaranteeing fast regulating actions.
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5. Conclusions

This paper proposed a comprehensive primary control for BESS converter in order to provide all
the regulations required by IEEE Std. 1547 both in grid-connected and islanded configurations. Due to
the need to guarantee fast and smooth dynamics of voltage and frequency in islanded configuration,
the BESS converter is controlled using a VGM technique in order to have it acting on the system as
a real synchronous generator. Simulations are carried out using the dedicated simulation software
DIgSILENT PowerFactory® and show that the proposed controller is able to provide the black-start
capability, to regulate frequency and voltage independently of the number of paralleled generators, to
synchronize and connect BESS converter to the external main grid or to other DERs in with minimum
transients and to guarantee a proper active/reactive power sharing among other DERs. Moreover,
simulations showed that the proposed primary control has the possibility to provide fast control
actions also in grid-connected mode to allow providing frequency and voltage support (GSM-fV) as
well as power control following the reference signals from the secondary level control (GSM-PQ).
Future works will be focused on the transitions between the two operating modes in order to provide
system stability during planned or unplanned islanding or during the reconnection of the main grid.
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