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Abstract: The quality of power and current control are the greatest challenges of grid-connected
wind farms during abnormal conditions. The negative- and positive-sequence components of the
grid currents may be injected into a wind generation system during grid faults, which can affect the
power stability and damage the wind system. The proposed work assures a low-voltage ride through
capability of doubly-fed induction generator- based wind turbines under the grid voltage sag. A new
technique to protect the wind system and to recompense the reactive power during failures of the
utility grid according to the Spanish grid code is proposed. The control design is implemented to
the power converters, and the grid current regulation is developed by using proportional-resonant
regulators in a stationary two-phase (αβ) reference frame. The control performance is significantly
validated by applying the real-time simulation for the rotor-side converter and the hardware in the
loop simulation technique for the experiment of the generator’s grid-side converter control.

Keywords: wind energy; DFIG; LVRT; proportional-resonant regulators

1. Introduction

Nowadays, the recent energy production faces an increasing awareness concerning the
conventional power generation impact on the environment since it is infected by CO2 emission [1].
Such a problematic requires new alternative technologies to create energy in environment-friendly
ways and, considering the increasing demand for global energy, society has a greater environmental
responsibility to develop green technologies. Under the electrical power market expansion, the most
rapidly developed sector is wind energy [2].

The whole wind turbine system adopted on a doubly-fed induction generator (DFIG) comprises
different components [3], which effectively contribute in the power conversion from the wind kinetic
energy to the electrical power transferred to a utility grid [4,5]. The generator model for a grid-connected
DFIG used in wind turbines [6] is presented in Figure 1. Since the turbine is related to the rotor by a
gearbox, DFIG affords a variable speed because of the power converters which are used to control
the rotor current [7,8]. For coupling the converter by slip rings to the rotor, a wound rotor induction
generator is used. Conditioned by the converter dimension, the stated concept supports an extended
variable speed ranging from around −30% to approximately 30% throughout a synchronous speed [9].

Energies 2019, 12, 4041; doi:10.3390/en12214041 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-2301-0343
https://orcid.org/0000-0002-9004-8651
https://orcid.org/0000-0002-6415-766X
http://dx.doi.org/10.3390/en12214041
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/21/4041?type=check_update&version=2


Energies 2019, 12, 4041 2 of 21

More than that, the converter controls reactive power and stabilizes the utility grid connection.
The power converter of a DFIG connected to the utility grid can be designed for 25–30% of the entire
generated electrical power [10,11], since both power converters transmit only the rotor power which
depends on the slip [11]. Consequently, the concept is very captivating, economically speaking, against
turbines with the full-scale converter.

Energies 2019, 12, x FOR PEER REVIEW 3 of 20 

 

This work explores an application of the PR regulators on a DFIG’s grid-side converter (GSC), 97 
mainly in their capability for the compensation of reactive power, grid current limitation and the 98 
stabilization of active power during a grid fault. 99 

The work novelty can be observed in the proposed LVRT algorithm presented in Section 3 100 
according to the IEC 61400-21 [41] and the Spanish grid code, generating the P–N SCs of the grid 101 
currents with the implementation of the PR regulators on the DFIG’s GSC in the αβ components of 102 
the 3-phase inverter currents. This feature will have the capability for the compensation of reactive 103 
power and the grid current limitation during a grid fault according to the Spanish grid code. 104 

The paper is structured as follow; firstly, the main control of the DFIG for the RSC and an 105 
explanation of the GSC control using the PR controller are presented in Section 2. Section 3 presents 106 
the Spanish grid code besides the algorithm presented in this paper. Section 4 presents the digital 107 
real-time simulations (DRTS) using the dSPACE ControlDesk environment [42]. In Section 5, some 108 
experiments are performed using the controller hardware-in-the-loop (CHIL) technique to validate 109 
the proposed strategy for the Fault Ride-Through (FRT) capability. Subsequently, the conclusion is 110 
stated in Section 6. 111 

2. DFIG Control 112 

The electrical part of DFIG consists of 3-phase stator windings which are connected to a 3-phase 113 
windings transformer, while the 3-phase machine's rotor windings are directly excited by two power 114 
converters, RSC and GSC, The grid side of the power converters delivers the rotor power to the grid 115 
via the 3-winding transformer. The schematic block of the DFIG connected to the utility grid is 116 
shown in Figure 1. The rotor voltages control makes it possible to manage the magnetic field inside 117 
the machine. 118 

 119 

Figure 1. DFIG system connected to a utility grid. 120 

The equivalent electrical circuit of the rotor and the stator windings in an arbitrary reference 121 
frame is represented in Figure 2. According to Figure 2, stator and rotor fluxes () are expressed as 122 
Equations (1) and (2): 123 

𝜑௦ = 𝐿௦𝐼௦ + 𝑀𝐼௥ , (1) 

𝜑௥ = 𝐿௥𝐼௥ + 𝑀𝐼௦, (2) 

where 𝐿௥  and 𝐿௦  are the rotor and stator inductances, respectively, and 𝑀  is the mutual 124 
inductance; Is and Ir are the stator and the rotor currents, respectively. Additionally, according to 125 
Figure 2, the stator and the rotor voltage can be written as: 126 

Figure 1. DFIG system connected to a utility grid.

On the one hand, the wind turbines integration into the grid places the ability of power control,
which implies that wind turbines need an output-adjusting power to contribute to the dispatch
balance (production/consumption) [4,5]. On the other hand, low-voltage ride through (LVRT) and
reactive power injection from the DFIG system are important for grid codes [12–15]. Thereby,
the grid-connected wind turbine controllability according to grid compatibility has a great impact on
future development [16,17].

Perturbations in the utility grid, even far away from turbines zones, may create a disturbance at the
wind system grid connection point [18,19]. The aforementioned perturbation causes an over-current
on stator and rotor windings and also increases the DC-link voltage between power converters to
unacceptable values [20,21], which can damage the system if no protection is allowed. Besides, it also
produces the turbine over-speeding, affecting system safety [22]. For this reason, there are several
research works proposing solutions to this fact.

In the functional command of the DFIG, vector controls with the orientation of stator
voltage or stator flux have been commonly used [23–25]. By using this type of control strategy,
proportional-integral (PI) regulators are classically aiming to regulate the power transfer into the utility
grid. However, when a voltage sag takes place, the PI controller seems to be overloaded rapidly. In
addition, the system regularization is tough to realize. Therefore, the DFIG loses command ability.
In order to manage the traditional vector control weakness, different approaches were proposed to
improve strategies to reach the LVRT.

According to the obtained results for traditional DFIG vector controllers [26–28], the generator
still operates within a specific range during a grid fault. Nevertheless, the proper dynamic response of
two state variables, such as rotor voltage and rotor current, cannot be assured. This technique can only
be used under symmetrical grid faults.

Some research papers have investigated the control and behaviour of DFIG grid-connected
converters under abnormal operation of the grid voltage. In [29,30], two regulators were used after
the positive- and negative-sequence components (P–N SCs) separation for a current loop’s regulation,
which can increase the delay and errors of the dynamic response and affect the system stability during
this process. The same configurations were adopted in [31,32], that is, under unbalanced grid conditions,
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a main regulator was employed in a positive-sequence synchronous reference frame and a secondary
regulator was employed in a negative-sequence synchronous reference frame. In References [33–35] a
PI-R current regulator was applied in order to eliminate multiple harmonics in grid converter systems
during grid voltage distortion but non-linear transformations abc→ dq is mandatory. The operation of
DFIG under the abnormal operation of the utility grid was studied in [36–38] and many possibilities
for reducing oscillations at twice the fundamental frequency have been investigated. Nevertheless,
a rotor-side converter (RSC) was examined in this paper and two current regulators were implemented
for the P–N SCs. Furthermore, because of the RSC limited control, it is difficult to obtain a simultaneous
rejection of power oscillations and therefore, an improved control method was used to deal with
unbalanced grid voltages. Unlike the described techniques, in this paper, a new current reference
calculation process was proposed, by injecting sinusoidal currents even under abnormal grid conditions
using Clark’s transformation, which converts a three-phase system (abc) into a two-phase orthogonal
system (αβ) and allows proportional-resonant (PR) regulators to track and discard sinusoidal variables.
The use of the stationary reference frame is possible with the proposed algorithm, in order to decrease
the computational difficulty and avoid the application of the synchronous reference frame. Thus, the
non-linear transformation (abc → dq) used with PI-R regulators is changed by the linear abc → αβ
transformation using the PR controllers [39,40]. Moreover, as explained in Section 3, PR regulators can
control the two sequences generated during grid voltage faults.

This work explores an application of the PR regulators on a DFIG’s grid-side converter (GSC),
mainly in their capability for the compensation of reactive power, grid current limitation and the
stabilization of active power during a grid fault.

The work novelty can be observed in the proposed LVRT algorithm presented in Section 3
according to the IEC 61400-21 [41] and the Spanish grid code, generating the P–N SCs of the grid
currents with the implementation of the PR regulators on the DFIG’s GSC in the αβ components of the
3-phase inverter currents. This feature will have the capability for the compensation of reactive power
and the grid current limitation during a grid fault according to the Spanish grid code.

The paper is structured as follow; firstly, the main control of the DFIG for the RSC and an
explanation of the GSC control using the PR controller are presented in Section 2. Section 3 presents
the Spanish grid code besides the algorithm presented in this paper. Section 4 presents the digital
real-time simulations (DRTS) using the dSPACE ControlDesk environment [42]. In Section 5, some
experiments are performed using the controller hardware-in-the-loop (CHIL) technique to validate the
proposed strategy for the Fault Ride-Through (FRT) capability. Subsequently, the conclusion is stated
in Section 6.

2. DFIG Control

The electrical part of DFIG consists of 3-phase stator windings which are connected to a 3-phase
windings transformer, while the 3-phase machine’s rotor windings are directly excited by two power
converters, RSC and GSC, The grid side of the power converters delivers the rotor power to the grid via
the 3-winding transformer. The schematic block of the DFIG connected to the utility grid is shown in
Figure 1. The rotor voltages control makes it possible to manage the magnetic field inside the machine.

The equivalent electrical circuit of the rotor and the stator windings in an arbitrary reference
frame is represented in Figure 2. According to Figure 2, stator and rotor fluxes (ϕ) are expressed as
Equations (1) and (2):

ϕs = LsIs + MIr, (1)

ϕr = LrIr + MIs, (2)
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where Lr and Ls are the rotor and stator inductances, respectively, and M is the mutual inductance;
Is and Ir are the stator and the rotor currents, respectively. Additionally, according to Figure 2, the stator
and the rotor voltage can be written as:

Vs = RsIs +
dϕs

dt
+ jωs·ϕs, (3)

Vr = RrIr +
dϕr

dt
+ j(ωs −ωr)·ϕr, (4)

where Rr and Rs are the rotor and the stator resistances, respectively, ωs is the stator pulsation and ωr

is the rotor pulsation.
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Based on Equations (1) and (2), the rotor flux and the stator current can be written as:

ϕr =
M
Ls
ϕs + σLrIr, (5)

Is =
1
Ls
(ϕs −MIr), (6)

where σ = 1− M2

LrLs
.

Then, by substituting Equation (4) into Equation (3), the expression of Vr in the arbitrary rotating
reference is:

Vr = RrIr + σLrIr
dIr

dt
+

dϕr

dt
+ j(ω−ωr)

(M
Ls
ϕs + σLrIr

)
. (7)

The purpose of a reference change is to make the machine equations easier to use. In this study,
the Park’s transformation (two d-q orthogonal axes in the rotating synchronous reference frame) is used
for RSC control to apply the vector control technique and Clarke’s transformation (two αβ orthogonal
axes in the stationary reference frame) for GSC control. This model is obtained after a three-phase (A,
B and C) virtual transformation into an equivalent two-phase machine as represented in Figure 3 [43].
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2.1. DFIG Control Strategy

After the Park’s transformation application, and with a reference linked to the rotating field, the
expressions of the stator and rotor voltages along the d-q axes are:

Stator voltage :

 Vsd = RsIsd +
dϕsd

dt −ωsϕsq

Vsq = RsIsq +
dϕsq

dt +ωsϕsd
, (8)

Rotor voltage :

 Vrd = RrIrd +
dϕrd

dt −ωrϕrq

Vrq = RrIrq +
dϕrq

dt +ωrϕrd
. (9)

The matrix system of the flux can be written as:

Stator flux :
{
ϕsd = LsIsd + MIrd
ϕsq = LsIsq + MIrq

, (10)

Rotor flux :
{
ϕrd = LrIrd + MIsd
ϕrq = LrIrq + MIsq

. (11)

The expression of DFIG’s electromagnetic torque is expressed as follows:

Tem =
M
Ls

(
ϕsqIdr −ϕsdIrq

)
. (12)

The transferred active and reactive powers from DFIG (through the stator and rotor windings) to
the utility grid are written as follows [44]:

Ps = VdsIsd + VqsIqs, (13)

Qs = VqsIsd −VdsIqs, (14)

Pr = VdrIrd + VqrIqr, (15)

Qr = VqrIrd −VdrIqr. (16)

The stator flux has been oriented with the d-axis to apply the vector control technique. The choice
of this reference makes the generated reactive power and the electromagnetic torque depend on the d-
and q- components of rotor currents Irq and Ird, respectively. Thus, these stator powers can be controlled
independently of each other.
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Tow control blocks are implemented on the RSC, i.e., the maximum power extraction from the
wind and the vector control block using the PI regulators.

In the following, the maximum power point tracking (MPPT) is briefly explained [45].
The mechanical torque Tm, which is taken by the turbine, is given as:

Tm =
1
2
πρR2V3

wCp, (17)

where: ρ is the air density, Cp is the power coefficient, Vw is the wind velocity and R is the turbine radius.
In order to pull out the utmost power by the wind turbine at different wind speeds, Figure 4

represents the trajectory of an MPPT curve, which can be expressed in terms of the mechanical torque
Tm,MPPT by the following equation:

Tm,MPPT = Koptω
2
m, (18)

where Kopt is the optimal coefficient torque and ωm is the mecanical rotation speed.Energies 2019, 12, x FOR PEER REVIEW 6 of 20 
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After the stator flux orientation along d-axis and neglection of the per phase stator resistance [9],
the d-component of the stator flux is written as:

ϕsd = ϕs →
dϕsd

dt
= 0, (19)

where ϕsd is considered constant (its derivative is zero) and equal to the stator flux vector modulus;
ϕsd and ϕsq can be written as: {

ϕsd = ϕs

ϕsq = 0
. (20)

The stator voltage in Equation (7) becomes:{
Vsd = 0

Vsq = Vs = ωsϕs
. (21)

The electromagnetic torque in Equation (10) is written as:

Tem = −
M
Ls

(
ϕsdIrq

)
. (22)
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Then, Equation (10) of the stator fluxes according to Equation (20) becomes:{
ϕsd = ϕs = LsIsd + MIrd
ϕsq = 0 = LsIsq + MIrq

. (23)

Finally, the reactive power and active power in Equations (13) and (14) are written as follows:

Qs = −
VsM

Ls
Ird +

Vsϕs

Ls
, (24)

Ps = −
VsM

Ls
Irq. (25)

The generator is used to transform the mechanical power into AC power, and then the RSC and
GSC are used to control and convert that power into a grid connection. By using the GSC, the incoming
AC power is injected into the utility grid with its synchronized frequency and phase for power factor
control. The configuration of the DFIG’s RSC control blocks is shown in Figure 5.Energies 2019, 12, x FOR PEER REVIEW 7 of 20 
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2.2. Grid-Side Converter Regulation Using PR regulators

The second converter in DFIG is the GSC which controls the balance of power between the DFIG
and the utility grid.

The GSC is able to regulate the DC voltage in order to generate the reference of active power
Pg,re f by using a PI regulator [46] and also to regulate the injected reactive power into the utility
grid. The latter is achieved by regulating properly the P–N SCs of the grid currents to deal with the
grid voltage disturbance conditions and the power oscillations furnished by the RSC to the DC-link.
The P–N SCs of the faulty utility grid must be calculated from the measured three-phase voltages.

The PR current regulators in the stationary reference frame are applied in this section [47]. This kind
of regulators commonly contains a PR regulator plus a resonant filter tuned to the fundamental frequency
in order to reach a zero steady-state error when sinusoidal signals are controlled. A detailed study of
the PR regulator was presented in [48] and hence, only a short explanation is provided in this paper.
The transfer function of the PR regulator is expressed as:

CPR(s) = Kp +
Kis

s2 + 2ωcs +ω2
e

, (26)
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where Kp is the proportional constant, Ki is the integral constant of the regulator, ωc is the cutoff

frequency and ωe is the resonance frequency.
The grid current references expressions in the stationary reference frame (i∗gα and i∗gβ) are

written according to the active and reactive current components (i∗gα,P and i∗gβ,P) and (i∗gα,Q and
i∗gβ,Q), respectively [49]:  i∗gα = i∗gα,P + i∗gα,Q

i∗gβ = i∗gβ,P + i∗gβ,Q
, (27)

where

i∗gα,P =
u+

gα − u−gα(
u+

gα
2 + u+

gβ
2
)
−

(
u−gα2 + u−gβ

2
)Pg,re f , (28)

i∗gα,Q =
u+

gβ + u−gβ(
u+

gα
2 + u+

gβ
2
)
−

(
u−gα2 + u−gβ

2
)Qg,re f , (29)

i∗gβ,P =
u+

gβ − u−gβ(
u+

gα
2 + u+

gβ
2
)
−

(
u−gα2 + u−gβ

2
)Pg,re f , (30)

i∗gβ,Q = −
u+

gα + u−gα(
u+

gα
2 + u+

gβ
2
)
−

(
u−gα2 + u−gβ

2
)Qg,re f . (31)

Figure 6 describes the GSC block diagram control using the PR regulators; meanwhile, the P–N SCs
of grid voltage are calculated from the measured grid voltage [50]. The four grid voltage components
(u+

gα, u−gα, u+
gβ and u−gβ) generated by the P–N SCs detector together with Pg,re f and Qg,re f are used

to compute the two grid currents references in the stationary reference frame (i∗gα and i∗gβ) with the
current references calculation module. The two currents references i∗gα and i∗gβ are compared to the
measured signals, and the difference is supplied to the PR regulators. The outputs of these regulators
are the inverter voltage signals in the stationary reference frame, and hence, the inverse Clarke’s
transformation is applied to these variables in order to feed the pulse width modulation (PWM).
The outputs of PWM are the switching signals for the three-phase inverter.
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The P–N SCs block is represented in Figure 7. The P–N SCs block is used to compute the
grid voltage positive and negative sequences (u+

g,abc and u−g,abc). After Clark’s transformation, the
positive sequences are used to calculate the voltage sag in order to generate the fault signal based on
Equation (32). The main outcomes of this paper are the generation of the P–N SCs of the grid currents
in an easy way by applying Equations (27)–(31) to exert a constant active power control, which will
decrease the oscillations amplitude at twice the fundamental frequency in the DC voltage, protecting
the link capacitor for its potential destruction.
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3. Grid Code (Output Current Limitation)

The wind system must respect the LVRT requirements and must stay connected to the grid when
severe faults occur, according to the grid code used. In addition, the grid code imposes the necessity
to inject some reactive power for specific levels in the depth of the voltage dips [51] and to limit the
current amplitude near its nominal value in order to avoid the generator disconnection from the grid.
Figure 8a presents the LVRT requirements according to IEC 61400-21 [41]; Figure 8b presents the
Spanish grid code requirements for the reactive power during grid faults [49].
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the reactive power [49].
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As it was motioned in the previous section, the measured grid voltage is used to calculate the
P–N SCs, and the extracted positive sequence is used to detect the voltage sag by dividing it with the
nominal value of the line-to-line utility grid voltage as expressed in the following equation [49]:

Vg, f ault =

√
u+

gα
2 + u+

gβ
2

Ug
, (32)

where Ug is the root-mean-square value of the line-to-line grid voltage and Vg, f ault is the normalization
depth of the voltage sag.

According to the Spanish grid code, a grid fault is defined by a voltage amplitude less than 0.85
pu. The organigram represented in Figure 9 describes the applied algorithm for LVRT capability and
the reactive power required to inject it into the utility grid based on the Spanish grid code. Once the
voltage sag is less than 0.85 pu, the grid fault is detected. In this condition, if the grid fault is less than
0.2 for a duration t of >0.15 s, or between 0.2 and 0.5 for more than 0.58 s, or between 0.5 and 0.85
for more than 0.27 s, then the DFIG system must be disconnected from the grid. Actually, reactive
power injection becomes important, according to the depth of the utility grid voltage fault as given in
Equation (32): 

Q = 0 i f Vg, f ault > 0.85
Q = 15

7 Snom
(
0.85−Vg, f ault

)
i f 0.5 ≤ Vg, f ault < 0.85

Q = 3
4 Snom i f Vg, f ault < 0.5

. (33)
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4. Digital Real-Time Simulation of the RSC

In this section, the DRTS of the planned RSC control is presented. The dSPACE DS5202 signal
acquisition board, together with the DS1006 processing board [52], is used for implementing the
DRTS. These boards afford compatible libraries with MATLAB/Simulink software tool (R2010a,
The MathWorks, Inc., Natick, MA, USA). Furthermore, dSPACE affords a monitoring software
(ControlDesk) which communicates with the algorithm placed in the data acquisition board in
real time.

The simulation model used in this study is made by using a 2 MW DFIG-based wind turbine
as the most used generators for wind farms connected to the utility grid. Firstly, the RSC control of
DFIG system with a fixed DC-link voltage (VDC = 800 V) is simulated with the MATLAB/Simulink
environment, and secondly, the dSPACE blocks are added to the system in order to run in the digital
real-time simulator. The generator parameters are given in Table 1.

Table 1. DFIG system parameters.

DFIG System Parameters

Rated Power 2 MW
Rated speed 1500 tr/min
Frequency 50 Hz

Grid voltage 400 V (line-to-line)
DC bus voltage 800 V

Stator resistance and inductance 0.0026 Ω, 8.7e−2 mH
Rotor resistance and inductance 0.0029 Ω, 2.6 mH

Mutual inductance 0.0025 H
Proportional constant of PI current regulator 0.5771

Integral constant of PI current regulator 491.5995

Figure 10 shows the real-time simulation results of the RSC control at a step change in the wind
turbine speed Vm from 7 m/s to 12 m/s for a duration time t of 10 s as represented in Figure 10a.

According to Figure 10b, the RSC vector control guarantees the MPPT, the rotor mechanical
speed changes with the wind speed variation and tracks his optimal value ω∗m which ensure the
MPPT capability. Moreover, the active current irq tracks the reference value irq_re f with a quick
dynamic performance, and without overshoots, as shown in Figure 10c, the active current value irq_re f
increase from 900 A to 2500 A at the step beginning and return to the normal value with good control
performance. The reactive current ird is well controlled and tracks the imposed reference value ird_re f
of 0 in order to minimize power losses (see Figure 10c). The same phenomena are observed for the
electromagnetic torque which tracks this reference value with a good dynamic performance, as shown
in Figure 10d.
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5. Controller Hardware-in-the-Loop Simulation for the Grid-Side Converter

In this section, some tests are realized to verify the proposed GSC algorithm effectiveness by
applying the HIL simulation [46,53]. This method uses a DRTS with various input/output digital
signals, digital-to-analogue and analogue-to-digital converters, in order to simulate the power system
behaviour in real time.

The platform for this study is built with the TMS320F28379D microcontroller from Texas
Instruments [54] and the PLECS RT Box1 (Plexim) HIL boards with several analogues and digital
input/outputs [55] (see Figure 11). The file with the C-code was created and uploaded into both
targets [46], and the voltages and currents measurements are recorded in the host PC in order to
monitor them as described in Figure 11. Tables 2 and 3 present the power parameters for the grid side
and the control subsystem parameters, respectively.
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Table 2. The GSC power parameters.

Power Parameters of the GSC

Nominal DC voltage VDC = 800 V
Switching frequency fsw = 24,416 Hz

Line inductance L = 0.15 mH

AC system Voltage amplitude VRST: 400 V(rms) (line-to-line)
Nominal frequency: 50 Hz

Table 3. Control subsystem parameters.

Control Subsystem Parameters

Constants of the proportional-resonant (PR) current regulators in α-β axes
kp,Iαβ = 0.0011

ki,Iαβ = 0.1

Resonant and cut-off frequencies ωo = 314.16 rad/s
ωc = 1 rad/s

Constants of the proportional-integral (PI) voltage regulator kp,VDC = 3977.5
ki,VDC = 152,110

Sample times of the power and control subsystems Ts = 5.1196 µs
Treg = 40.957 µs

Four tests are assigned to deal with LVRT requirements at the three-phase output of the GSC in
order to prove the strategy performance during different failure conditions. Generally, grid codes force
the wind system to still connect even when grid voltage faults happen and inject reactive power to
the utility grid according to the voltage depth level, forcing a grid currents limitation to its nominal
amplitude. Consequently, there are two control modes for each test: the first mode is the control
under normal conditions; the second control mode is based on the proposed LVRT strategy application,
mainly activated when the grid voltage faults occur.

• Test 1: symmetrical voltage sag = 0.1 pu, duration t = 0.11 s, full nominal power (Figure 12) and
half nominal power (Figure 13)
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Figure 13. Simulation results of the LVRT proposed strategy for a symmetrical voltage sag of 0.1 pu
under a half nominal power.

Figures 12 and 13 present the GSC control strategy response to a three-phase voltage sag (0.1 pu)
using the PR regulators under a full nominal power and a half nominal power, respectively, in order
to verify the limitation imposed to the output grid currents. During the faults, it seems that the
three-phase grid currents do not exceed the nominal value for both cases, injecting a reactive power
of 50 kVAr and zero active power into the grid according to the grid code. Thus, the system control
behaviour with PR regulators deals with the capability to inject the reactive power according to the
grid code previously presented and with the limitation of three-phases grid current. Additionally, after
the fault disappearance, the normal operation of the GSC controller is attained and the reactive power
is zero for unity power factor operation.

• Test 2: symmetrical voltage sag = 0.3 pu, duration t = 0.11 s, full nominal power (Figure 14) and
half nominal power (Figure 15)



Energies 2019, 12, 4041 15 of 21

Energies 2019, 12, x FOR PEER REVIEW 14 of 20 

 

after the fault disappearance, the normal operation of the GSC controller is attained and the reactive 314 
power is zero for unity power factor operation. 315 
• Test 2: symmetrical voltage sag = 0.3 pu, duration t = 0.11 s, full nominal power (Figure 14) and 316 

half nominal power (Figure 15) 317 
In order to verify the capability of the proposed strategy during a deeper voltage dip, a voltage 318 

sag of 0.3 pu for the same duration (t = 0.11 s) is applied. Figures 14 and 15 represent the GSC control 319 
strategy response to the symmetrical three-phase grid fault of 0.3 pu for the PR regulators under a 320 
full nominal power and a half nominal power, respectively, in order to verify the current limitation. 321 
During the faults, there is no overcurrent on the three-phase output grid currents, which means its 322 
nominal value is not exceeded for both cases. Meanwhile, the active power decrease to 0 and the 323 
reactive power increases to 150 kVAr. Thus, the used strategies behaviour deals with LVRT 324 
capability and injects reactive power according to the grid code. Additionally, when the grid fault 325 
ends, the normal operation of the GSC controller is achieved and the reactive power is zero. 326 

 327 
Figure 14. Simulation results of the proposed LVRT strategy for a symmetrical voltage sag of 0.3 pu 328 
under a full nominal power. 329 

 330 

Figure 14. Simulation results of the proposed LVRT strategy for a symmetrical voltage sag of 0.3 pu
under a full nominal power.

Energies 2019, 12, x FOR PEER REVIEW 14 of 20 

 

after the fault disappearance, the normal operation of the GSC controller is attained and the reactive 314 
power is zero for unity power factor operation. 315 
• Test 2: symmetrical voltage sag = 0.3 pu, duration t = 0.11 s, full nominal power (Figure 14) and 316 

half nominal power (Figure 15) 317 
In order to verify the capability of the proposed strategy during a deeper voltage dip, a voltage 318 

sag of 0.3 pu for the same duration (t = 0.11 s) is applied. Figures 14 and 15 represent the GSC control 319 
strategy response to the symmetrical three-phase grid fault of 0.3 pu for the PR regulators under a 320 
full nominal power and a half nominal power, respectively, in order to verify the current limitation. 321 
During the faults, there is no overcurrent on the three-phase output grid currents, which means its 322 
nominal value is not exceeded for both cases. Meanwhile, the active power decrease to 0 and the 323 
reactive power increases to 150 kVAr. Thus, the used strategies behaviour deals with LVRT 324 
capability and injects reactive power according to the grid code. Additionally, when the grid fault 325 
ends, the normal operation of the GSC controller is achieved and the reactive power is zero. 326 

 327 
Figure 14. Simulation results of the proposed LVRT strategy for a symmetrical voltage sag of 0.3 pu 328 
under a full nominal power. 329 

 330 
Figure 15. Simulation results of the proposed LVRT strategy for symmetrical voltage sag of 0.3 pu
under a half nominal power.

In order to verify the capability of the proposed strategy during a deeper voltage dip, a voltage
sag of 0.3 pu for the same duration (t = 0.11 s) is applied. Figures 14 and 15 represent the GSC control
strategy response to the symmetrical three-phase grid fault of 0.3 pu for the PR regulators under a full
nominal power and a half nominal power, respectively, in order to verify the current limitation. During
the faults, there is no overcurrent on the three-phase output grid currents, which means its nominal
value is not exceeded for both cases. Meanwhile, the active power decrease to 0 and the reactive
power increases to 150 kVAr. Thus, the used strategies behaviour deals with LVRT capability and
injects reactive power according to the grid code. Additionally, when the grid fault ends, the normal
operation of the GSC controller is achieved and the reactive power is zero.

• Test 3: asymmetrical voltage sag (one phase) = 0.1 pu, duration t = 0.25 s, full nominal power
(Figure 16) and half nominal power (Figure 17)
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In order to verify the PR controller capability under unbalanced grid faults, a deep voltage sag for
a duration t of 0.27 s in phase 3 is applied under a full nominal power (Figure 16) and a half nominal
power (Figure 17), respectively. As shown in Figures 16 and 17, the three-phase grid currents do not
exceed its nominal value for both cases; meanwhile, a specific quantity of active and reactive powers is
injected into the utility grid. The oscillating nature of the reactive power during the unbalanced grid
faults at twice the nominal frequency is due to the proper control of the negative sequence of the grid
currents delivered to the grid, which also produces a constant active power control. However, the grid
currents are unbalanced under this assumption. Finally, the system attains its normal operation when
the unbalanced fault ends.

• Test 4: asymmetrical voltage sag (one phase) = 0.5 pu, duration t = 0.25 s, full nominal power
(Figure 18) and half nominal power (Figure 19)
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Figure 19. Simulation results of the proposed LVRT strategy for an asymmetrical voltage sag of 0.5 pu
under a half nominal power.

In Figures 18 and 19, the one-phase voltage test with the same duration of the previous test
considers different levels of the grid voltage fault (0.5 pu), and the grid currents do not exceed its
nominal amplitude value for both cases. Furthermore, because of the slight voltage drop compared to
those in the previous tests, a higher active power is injected to the grid. Again, the reactive power
oscillations during the unbalanced grid faults, for constant active power control, is due to the control of
the negative sequence of the grid currents delivered to the grid; the system attains its normal operation
when the unbalanced fault ends.

Finally, the GSC control strategy behaviour, dealing with the capability to inject the reactive power
into the utility grid following the Spanish grid code previously presented and with the limitation of
the three-phase grid currents amplitude, is validated.
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6. Conclusions

The proposed control algorithms in this paper are used for a grid-connected DFIG to improve the
quality of power and to deal with LVRT requirements according to the Spanish grid code. The vector
control using the stator-flux-oriented control strategy has been applied to the RSC, and the performance
of this control has been verified using the DRTS. Moreover, the GSC is controlled to compensate the
reactive power and reduce the active power oscillations during the unbalanced grid operation. For this
reason, the PR regulators have been proposed in the stationary reference frame in order to control the
negative and positive sequences of the grid currents. The different types of grid voltage sags have
been tested, and the experiments using CHIL simulation validate the proposed control algorithms
for all tests, by limiting the amplitude of the grid currents, injecting the required reactive power and
stabilizing the active power transferred into the grid.
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