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Abstract: The EU aims at increasing the use of renewable energy sources (RES), mainly solar-photovoltaic
(PV) and wind technologies. Projecting the future, in this respect, requires a long-term energy modeling
which includes a rate of diffusion of novel technologies into the market and the prediction of their
costs. The aim of this article has been to project the pace at which RES technologies diffused in
the past or may diffuse in the future across the power sector. This analysis of the dynamics of
technologies historically as well as in modeling, roadmaps and scenarios consists in a consistent
analysis of the main parameters of the dynamics (pace of diffusion and extent of diffusion in particular
markets). Some scenarios (REMIND, WITCH, WEO, PRIMES) of the development of the selected
power generation technologies in the EU till 2050 are compared. Depending on the data available,
the learning curves describing the expected development of PV and wind technologies till 2100
have been modeled. The learning curves have been presented as a unit cost of the power versus
cumulative installed capacity (market size). As the production capacity increases, the cost per unit is
reduced thanks to learning how to streamline the manufacturing process. Complimentary to these
learning curves, logistic S-shape functions have been used to describe technology diffusion. PV and
wind generation technologies for the EU have been estimated in time domain till 2100. The doubts
whether learning curves are a proper method of representing technological change due to various
uncertainties have been discussed. A critical analysis of effects of the commonly applied models for a
long-term energy projection (REMIND, WITCH) use has been conducted. It has been observed that
for the EU the analyzed models, despite differences in the target saturation levels, predict stagnation
in the development of PV and wind technologies from around 2040. Key results of the analysis are
new insights into the plausibility of future deployment scenarios in different sectors, informed by the
analysis of historical dynamics of technology diffusion, using to the extent possible consistent metrics.
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1. Introduction

Investments in the power sector are characterized by high capital intensity and a long payback
periods. At present, the development of certain generation technologies depends on the energy policy
linked to the global climate policy. Different energy technologies are supported or blocked by local,
international and global authorities. Some policy makers may have different or even opposed opinions
which, in consequence, create additional difficulties for the market. Therefore, there are not only
technological and economical aspects which should be considered while forecasting the development
of each technology, but also social ones since organized groups of local people can efficiently stop or at
least postpone new investments.

Increasing the share of renewable technologies like PV and wind sources results from the EU’s
efforts to implement the adopted climate policy limiting the use of fossil fuels. Scenarios for the
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development of these technologies are in line with the upward trend. Scenarios developed by renewable
energy organizations are based on the ambitions and interests of their members and can serve as a
reference point for decision-makers in energy policy making.

Renewable energy technologies differ in performance, maturity level and cost-efficiency ratio but
each technology has its individual potential. This variety made it fundamental to support them with
targeted actions. In addition, distinctive elements that could foster global industrial competitiveness
will be considered. The EU is going to support various technologies providing balance and sustainability
at the highest possible level [1]. The short-term predictions until 2020 show a moderate increase for
RES consumption with a declining pattern for fossil and nuclear sources in Europe, while for the US
one predicts a mildly positive trend both conventional and renewable-oriented, whereas for China
and India RES consumption will moderately increase and consumption from conventional sources is
predicted to increase considerably [2].

Many examples from the power technology markets demonstrate the need for a dynamic
government intervention in the market over several decades to help the ride down of the learning
curve [3]. For example, governmental support may have strong effects on price reductions of wind
turbines. While feed-in tariffs clearly stimulate the expansion of new capacity, it may also stimulate
free-rider behaviour and cause stagnation of prices [4].

One of the major challenges Europe will face in the coming decades is creating a secure, efficient
and clean energy system. It is supported by the Horizon 2020 under the theme “Secure, Clean
and Efficient Energy”. To make it happen, research and innovation is focused on the development of
cost-effective and resource-efficient low carbon energy sustainable solutions with a significant role of
domestic resources in the energy mix which would lead to the increase of energy security of power supply.

The development and diffusion of RES technologies is, therefore, expected. The concept of
diffusion can be used to assess the degree of development. According to Rogers, one of the originators
of diffusion of innovation theory, diffusion is the process by which an innovation is distributed to the
members of a social system through certain channels over time [5].

Different models of describing the expected development of technology can be found in the literature.
This issue involves the use of econometric models, statistics, management theory, communication studies,
and refers to technical, economic, social and political aspects. The key innovation diffusion models
have been developed since 1970′s with the main categories of modification of these models classified
as [6]: generalizing to consider the diffusion of successive generations of technology, also to consider
at different stages of diffusions in different countries, and a marketing variables introduction in
the parametrization.

The paper is structured as follows: In Section 1 the importance of the ability to model diffusion
of RES technologies for projection of energy system in the long-term horizon is briefly reviewed.
PV and wind technologies have been selected for further analysis. Section 2 addresses the overview of
literature on diffusion modeling of RES technologies. To describe the diffusion of innovation, various
models based on macroeconomic models are used. In Section 3 the objective of the paper is set—to
project the pace at which RES technologies diffused in the past or may diffuse in the future across the
power sector. Some scenarios of the development of selected power generation technologies in the EU
till 2050 are compared. We introduce the two metrics. Section 4 presents the application of learning
curves for modeling the two chosen RES technologies. A logistic function for diffusion visualization is
dealt in Section 5. Technology development shown by S-shaped logistic curves for EU-28 are compared
with the reference scenarios of REMIND and WITCH models. The discussion of the results is offered
in Section 6. Section 7 covers the main conclusions, limitations and proposals for future research. It is
also commented on how the integration of power systems and sectoral spillovers had been included in
previous modeling and scenario narratives.
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2. Overview of Selected RES Technology Diffusion

The modeling of energy transitions should enable a quantitative description of transition in the
technology domain and also in the market, institutional, and social domains. Concepts from the
sustainable transition literature can assist to identify important mechanisms and variables within these
areas [7]. To describe the diffusion of innovation, various models based on macroeconomic models are
used. For example, a diffusion model integrating agent-based modeling for RES energy deployment
was established and presented in [8].

Two main approaches can be used to present diffusion of a specific technology. One, presenting
the expected progress of technology dissemination in time, and the other based on the presentation
of the learning effect from experience. The first approach analyzes technological cycles and predicts
when the saturation of innovations occurs. A useful tool used by researches is the S-curve model [9,10].
The second approach uses a learning curve concept. The learning curve refers to the cost reductions
of a standardized product within a single firm, while an experience curve may also describe cost
reductions of non-standardized products on a global, regional or national level [11]. Although today
many authors use the term “learning curve” as a synonym for “experience curve” [12,13].

2.1. Learning Curves

In [4] examples of the main areas and levels of using learning/experience curves are listed:

• Company level—project future costs, formulate corporate strategy;
• National policy—evaluate the effects of past subsidies (R&D, investments), future investments

required to a certain price level until a technology can compete with conventional equivalent;
• Global scenarios for selected technology development;
• Energy and climate change models—endogenize technological learning and associated cost

reduction of RES technologies.

A learning curve expresses some useful correlations and the learning involves, like sampling of
potentially cost-reducing processes indicating technological, managerial, or behavioral alternatives
to pending operations. Such a model is a tool for assessing and designing a strategy or policy [3]
and can be used to calculate investments needed to get a technology down to a competitive level,
and the model may be necessary to diffuse it on a large scale in the market. Learning curves deliver a
phenomenological description of the connections between different values e.g., cumulated production
and past costs and are useful for the estimation of future cost reductions by simple extrapolation.
A rich review of learning curve models used in production economics was conducted in [14].

The learning curve approach is extensively applied to energy supply technologies (RES as well as
non-RES) in order to quantify potentials for cost or price decline [15]. Learning curve is a popular
tool used for forecasting costs of RES technologies in integrated assessment models [16]. Based on the
learning curves, many analysts state that policy intervention in order to accelerate learning investment
will help the development of new RES technologies and that the resulting costs of future reduction will
be much lower than simple estimations that do not consider the learning dynamics [17].

It was noted that for large-scale and highly complex generation technologies, the experience
curve does not appear to be a useful tool for explaining cost changes over time [12]. In [16] a formal
discussion was conducted on the learning curve application, limitation and related assumptions.
According to the authors of [16], the most problematic issues are the absence of any effect of technology
cost on its demand and the ability of integrated assessment models to predict the determinants of
cumulative capacity; it was shown, though, that specified assumptions can be tempered by modifying
the traditional econometric method used to the learning curve estimation.

The first comprehensive review of learning curve analyzes for energy demand technologies was
conducted in [15]. In [12] the reviews presented the experience (learning) curve theory with empirical
evidence in power generation technologies. In [18] the use of learning curves for the description of
cost reduction of energy technologies was investigated.
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In [18] it was demonstrated that for many power generation technologies, like wind turbines,
the potential for growth is typically limited to only a couple of doublings with respect to the currently
installed capacity. For other power technologies similar qualitative estimations regarding their growth
potential can be made, which implies that it might not be more generally possible to detect cost
reductions once they come close to a technology-specific upper bound for deployment.

In [1] the learning curve of balance-of-system costs in PV for more than 20 countries via an
extensive dataset was estimated. It was shown that a number of cost reduction opportunities exist
and require only a little support of financial policy. These include stimulating market competition
among installers, legal process standardization and adopting installation schemes. In [19] the cost of
PV modules out to 2020 was predicted using models of learning curves and the implications of the
costs of electricity from described PV modules.

The analysis based on the Colombian case presented in [20] indicated that PV system cost is not
necessarily an important element in the diffusion of PV systems when grid parity is attained. Moreover,
it was noticed that the implementation of policies is an imminent obligation for legislators because the lack
of policy may cause negative effects on the market, risking market stability or its sustainability. The case
of South Korea regarding learning the curve theory for PV power generation was analyzed in [21].

The first study of learning curves with the use of actual wind power generation as an output
measure, turbine size and unit turbine costs between 2005 and 2012 during the rapid expansion phase
of China wind power industry was presented in [22]. The Chinese case of wind power demonstrates
that complement deployment policies do not necessarily lead to technological learning and the market
expansion is possible in the absence of carefully designed policies of innovation.

In [17] the authors concluded that the learning curve cannot separate the effects of price and
technological change, neither can it reflect a continuous and qualitative change of conventional
or emerging energy technologies, and it cannot help to determine the time paths of technological
investment, missing the crucial R&D activity role in driving technological change. The learning curve
indirectly assumes that technology can change instantly with installed capacity, which is doubtful.

There are doubts whether learning curves are a proper method of representing technical change
due to various uncertainties. Their results have not been sufficiently examined yet. Uncertainties in
technology experience curves are extensively discussed by Yeh and Rubin [23]. The main questionable
variable is the learning rate parameter, but also the functional form determining the shape of a curve.
The most widely adopted is a one-factor, log-linear experience curve—it can easily be used in general
equilibrium and partial equilibrium models which are based on the Mixed Integer Programming.
An alternative to the conventional learning curve is a deviation from log-linearity at the beginning
and the end of the entire development. Another example is an S-shape curve which also creates some
doubts as it disregards the influence of political, social and economic factors which are not taken into
consideration within learning curves.

2.2. Technology Diffusion

A study of RES (non-hydro) technology diffusion in 108 developing countries observed between
1980 and 2010 was conducted in [24]. The authors found a weak support for positive influence of
the Kyoto Protocol on non-hydro RES technology diffusion. Also, the authors of diffusion analysis
presented in [25] suggested that in Brazil, Russia, India, China and South Africa (BRICS) countries the
Kyoto mechanisms do not create proper incentives for the use of RES technologies. The analysis of the
diffusion determinants of RES in 26 the Organization for Economic Co-operation and Development
(OECD) countries between 1990 and 2013 with a specific focus on modern fossil technologies was
conducted in [26].

In [27] an integrated approach for the RES technologies diffusion was considered regarding
technology, conversion, availability of sources, cost and policy. The authors pointed out to the
continuing barriers to the large-scale adoption of RES energy in India. It was underlined that the lack
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of large-scale success does not imply the impropriety of the technology and rather suitable efforts are
required to create an environment to promote the adoption of such a technology.

A German case of RES energy diffusion focusing on the specific role of the firms’ regional
environment was analyzed in [28]. It showed that for energy policy, in addition to (hard) regulation
measures like energy law or emission trading system, also soft instruments such as measures to
encourage environmental and social responsibility of managers or environmental awareness of the
population, may play a role in the reinforcement of the RES diffusion.

In [29] one discussed the flexibilization of power networks as a means of RES diffusion and it was
noted that the convergence of interests among wind and PV technology suppliers supports the idea
that pertinent interactions are already in place. The policies (industrial, climate and energy) should
thus be inspired according to a systemic perspective and a future research should expand the empirical
analysis of such interactions [29].

A logistic curve of improving performance can better describe the cost reductions in energy
technologies when it is modified to include R&D activity as a driving variable. An investment in R&D
can accelerate the process of technological development and conversely.

The traditional diffusion literature fits S-shaped diffusion curves (like the logistic function) to
diffusion measure [30]. In [31] the analysis of efficient market diffusion of intermittent energies from
RES was conducted as their capacity costs fell over time. An S-shaped pattern was found and it was
presented how it can be traced back to the effects of intermittency. It becomes efficient to add RES to
the generation system when their levelized cost of energy (LCOE) has fallen to that of fossil sources.

The four-parameter multi-cycle logistic growth curve models were used in [32] to perform a case
study of energy production and consumption in the US to 2040. In [33] it was shown that at present
wind and solar power demonstrates early signs of logistic growth despite high learning rates and
energy return on energy invested particularly in the PV sector. A diffusion model based on the classic
Bass diffusion theory, where the adoption rate is a function of awareness-raising campaigning and
social interaction for the Colombian PV was also investigated in [34].

It may be concluded, that the logistic growth models have been developed since the 19th century
for a model population [35], in the 20th century as a modeling tool for fuel energy production [32].
In [36] the use of single logistic curve and logistic component analysis was presented focusing on the
coherence between model, data and interpretation. In technical applications logistic functions are used
for example in modeling a dependence of technical or exploitation parameters, e.g., power curve for
wind turbine in relation to wind speed [37].

3. Problem Formulation

Wind and solar have always featured in long-term energy scenarios, both from the Integrated
Assessment Modeling (IAM) community, as well as other organizations such as the International
Energy Agency ([38–41]). However, there are almost no scenarios that have foreseen a fast decrease in
costs and rapid deployment over the last decade [42]. Creutzig et al. [42] find that the underestimation
of PV growth can be traced back to the fact that models have overlooked public incentive schemes and
rapid technological learning.

The variable RES, e.g., wind and solar, are an important option for the decarbonization of the
power sector. These technologies have experienced deep cost reductions of more than 80 percent over
the last decades, and seen unprecedented growth, with wind and solar capacity increasing 9-fold over
the last ten years [43]. It is an open question whether or not future deployment will continue at this
pace, or if system integration challenges will potentially slow down the transformation. Given the
limited technology readiness of large-scale electricity storage, difficulties to expand transmission grids
both between and within countries, as well as limited experience with market designs and regulations
that incentivize flexibility provision, system integration challenges are clearly one of the key challenges
for a fast low-carbon transformation of the power sector.
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The main three elements of technological development are: technology learning, especially learning
by doing, corporate investment in R&D and spillovers from research and development institutes.

The main aim of this article has been to project the pace at which RES technologies have diffused
in the past or may diffuse in the future across the power sector. Models have been built to evaluate
and describe the development of RES technology in the energy sector for PV and wind on the basis of
available scenarios, outlooks and roadmaps for Europe. Projection of the trend in the development of
energy generation technologies is needed especially for:

• economic and energy policy makers at all levels,
• investors, both those investing in new generation capacities in the power system and producers of

equipment for power generation units,
• energy industry planners, analysts and researchers in the development of the industry.

This paper provides an expository research concerning the problem of predicting the development
and diffusion of future energy generation technologies. The focus was on two promising technologies:
wind and PV sources.

According to IEA [44], in 2050 in Europe with above 450 GW capacity in wind power, it will be
possible to avoid emission of 462 Mt CO2 per year. The 4500 TWh generated by PV in 2050 is expected
to save 2.3 Gt of CO2 emissions on an annual basis worldwide, almost twice that was predicted in the
“BLUE Map scenario”. It corresponds to approximately 5% of the total avoided CO2 emissions (48 Gt)
from all technology areas projected in this scenario [45]. Wind power can generate a significant value
for the country’s economy through a supply chain investment and job creation. There is an increasing
recognition of the ability of wind energy, along with other RES, to help spur innovation and thus a
stable, long-term economic growth [46]. It is estimated that in the solar PV sector, in 2020, the total jobs
per year factor (full-time equivalent) will reach 136,096 and Gross Value Added (GVA) per year will
reach 6671 M EUR in EU28 [47].

The data in Table 1 are from three different sources: [41,44,48]. It can be noticed that while the
results for both IEA sources are quite similar, they clearly differ from the IRENA ReMap scenario.
The reasons are that both IEA reports have been prepared by the same organisation within a year
time difference. Therefore, predicted electricity generation for wind energy is very similar in the both
report—over 5000 TWh onshore and over 2000 TWh offshore. The predictions differ in case of the solar
PV generation—6400 TWh and 5100 TWh respectively. However, IRENA’s scenario says that wind
electricity generation will reach 18,000 TWh in 2050, which is over 10,000 TWh more than in the IEA’s
reports. It also contributes to higher percentage of global electricity generation—36% compared to
17.8%. It also exhibits a more optimistic approach towards solar PV—11,000 TWh generated which is
twice as much as in the IEA roadmaps.

Table 2 presents the data from the [41,48–51]. It can be noticed that the expected world solar PV
capacity in year 2030 is in the range 1200 GW—1721 GW based on the three different sources. What is
interesting, IEA predicted in 2014 higher value than BP forecasts in 2018. From the WEO 2016 it can be
read that the specific investment costs are twice higher for wind offshore technology (3000 USD/kW)
than for wind onshore (1500 USD/kW). WEO predicts lower PV capacity in year 2030 than other
considered scenarios, it also has lower investment cost for utility-scale solar modules—850 USD/kW.
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Table 1. World capacity, electricity generation and investment costs of solar PV and wind energy
globally in year 2050 (sources of data: [41,44,48]).

Criteria
Technology

Roadmap Solar
PV 2014 (IEA)

Technology
Roadmap Wind

2013 hiRen Scenario

IRENA ReMap
Scenario

Wind
onshore

Capacity [GW] 4924
Electricity

5600 5100generation [TWh]
% of global

14% 14%electricity generation

Wind
offshore

Capacity [GW] 521
Electricity

2400 2050generation [TWh]
% of global

0.06 0.065electricity generation

Wind total

Capacity [GW] 5445
Electricity

7150 18,000
generation [TWh]

% of global
18% 36%electricity generation

Solar PV

Capacity [GW] 4674
Electricity

6400 5100 11,000
generation [TWh]

% of global
16% 14% 22%electricity generation

Investment cost
(USD/kW)

Utility-scale 700
Rooftop 900

Table 2. World capacity, electricity generation and investment costs of solar PV and wind energy
globally in year 2030 (sources of data: [41,48–51]).

Criteria
Technology
Roadmap
Solar PV

2014 (IEA)

World
Energy

Outlook
2016

World Energy Outlook 2018 IRENA ReMap
Scenario BP Energy

Outlook
2018New Policies

Scenario
Current Policies

& Sust. Dev. Remap Ref.
Case

Wind Investment cost
[USD/kW] 1500Onshore

Wind
offshore

Investment cost
[USD/kW] 3000

Wind Capacity [GW] 1000 1250 1712

Total Electricity generation
[TWh] 3157 4355 8000

Solar
PV

Capacity [GW] 1721 1200 1589 2346 1500
Electricity

2214 2197 3268 4000generation [TWh]
% of global

0.08electricity generation
Module price [USD/W] 0.6
Investment

cost
[USD/kW]

Utility
1000 850-scale

Rooftop 1200
Cost per MWh of

building & operation
[USD/MWh]

55

4. Learning Curves

The values describing learninig curves in this section are calculated from the basic formula of
learning curve expressed by the Wright’s law:

Ct = C0

(
xt

x0

)b

(1)

where Ct—cost of a technology in time t, C0—initial cost (t = 0), xt, x0—cumulative production in time
t and initial (in time t = 0) respectively, b—empirically observed learning rate parameter.
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This empirical law has been observed in many industries and for a wide range of technologies [52].
The learning rate (LR) is the relative cost reduction from a doubling of cumulative production. It is
used for calculating b from (1):

LR = 1− 2b (2)

When applying one-parameter learning curves, the learning rate (LR) is a powerful factor
influencing the shape of it. Later, the learning curves for PV and wind generation technology have been
compared by using historical data and values calculated from (1) for various initial costs. Learning
rates are selected as mean values according to [53]: 23% for PV 12% for wind. The price history of
silicon PV cells and costs wind electricity are assumed according to [54,55].

4.1. PV Technology

It is crucial, which data are taken as the input to (Table 3). In the case where the initial cost was
taken as 40 USD (data from 1979), calculated values are much more similar to historical data than in
the case with 9 USD cost (data from 1992). The differences for better results are higher at the beginnig,
but for year 2004 it is already 1 USD, for 2011 it is 0.2 USD and for 2015, 0.3 USD. This means, that
learning curve forecasts are not ideal, but they are very similar to reality (assuming that there will not
be any unforseen disruptive innovations).

Table 3. Comparison of historical and calculated data for PV. Own work based on [54,55].

xt [MW]
Ct [USD/W]

Year
Historical C0 = 40 USD C0 = 9 USD

100 9 12.927 9 1992
900 7 5.645 3.93 2000

5,000 4 2.957 2.059 2004
60,000 1.4 1.159 0.807 2011

200,000 1.08 0.736 0.512 2015

The aproximated c-Si modules (solar PV technology) learning curve is shown in Figure 1.
It can be projected that in year 2020 the unit cost of c-Si module will be 0.466 USD/W; it will

decrease to 0.391 USD/W in 2030, then to 0.215 USD/W in 2040 and will finally reach the price of
0.202 USD/W in the middle of the 21st century. Of course, these forecasts did not predict any significant
innovations—the development was assumed to conduct smoothly.

Energies 2019, 12, x FOR PEER REVIEW 8 of 24 

 

𝐶 = 𝐶 𝑥𝑥  (1) 

where: 𝐶  —cost of a technology in time t, 𝐶  —initial cost (t= 0), 𝑥  , 𝑥  —cumulative production 
in time t and initial (in time t = 0) respectively, 𝑏 —empirically observed learning rate parameter. 

This empirical law has been observed in many industries and for a wide range of technologies 
[52]. The learning rate (LR) is the relative cost reduction from a doubling of cumulative production. 
It is used for calculating b from (1): 𝐿𝑅 = 1  2  (2) 

When applying one-parameter learning curves, the learning rate (LR) is a powerful factor 
influencing the shape of it. Later, the learning curves for PV and wind generation technology have 
been compared by using historical data and values calculated from (1) for various initial costs. 
Learning rates are selected as mean values according to [53]: 23% for PV 12% for wind. The price 
history of silicon PV cells and costs wind electricity are assumed according to [54,55].  

4.1. PV Technology 

It is crucial, which data are taken as the input to (Table 3). In the case where the initial cost was 
taken as 40 USD (data from 1979), calculated values are much more similar to historical data than in 
the case with 9 USD cost (data from 1992). The differences for better results are higher at the beginnig, 
but for year 2004 it is already 1 USD, for 2011 it is 0.2 USD and for 2015, 0.3 USD. This means, that 
learning curve forecasts are not ideal, but they are very similar to reality (assuming that there will 
not be any unforseen disruptive innovations). 

Table 3. Comparison of historical and calculated data for PV. Own work based on [54,55]. 

xt [MW] 
 Ct [USD/W]  

Year 
Historical  C0 = 40 USD C0 = 9 USD 

100 9 12.927 9 1992 
900 7 5.645 3.93 2000 

5,000 4 2.957 2.059 2004 
60,000 1.4 1.159 0.807 2011 

200,000 1.08 0.736 0.512 2015 

The aproximated c-Si modules (solar PV technology) learning curve is shown in Figure 1.  

 

Figure 1. PV learning curve calculated from (1). Figure 1. PV learning curve calculated from (1).

4.2. Wind Technology

The values used for generating the learning curve for wind technology represent the initial
levelized cost of wind power of 600 USD/MWh for 1985 and 200 USD/MWh for 1990. From Table 4
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it can be concluded that, similarly to the PV case, the data put into (1) have to be appropriately
selected. However, for the wind technology learning curve, the case where the initial levelized cost is
200 USD/MWh gives better fit to historical data than the earlier one. Except for the calculation made for
year 2009, where the difference is 37 USD, the remaining values differ only by a few dollars, while for
the previous example, the inaccuracy was more than 200 USD. Such errors (over 100%) cannot be taken
into consideration while forecasting the development of a technology. The chosen approximation is
also not ideal but it shows the general character of learning curves for wind technology. For wind
technology, the learning curve does not coincide so closely with the historical data as in the solar PV
learning curve, but the trend is basically preserved.

Table 4. Comparison of historical and calculated data for wind power. Own work based on [54,55].

xt [MW]
Ct [USD/MWh]

Year
Historical C0 = 600 USD C0 = 200 USD

1600 200 550 200 1990
6000 160 431 157 1995

10,000 150 392 143 1999
12,800 140 375 136 2000
100,000 130 257 93 2009
400,000 85 199 72 2014
450,000 80 194 71 2015

The final aproximated wind power learning curve is shown in Figure 2. Particular levelized costs
are presented in correspoding years. While in 2018, the levelized cost for wind power is 66 USD/MWh,
it can be projected that in 2 years this value will fall to 64 USD/MWh. In 2030 the values are not
significantly smaller—60 USD/MWh. However, because for the following years, huge investments
in the wind power sector are expected, the levelized cost in 2040 will only be 45 USD/MWh and it
will slightly decrease to 44 USD/MWh until year 2050. This scenario does not take into account some
possible major innovations in wind power technology—therefore the increase is smooth.
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xt [MW] 
 Ct [USD/MWh]  

Year 
Historical  C0 = 600 USD C0 = 200 USD 

1600 200 550 200 1990 
6000 160 431 157 1995 

10,000 150 392 143 1999 
12,800 140 375 136 2000 

100,000 130 257 93 2009 
400,000 85 199 72 2014 
450,000 80 194 71 2015 

 

Figure 2. Wind power learning curve calculated from (1). Figure 2. Wind power learning curve calculated from (1).

5. Logistic Functions for Diffusion Visualization

5.1. Problem Description

The number of the energy-economy models in use is large although only few are considered
reliable and are commonly accepted by researchers and their outcomes are helpful to decision makers.
This included for example the ADVANCE project models (REMIND and WITCH), PRIMES—the
model used, inter alia, for the Winter Package, the IEA’s World Energy Model (WEM), and the Shared
Socioeconomic Pathways (SSP) scenarios. The models differ so much that the comparison of their
outcomes may be ambiguous (Table 5).
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Table 5. Models and scenarios gaps and inconsistences limiting the analyzes for power sector [56].

Scenario/Roadmap Period Covered and Time
Interval Metrics Used Main Focus Region

WEM
2000, 2015–2040
5-year interval

Energy production in absolute values
(TWh/year) in PV and wind sources

Capacity in absolute values (GW) in PV and
wind sources

Data for wind—no distinction on off-
and onshore

Projection on development of energy
generation technologies (New Policies

Scenario, Current Policies and
Sustainable Development Scenario)

European Union
No 2020 data

REMIND
2005–2100 Energy production in absolute values (EJ/year)

in PV and wind sources
Capacity in absolute values (GW) in PV and

wind sources
Data for wind—no distinction on off-

and onshore

Projection on development of energy
generation technologies across 6 version

of scenarios

European Union
5-year interval

WITCH
2005–2100 Energy production in absolute values (EJ/year)

in PV and wind sources
Projection on development of energy

generation technologies across 6 version
of scenarios

World

5-year interval Capacity in absolute values (GW) in PV and
wind sources

PRIMES
2005–2100 Simulates EU’s energy supply system.

It evaluates the potential of new technologies
by considering four types of factors: dynamics,
economic optimality, endogenous technology
learning & maturity of technology and gradual
market diffusion which is influenced by costs

and risk perception

Projects energy demand and supply
balances distinctly for 45 energy
commodities and forms, e.g., PV

electricity, wind on- and off-shore
Produces EU Reference Scenario for the

Winter Package

EU-285-year interval

WindEurope’s 2030 Scenario Target for 2030 Wind capacity in GW in Europe and share of
wind in EU’s demand

Forecast of wind onshore source
potentiality according to 3 scenarios

(low, central, high)
European Union

European Wind Energy
Association (EWEA) Wind

Energy Scenarios up to 2030

2007–2030 1-year interval, Electricity production in TWh and installed
capacity in GW in wind (on- and off-shore)

Projection of wind installation on- and
off-shore in Europe EU-28targets for 2010, 2020, 2030

IRENA (International
Renewable Energy Agency)

REmap2030
2015–2030 5-year interval Cumulative PV capacity (GW) Projection of PV sources development World
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The Regionalized Model of Investments and Development (REMIND) model [57] was developed
as part of the Advanced Model Development and Validation for Improved Analysis of Costs and
Impacts of Mitigation Policies (ADVANCE) project. It was a project funded by the European Union’s
Seventh Framework Programme (FP7). The World Induced Technical Change Hybrid (WITCH)
model [58] is a dynamic model which combines the relations between technological, economic and
climate change issues, it was developed at the European Institute on Economics and Environment in
Milan, Italy.

Only REMIND and WITCH provide a wide range of available curves both for PV and wind
technologies up to 2100. The logistic curve model was used to approximate trends in capacity
installed or electricity generation till 2100. The presented curves for the both models refer to their
reference scenario versions. The other models cover the period up to 2050 mostly due to the lack of
reliable input data afterwards, e.g., political decision, technology perspective, reliable costs projections.
Therefore, for such a long-term modeling the logistic curve (S-shaped) seems to be most suitable one.
The S-shaped curve can be treated as an alternative to the conventional learning curve. In this one,
the slow initial improvements are followed by more rapid improvement rate, after which an eventual
leveling off occurs.

In the light of two models used in long-time modeling (REMIND V1.7 and WITCH 2016)
technology development trends for EU-28 were compared and based on absolute values (energy
generation and installed capacity) and their relative values calculated (the share of capacity and the
share of energy generation).

The share of the installed capacity is the quotient of installed capacity in specific technology to
the total installed capacity. The share in the total energy generation is a quotient of net electricity
production from specific technology to the total net electricity production. Such factors:

• illustrate the effect of the operation and the effectiveness of using the technology,
• enable comparison of the intensity of generation development between technologies,
• allow to observe the trend of the technology options in the balance of energy production,
• allow to assess the significance of the technology in covering energy production,
• allow to evaluate the success in meeting the assumed share of the RES-target.

The selected S-shaped logistic curve is expressed by the following formula:

f (t) =
L

1 + e−k(t−to)
(3)

where: L—saturation level, k—steepness of the curve, to—curve midpoint.
In order to fit time series to the best-fitting logistic function, Matlab® file exchange fit_logistic

version 1.9.0.0 has been modified to obtain a set of function parameters. Subsequent tables show
the parameters of the estimating curve (L, k, to) and the correlation coefficient (the Pearson factor) r
between row data and estimation by the logistic curve.

The Pearson correlation factor r between approximation (logistic function) fit and data from
scenarios, allows to assess matching of the value to the estimated function, according to the
Guilford classification:

|r| = 1 full classification,
0.9 < |r| < 1 almost full,
0.7< |r| ≤ 0.9 very high,
0.5 < |r| ≤ 0.7 high,
0.3 < |r| ≤ 0.5 mediocre,
0.1 < |r| ≤ 0.3 weak,
|r| ≤ 0.1 dim.
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Hence, if |r| < 0.9, the logistic function is not a proper model for estimation of technology market
penetration dynamics.

5.2. Technology Development Shown by S-Shaped Logistic Curves for Europe (EU-28) According to the
Reference Scenarios of Remind and Witch Models

5.2.1. PV Technology

Europe’s PV technology development based on capacity is shown by the S-shaped curve with
quite a stable beginning followed by a rapid growth. The capacity reached in 2100 predicted by
REMIND is 4.9 TW while by WITCH is 1.6 TW. While Europe’s PV capacity looks like it is uniformly
rising and being still in the maturity level in year 2100, its share in total Europe’s installed capacity is
reaching the saturation level already in about 2070 (about 74%—REMIND or 17%—WITCH) (Table 6).
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The Europe’s PV energy generation will increase significantly until the year 2100—to about
20 EJ/yr (REMIND) or 8.5 EJ/yr (WITCH) which will contribute to over 58% (REMIND) or 17% (WITCH)
of overall generated energy (Table 7).
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Table 6. Parameters calculated for the S-shaped PV curves (Figures 3 and 4).

Criteria Remind Witch

Capacity [GW] L k t0 r L k t0 r
5525 0.06 2065 0.99 2,418 0.041 2085 0.997

Share [%] L k t0 r L k t0 r
73 0.11 2028 0.99 17.7 0.105 2020 0.969
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Table 7. Parameters calculated for the S-shaped curves (Figures 5 and 6).

Criteria Remind Witch

Energy generation
[EJ/yr]

L k t0 r L k t0 r
21.9 0.0573 2059 0.99 13.09 0.042 2082 0.997

Share [%] L k t0 r L k t0 r
58.1 0.0795 2038 0.99 17.78 0.063 2036 0.983
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5.2.2. Wind Technology

The REMIND model predicts Europe’s continuous expansion of wind capacity to the level of
above 1.1 TW by 2100, and according to WITCH, it will increase to above 2.7 TW which will contribute
to almost 20% and 30% of the whole installed capacity, respectively (Table 8).
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Table 8. Parameters calculated for the S-shaped wind technology curves (Figures 7 and 8).

Criteria Remind Witch

Capacity [GW] L k t0 r L k t0 r
1207.4 0.053 2051 0.996 1,377,400 0.025 2349 0.993

Share [%] L k t0 r L k t0 r
20 0.334 2009 0.972 29.5 0.248 2013 0.971

European development of wind power technology based on energy generation is represented by
a curve similar to a linear one—the increase is very uniform. About 11 EJ (REMIND) or 28 EJ (WITCH)
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of energy will be generated in 2100. The wind technology development in Europe is similar to that of
PV technology—the energy generation is still rising in year 2100, while the saturation level has already
been reached in 2070 (about 30%—REMIND, 50%—WITCH) (Table 9).
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5.2.3. Wind and PV—Comparison with Other Reference Scenarios

Figures 11–14 show the point data from the reference scenarios for the two models discussed
above against the two other models, namely WEM (World Energy Outlook 2017) and PRIMES ver. 4
Energy Model, with approximation to the S-curve formula (3) in the time domain.
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The development of solar PV technology in Europe clearly differs depending on a program
from which the input data have been taken. The highest values of installed capacity share in Europe
come from the REMIND model. The constant increase, reaching about 23% in year 2020, then 44%
in 2030, 57% in 2040 and 62% in 2050. The shares keep increasing even further, which could lead to
the conclusion, that Europe’s energy system will be completely dominated by this source of energy.
However, the remaining programs do not predict such a huge development. According to PRIMES,
in year 2050 the PV share is going to be 20% and it remains stable. The WEM and WITCH model curves
are very similar and basically overlap each other since year 2040. According to them, in year 2050 the
capacity share of solar PV in Europe’s energy system is going to be 16%. The S-shape is less visible for
these two programs, although the blue and purple curves representing PRIMES and REMIND data,
follow the characteristic S-shape (Figure 11).

The development of solar PV technology described by energy production is similar to the one
presented by cumulative capacity. The REMIND model again is the most optimistic—the EU share of
PV energy production reaches 42% of global and grows up to 60% in 2100. It is interesting, because
the installed capacity for this technology is expected to be over 70% for that period—therefore, these
two factors are not exactly interdependent. According to WITCH, PV share in Europe is going to be
13% in 2050 and 18% in 2100. For energy generation the forecast of PRIMES is worse that WITCH’s
(in comparison to the curves generated for capacity). In 2050 the PV share is only 11% in this scenario,
while for WEM it is even lower (Figure 12).

The comparison of S-shaped curves representing the share of installed capacity in Europe for
WEM, PRIMES, WITCH and REMIND programs shows that the scenarios do not differ significantly
in case of wind power (Figure 13). The REMIND model predicts the lowest development of this
technology—the Europe’s wind power share is slowly increasing to 20% until year 2030, but later it
slightly decreases. It can be caused by the development of other technologies, however until year 2050
the tendency is rather upward. PRIMES is a little bit more optimistic—the share of wind rises to 26%
in year 2050, and then it remains stable. The WITCH program shows a considerable increase of wind
share to 28% in 2020, then it remains stable. The best reference scenario comes from WEM—wind
energy shares continuously grow until year 2080, when they reach 32%, which is the highest value
from all included scenarios. In the case of wind energy, the S-shape can be hardly seen and is only
present on the orange curve describing data from WEM.

The distribution of curves showing the shares of wind energy production in Europe clearly differs
from the ones for capacity. The most optimistic scenario is created by WITCH in this case. This program
predicts that in year 2050 the Europe’s share in energy production coming from wind technology
is going to be 43% and this number is going to rise up to 55% in 2100. Much lower values appear
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according to REMIND, where in 2050 the share is nearly 30%, but is going to keep rising. The WEM
scenario shows a bit steeper shape of the logistic curve, so even though the data end on year 2040,
from the S-shape behaviour, we can assume that in year 2050 this curve would be higher than the
REMIND one. It is surprising that the WEM scenario is the best in case of capacity, while in the energy
production model the values are not that high. The lowest wind share based on energy production
is represented by PRIMES—it reaches 24% in 2050 and based on a shape remains quite stable in the
following years (Figure 14).

6. Discussion

Since solar PV and wind are the most promising technologies (together they are expected to
produce more than 80% of global energy in some scenarios till 2100), this paper has been focused on the
two technologies only. The comparison of data collected from different sources shows that the projected
values of capacity, electricity generation and cost of PV and wind technologies can significantly differ
across various sources as well as various scenarios. However, there exists one dependency—the more
recent scenario, the higher values of capacity and electricity generation are expected in the future.

The learning curves created for PV show very high convergence between historical data and
calculated values. The unit cost of c-Si modules is expected to decrease significantly during the
following years, reaching values lower than 1 USD/W. If the cumulative global capacity in 2050 will
be as projected—6200 GW, the price should decrease even to 0.2 USD/W (compared to 0.54 USD/W
today). The learning curves representing wind power development do not cover historical data as
ideally as in the case of PV, however they stay close to these values, so they can serve as the appropriate
mapping of the situation. The levelized cost of wind technology in 2050 will be 44 USD/MWh, while
the cumulative capacity reaches 5940 GW worldwide (compared to 66 USD/MWh in 2018). In the
paper [59] the review of different learning curves has been made and the meta-analysis of LR for
wind power technology. The result of this study is that the presence of learning spillovers due to
geographical domain of learning, influences LR to a large extent. Another conclusion made by them
is that integrating additional factors like R&D lowers the LR in comparison to the studies based on
single-factor curves.

The second way of long-term energy modeling is the S-shaped logistic curve. Worldwide, both PV
and wind power are in the maturity level which means that this technology has already significantly
developed but still some improvement can be made as the saturation point has not been reached yet.
The logistic curves for Europe behave similarly for PV and wind technologies—they both reach the
saturation level in case of share, but taking into consideration only capacity or electricity generation,
they are still in the maturity stage. According to analyzed scenarios, the shares in both the total
installed capacity in EU-28 and in energy generation will be stabilizing since around 2060–2070 in
case of PV and around 2040–2050 in the case of wind, but with a quantitative increase in capacity and
energy generation for both technologies still being observed.

There is a qualitative convergence of most scenarios concerning the saturation targets (after 2050)
for the share of PV technology capacity (EU-28) at around 20% (between 1.5 TW and 3 TW by volume)
and wind at around 30% (between 1 TW and 4 TW by volume). There is a significant discrepancy in
the case of the REMIND model which provides for a share of more than 70% of PV technology capacity
(up to 8 TW in volume).

The share of energy generation in the EU-28 reaches saturation for PV at up to 20%, and only the
REMIND model predicts a level of up to 60%. In the case of wind technologies, the scenarios project
saturation in the range of 20–34%, only the WITCH model predicts a level of up to 50%. It is noted that
with regard to model outcomes in terms of energy production and available capacity of PV and wind
technology in Europe, the WITCH scenarios overestimate wind energy in comparison to other models,
while the REMIND scenarios overestimate PV.

IRENA [41] predicts that by 2050, all countries can substantially increase the proportion of RES
energy in their total final energy consumption (TFEC), for example in the EU, the share could grow
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from about 17% to over 70%. However, since a technology change is assumed to be endogenous in
many models, the modeling results should not be treated as unequivocal because there are many
factors influencing the development. There are also aspects which are difficult to predict, like some
breakthrough events, new policies or natural resources shortages. Another issue is the fact that some
factors can influence each other, for example prices and demand are interdependent, and sometimes it
can be difficult to judge which one was the cause and which the result. Fortunately, energy models try
to take into account such relations and for now the ones based on learning curves may be treated as
those producing the very reliable results.

The logistic function turns out to be a useful model used in scenarios predicting the diffusion of PV
and wind technologies over time. This is proved by the high matching ratios (Pearson factor r > 0.9) of
the selected logistic curve approximating the numerical data from the analyzed scenarios. The models
used in the analyzed scenarios are therefore similar, differences in numerical results (different target
values for the share of PV and wind in European energy mix) may result from a different assessment of
the expected effects of energy policy measures. It is natural that the standard deviations of the scenario
versions increase with the prediction horizon as they illustrate the target differences in the effects of the
implementation of the various policies affecting the energy sector. It is characteristic that each version
of the scenarios, also assuming no political stimulation, foresees a significant development of both
wind and PV generation technologies in Europe and worldwide.

Divergences between the versions of scenario increase with the length of the projection period,
illustrating the impact of the chosen policy on the effect of increasing the use of RES. In scenarios
with quantitative numerical data results, a clear division of wind generation technologies into on-
and off-shore technologies is often lacking. It would be interesting to model the development of PV
technologies, divided into commercial—large-scale and prosumer-installations in buildings.

Scenarios predict a steadily growing trend (for PV and wind) technologies in both installed
capacity and quantitative energy generation in Europe. This is due to the expected continuous increase
in clean energy demand in Europe. On the basis of the data from the analyzed reference scenario
models, the shares of the both technologies capacity and generation in the EU-28 are expected to
stabilize (close to saturation), which will take place no earlier than in 2040. It will happen despite the
continuous increase in the amount of both capacity and energy production for the both technologies,
modeled also by a logistic function.

The analysis shows sensitivity of the curves to initial cost data. It is obvious that decreasing specific
price and increasing prevalence of technology are correlated which can be quantitatively modeled by
means of learning curves. However, the models discussed in the literature have limitations. Policies
can stimulate and accelerate the natural development and availability of technology by indirectly
influencing the costs. It has an impact on the time at which a technology can achieve the adequate
market saturation. It is clearly projected by the S-shaped curves.

7. Conclusions

Large-scale energy-economy models give us a basic understanding of the role that wind and
solar can play for power sector decarbonization, but future, highly detailed analyzes with an explicitly
dynamic approach are necessary to understand the timing issues and coordination needs of managing
the transformation towards a power system with high levels of variable renewables, e.g., wind or solar
PV. The expected increase of interactions between the different energy system sectors, e.g., power, heat,
gas, and end-use sectors, has not been sufficiently analyzed in previous EU-scale scenarios, and thus
needs detailed explorations to inform policy-makers and stakeholders about expected synergies and
possible obstacles.

Learning curves are global, as the market for new technologies is global, while logistic curves of
technology development relate to a selected area. Learning curves operate on complex econometric
models and assumptions based on the most reliable data available. According to the model results,
logistic S-sharped curves visualize well the spread of technology over time. Their accuracy depends
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on many factors, among others, on ambition of decarbonization policy, emerging of breakthrough
technologies, energy prices and industrial strategies.

Key results of the analysis are new insights into the plausibility of future deployment scenarios
in different sectors, informed by the analysis of historical dynamics of technology diffusion, using to
the extent possible consistent metrics. For example, the results can be used in cost benefit analysis
of policies and assessment of the dynamics of key technologies over time in energy-climate national
energy plans.

The main limitations of the one-factor experience curve application can be divided into two
categories: theoretical concept and empirical data. The learning models used for energy technology
analysis have key practical and conceptual limitations since they are used for projection but use the
historical data. Therefore, they are based on the main rules and characteristics of the past progress of
technology. Such approach may be doubtful as some technologies, especially the emerging ones, e.g.,
PV or wind, evolve typically through several development stages. Therefore, from theoretical point of
view, their development is likely to differ from the past progress.

Even though two-factor learning curves are considered to give more precise results, their use is
possible only when specific data are available what in the majority of cases does not happen. In many
two-factor models in the literature the data are in the form of short time-series.

This article, based on the classical approach, presents learning curves of PV and wind technology,
showing possible relations of specific cost (available power and energy respectively) to cumulated
capacity. The study has been based on selected data only and does not discuss a full spectrum of
possible variations of input variables. It does not also deepen the uncertainties related to unpredictable
change of different factors which did not occur in the past and may happen in the future.

The diffusion models presented fall into the category of exogenous models, whereas in reality
the technological change is not an exogenous process. It leads to taking autonomous assumptions
of cost reduction in time or capacity/efficiency improvement. In this respect, endogenous models
perform better since they take into account additional factors like policies, market and price conditions,
regulations, economies of unit scale and manufacturing scale, environmental issues, learning through
R&D or public expectations.

Fundamentally, there are two opposing forces influencing the deployment of wind and solar in
scenarios: on the one side the evolution of capital costs, and on the other side integration challenges.
Energy-economy models calculate scenarios of energy use and technology deployment based on
techno-economic parameters, most importantly capital costs, operation & maintenance costs, efficiencies,
capacity factors, and lifetimes. In principle, these techno-economic parameters can be easily extracted
from engineering studies and reports about costs from existing power plants. Modelers have decades
of experience of representing power plants in their models, and for mature technologies like coal or gas
power plants, costs and efficiencies are relatively stable. Thus, the 3–9 years time lag between prices
observed in real markets and the prices represented in published scenarios (1–3 years until technical
reports make the market prices available for modelers, 1–3 years for modelers to update the numbers
in their models, 1–3 years until the scenarios are finalized and published) did not matter much in
earlier times [56].

However, for newly evolving technologies like wind and solar power, the fast technological
learning poses a challenge for modeling: PV prices have dropped by more than 80% over a decade,
thus cost assumptions in large-scale models can substantially lag behind the real cost evolution.

Even more challenging is the future evolution of technology costs. For PV and wind, the concept
of learning-by-doing costs reduce by a certain factor for each doubling of installed capacity—seems to
describe past cost evolution relatively well and is thus often applied for future costs. Many IAMs and
energy-economy-models assume exogenous price evolutions based on simple extrapolation of past
deployment. However, many countries have implemented very strong support policies for renewable
energies, thereby increasing deployment much beyond a simple extrapolation of past deployment,
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which leads to strong cost reductions that by far outstripped the cost reductions expected in the
scenarios [56].

In the future the analysis of the dynamics of technologies in modeling, roadmaps and scenarios
may focus on a consistent multifactor analysis of the main parameters of the dynamics (pace of
diffusion and extent of diffusion in particular markets). Also, analysis of other main regions for world’s
energy future, e.g., China, the US or India, should be researched. Diffusion models can be extended to
two-parameter models to better learn the driving forces of technology development if only suitable
data are available. A change of methodology, e.g., to regression functions for long-term modeling,
seems also attractive.
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