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Abstract: Online accurate estimation of remaining useful life (RUL) of lithium-ion batteries is a
necessary feature of any smart battery management system (BMS). In this paper, a novel partial
discharge data (PDD)-based support vector machine (SVM) model is proposed for RUL prediction.
The proposed algorithm extracts the critical features from the voltage and temperature of PDD to
train the SVM models. The classification and regression attributes of SVM are utilized to classify
and predict accurate RUL. The different ranges of PDD were analyzed to find the optimal range for
training the SVM model. The SVM model trained with optimal PDD features classifies the RUL into
six different classes for gross estimation, and the support vector regression is used to estimate the
accurate value of the last class. The classification and predictive performance of SVM model trained
using the full discharge data and PDD are compared for publicly available data. Results show that
the SVM classification and regression model trained with PDD features can accurately predict the
RUL with low storage pressure on BMS. The PDD-based SVM model can be utilized for online RUL
estimation in electric vehicles.

Keywords: battery management system (BMS); remaining useful life (RUL); support vector machine
(SVM); partial discharge data (PDD); classification

1. Introduction

With the ongoing increase in oil prices and environmental pollution, different types of electric
vehicles (EVs) are becoming a secondary source of transportation [1]. The EVs are expected to penetrate
the present transportation market, and around 100 million EVs are expected to be on-road by the end
of 2050 [2]. The energy storage system (ESS) and motors are the main parts of EVs. Due to their high
energy density, long lifetime, low weight, and low self-discharge rate, lithium-ion batteries are currently
considered as an optimal choice for the ESS of EVs and smart grids [3–5]. A smart battery management
system (BMS) is necessary to ensure a safe and reliable function under rough conditions [6,7]. The
accurate online estimation of the state of health (SOH), remaining useful life (RUL), and state of charge
(SOC) of the battery are essential parts of a smart BMS. The SOH specifies the time to replace battery
packs [8], RUL shows the remaining number of cycles within satisfactory performance [9], and SOC
indicates the remaining available charge of the battery [10,11]. There are several of techniques reported
in the literature to estimate the SOC of the battery [12,13]. The accurate SOH estimation of battery is
important to avoid over-charge/over-discharge condition.
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Numerous studies have been reported in the literature to estimate the SOH and RUL of lithium-ion
batteries [14], which can be categorized into four distinct methods: (i) direct measurement methods; (ii)
model-based methods; (iii) data-driven methods, and (iv) hybrid methods. In the direct measurement
methods, the SOH of the battery is estimated by utilizing a lookup table that defines the relationship
between the open-circuit voltage/internal resistance and SOH of the battery [15]. The relationship
between internal resistance and temperature is required to be established for SOH estimation [16,17].
These methods are quite simple to implement but they require a rigorous testing and highly accurate
measurement instruments to estimate the SOH.

Model-based methods are most widely studied techniques for estimation of the battery state [18]. In
model-based methods, the adaptive filters and adaptive observers are mostly employed for estimation
of lithium-ion batteries states. Adaptive filters consist of Kalman filter family [19], particle filters [20,21],
and H infinity filters. In a study [22], the Kalman filter and unscented Kalman filter were utilized
to estimate the SOC and SOH of the battery. The genetic algorithm was also used to determine the
parameters of an electric circuit model [23]. Results showed that their proposed technique determines
the battery degradation with high accuracy. Kim et al. [24] utilized a dual-sliding-mode observer to
check the behaviors of resistance and capacity degradation in real-time. The model-based methods are
highly accurate for real-time applications, but these methods have very high complexity.

The data-driven models are empirical or semiempirical models that are created using routinely
gathered data. These models were constructed by utilizing the probabilistic, statistical, and machine
learning-based approaches. These methods did not require any information regarding the complex
electrochemical operation of the battery, but they required plenty of experimental data for training.
Data-driven methods such as neural network [25], Bayesian network [26], relevance vector machine [27],
Gaussian process regression [27], autoregressive moving average [28], and support vector machines [9]
are extensively employed to estimate the RUL of the lithium-ion battery. Tang et al. [29] proposed a
Brownian motion-based RUL predictor. They utilized the truncated normal distribution to estimate
the exact and closed-form of RUL distribution; the maximum likelihood estimation method was used
to improve the estimation accuracy. In another study [30], fractional Brownian motion a variant
of Brownian motion was utilized to estimate the exact value of RUL. In [31], the neural network
was trained to estimate the RUL by utilizing the features of the terminal voltage of the battery.
Although, their proposed model shows high accuracy but it requires a large amount of data for training.
Selina et al. [26] trained the naive Bayes model to predict the RUL of the lithium-ion battery. Like a
neural network, the accuracy of the Bayes model mainly depends upon the volume of training data. To
overcome this issue, the support vector machine (SVM)/support vector regression (SVR) methods are
applied to estimate the RUL. Comparatively, SVM/SVR utilized less amount of training data samples.
This method converts the low dimensional space nonlinear into a high dimensional space linear
problem. In [32], resistance and capacity were considered to estimate the SOH of the battery, and the
SVM model was trained to determine the terminal voltage of the lithium-ion battery. Recently, Zhao et
al. [9] used the time intervals of an equal charging and discharging voltage differences as a feature to
train the SVR model. The features extracted from partial voltage charging data was utilized for the
training of the SVM model to predict the SOH [33]. Patil et al. [34] classified the battery RUL into four
different classes, and they trained a regression model to measure the exact value of RUL for the last
class. They utilized complete data of discharging for extraction of the features that required a large
amount of data to build and train the SVM model. As the size of training data sets increase, the number
of support vectors also increase linearly, which means that it requires more time for training as well as
for prediction. Beside it, in real time the battery is not likely to fully discharged during every cycle.

In this paper, two real-time measurable battery parameters of the partial discharging data
(PDD) were analyzed, one is partial discharge voltage (PDV) data, and the other is partial discharge
temperature (PDT) data. The SVM model was trained using different ranges of PDV and PDT. The
optimum range of PDD was determined after the comprehensive training and testing of SVM. The
proposed methodology classified the RUL into six different classes, and the regression model was
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only applied to train the last class (i.e., sixth class). The classification before the regression step
eliminates the need to perform regression across the complete battery life cycle data, which results in
less computational complexity. The different lithium-ion battery was tested to validate the classification
and prediction accuracy of the proposed algorithm.

2. Remaining Useful Life (RUL)

In this work, the RUL of a lithium-ion battery expressed in terms of its capacity, it can be written
as:

RUL =
Cbattery −CEOL

Cnominal −CEOL
× 100%, (1)

where Cbattery, Cnominal, and CEOL denotes the present capacity, nominal capacity, and end-of-life capacity
of the lithium-ion battery, respectively. The online measurement of the capacity of lithium-ion batteries
is not a simple task because it cannot be measured directly using any sensor [33]. The most accurate
and commonly used method is the offline discharge test. In this method, the battery is discharged at
some certain constant conditions such as temperature and discharge current. This method cannot be
employed for online prediction, and it is also very time-consuming. For the online measurement of
RUL, the online extraction of features from battery data is very pivotal. The selected features should
show good variation against battery capacity for accurate RUL prediction.

In this work, publicly available battery cycling data is utilized (provided by the Prognostics Center
of Excellence at the NASA Ames Research Center, Washington, DC, USA) [35]. The cyclic battery data
contains battery voltage, battery current, load voltage, load current, time, battery capacity, and battery
temperature values. The specifications and operating conditions of the battery data used in this work
are listed in Table 1.

Table 1. Specifications and operating conditions of batteries [35].

Battery
Type

Battery Positive
Electrode
Material

Battery
Number

Battery
Capacity
(mAh)

Battery Discharge
Ending Voltage (V)

Battery
Discharge

Current (A)

Operating
Temperature

(◦C)

No. of
Cycles

18,650
Lithium-ion

battery

LiNi0.8Co0.15
Al0.05O2

B0005

2000

2.7 2 24 168
B0006 2.5 2 24 168
B0036 2.7 2 24 197
B0056 2.7 2 4 102

The parameters of the battery vary with the increase of the cycle number. Figure 1a,b show some
of the battery discharging parameters profile of B0005 lithium-ion battery.
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Figure 1. Discharging data profiles at different battery cycles: (a) Terminal voltage; (b) Battery temperature.

Figure 1a,b show the profiles of the discharging voltage and temperature of the lithium-ion
battery. It is evident from Figure 1 that the battery degradation has a direct relation with these battery
parameters. The battery temperature increased rapidly as the cycle number increases. This employs
that the relation between RUL and variation of these discharging parameters can be established for
prediction of RUL, which is also discussed in [34].

In this work, the novel RUL prediction approach has been proposed based upon PDV and its
corresponding PDT data. The partial data region of the discharging voltage curve selected in a way
that every discharge cycle number should reflect in that region. Figure 2a,b show the discharging
voltage data of two different regions (3.75–3.5) and (3.1–2.85).

The selection of a voltage region is a very important part, because if the regions do not reflect
every cycle data in it, then it will be difficult to estimate the correct value of RUL. The range of the
region should be chosen optimally so that the data storage size should be reduced without affecting its
prediction accuracy.
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Figure 2. Discharging terminal voltage profiles at different battery cycles: (a) Voltage Region 3.75–3.5
V; (b) Voltage Region 3.1–2.85 V.

3. Classification and Regression Using Support Vector Machine

3.1. Support Vector Machine

This section briefly explains the fundamental idea of SVM to solve classification and regression
problems [36,37]. In classification mode, the SVM supervised classifier that can describe several
classes (two or more) by calculating the maximum class separation (the so-called maximum margin
hyperplane). In this algorithm, the highly nonlinear input data mapped into a high dimensional feature
space. It tries to increase the distance between the hyperplanes and the nearest training data point, also
known as support vectors (SVs). For simplification purposes, the algorithm is presented here is for a case
of a binary classification problem. The splitting hyperplane for data set S =

(
x j, y j; j = 1, 2, 3, . . . , m

)
is given by the following equation, where x j ∈ Rm is the input and y j ∈ (−1,+1) are class labels:

y(x) = rT
·ϕ(x) + b = 0, (2)

where ϕ(·) : Rm
→ Rmh , which maps the input vector to high dimensional feature space, rT is the

weight of ϕ(x), and b is the deviation. To find the optimum solution for this problem, the distance
between training data points and hyperplane can increase by minimizing the following cost function:

min
r,b,ξ

J(r, ξ) =
1
2

rTr + c
m∑

j=1

ξ j (3)

subject to:
y j

[
rT.ϕ

(
x j

)
+ b

]
≥ 1− ξ j

ξ j ≥ 0, j = 1, 2, 3, . . . , m

, (4)

where c and ξ j are the user-defined positive regularization value and measure of misclassification
training error, respectively. Equation (3) is the trade-off between maximum boundary margin and the
misclassification error. The Lagrange multiplier method can be utilized to solve this optimization
problem:

J(r, b, ξ,α,θ) = J(r, ξ) −
m∑

j=1

α j
(
y j

[
rT.ϕ

(
x j

)
+ b

]
− 1 + ξ j

)
−

m∑
j=1

θ jξ j, (5)
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where α and θ are the Lagrange multiplier, the values of α and θ are not equal to zero for small subset
of input vectors, these small subsets are also known as SVs.

The SVR algorithm can be utilized for a regression problem, where the main goal is to find an
optimal function:

y(x) = rT.ϕ(x) + b. (6)

The main work of SVR is to obtain a function that has the maximum deviation between the
function y(x) and training set with less than the defined value ε. The resultant cost function can be
written as:

min
r,b,ξ

J(r, ξ) =
1
2

rTr + c
m∑

j=1

ξ j (7)

subject to:
y j −

[
rT.ϕ

(
x j

)
+ b

]
≤ ε+ ξ j

ξ j ≥ 0, j = 1, 2, 3, . . . , m

. (8)

Again, the Lagrange multiplier method can be introduced to resolve this optimization problem:

J(r, b, ξ,α,θ) = J(r, ξ) −
m∑

j=1

α j
([

rT.ϕ
(
x j

)
+ b

]
+ ε+ ξ j − y j

)
−

m∑
j=1

θ jξ j. (9)

The solution of the above problem can be written in the following form:

y(x) =
m∑

j=1

α jK
(
x, x j

)
+ b, (10)

where K
(
x, x j

)
is the kernel function. Some commonly used kernel functions are linear, polynomial,

radial basis function (RBF), and multi-layer perceptron (MLP) [36,37]. In [38], SVM presented in
more detail.

3.2. Extraction of Features from Battery Discharge Data

Generally, the modeling of SVM consists of following five-step; first is the extraction of critical
features, the second one is the processing of data, third is the selection of optimum values of SVM
parameters, fourth is the training of the model (Training), and last is the data estimation (Testing). The
detail of the lithium-ion battery used in this work is listed in Table 1.

The feature selection is the most important part of the accurate estimation of any data using SVM.
The selected features of discharge data should reflect variations for different cycles of the lithium-ion
battery. Wang et al. [39] presented the cycle life model of the lithium-ion battery, which can be
written as:

Qloss = B. exp
(
−Ea
RT

)
(Ah)z

ln(Qloss) = ln(B) +
(
−Ea
RT

)
+ z. ln(Ah)

, (11)

where R, T, B, Ea, Ah, z, and Qloss denotes the gas constant, absolute battery temperature, pre-exponential
factor, activation energy, different C rates during discharging, power-law factor, and capacity loss. So, the
different features can be extracted from the discharging data to correlate with the capacity degradation.
In this study, the extracted features are energy of the discharge voltage and its corresponding
temperature signals (Es), capacity (Ah), logarithmic band power of voltage and temperature signals
(LPs), and means of voltage and temperature signals (µs). The values of these features can be extracted
by using given equations [33,34,40]:

Es =

∫
∞

−∞

∣∣∣x(t)∣∣∣2dt, (12)
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Ah =

∫ t2

t1

Idt, (13)

LPs = log
(
P f

)
, (14)

µs =
1
N

n∑
i=1

x(i), (15)

where x(t), I, P f , and x(i) represents the signal at time t, discharge current value, power of the signal,
and data values, respectively. The energy of voltage and temperature signals are denoted by (Esv) and
(Est). LPsv and LPst denoted the logarithmic band power of voltage and temperature signal. The means
of voltage and temperature denoted by µsv and µst, respectively. These features of full discharge data
and PDD are shown in Figure 3.
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Figure 3. Extracted features of lithium-ion battery (B0005) discharge data: (a) Esv of full discharge data
and PDD; (b) Est of full discharge data and PDD; (c) LPsv of full discharge data and PDD; (d) LPst of
full discharge data and PDD; (e) µsv of full discharge data and PDD; (f) µst of full discharge data and
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Figure 3a,b show the energies of voltage and temperature signals. It is evident from these figures
that the energy of the signals decreases with the increase of cycle number. The energies of PDV and PDT
for two different regions (3.75–3.5 and 3.1–2.85) were also calculated to check their respective relation
with capacity degradation. The energies of PDD almost have similar relation as of full discharge
data. LPsv and LPst of the full discharge data and PDD are shown in Figure 3c,d. The responses of
µsv, µst, and Ah are shown in Figure 3e–g, respectively. It is clear that LPs and µs almost shown the
same behavior. Similarly, Esv, Est, and Ah also shown the same response with battery degradation.
After carefully analyzing the features, Esv and LPst features were selected to train the SVM model for
this work.

3.3. Classification and Regression Model for RUL Prediction

This section explains the design of the classification and regression model for RUL prediction. The
machine learning toolbox of MATLABTM (2019a, MathWorks, Natick, MA, USA) was used for training
and testing of the models. For the classification model, the total number of discharge cycles of each cell
are counted until it reaches its end of life. The total number of cycles were divided into 6 classes (Class
1–6). Like, battery 0005 and 0006 have a total of 168 discharge cycles, as listed in Table 1. Each class
of these two batteries contains 28 discharge cycles. Battery 0036 has 32 discharge cycles in the first
five classes and 37 cycles in the last class. Similarly, battery 0056 has 17 cycles in each class. The SVM
based classifier model was built by using RBF as a kernel. The grid search algorithm can be used for
optimal kernel parameters [33]. The regression model used for accurate prediction of RUL. The only
features of discharging data which belongs to Class 6 were used to train the regression model by using
regression the learner app of MATLABTM. The RBF kernel function showed the best accuracy to train
the regression model. The general flow chart of training and testing of regression and classification
models is shown in Figure 4.
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4. Results and Analysis

In this section, the performance accuracy of classification and regression models is investigated.
The discharging data of battery B0005 was thoroughly analyzed to find the optimum PDD. The 70%
(118 cycles of B0005) of the discharge data features were used to train the classification and regression
models and the remaining 30% (50 cycles of B0005) were utilized for testing purposes. To check the
effectiveness of the proposed methodology the results of both models (full discharge data model and
PDD data model) have been compared. In the end, three more battery cells namely B0006, B0036, and
B0056 were utilized to validate the proposed technique.

4.1. Remaining Useful Life Prediction Using Full Discharge Data

The discharging data of B0005 was used to train the classification and regression models as
discussed in Section 3.3. The 70% features of full discharge data were used to train the model, the
noted training accuracy of classification model was 94.60%.

The model was tested by using remaining features of full discharge data. The classification results
of RUL classifier are listed in Table 2, where the diagonal values are correctly classified classes. The
results reveal that the full discharge data trained model classifies the testing data with 94.11% accuracy.
All the test samples which belong to Class 6 are correctly classified. The other 70% samples of Class 6
(18) were utilized to training the regression model for accurate RUL prediction. The results of RUL
prediction presented in Figure 5.
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Table 2. Test results of RUL classification model using full discharge data features.

Classified as

Class No. Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 7 - 1 - - -
Class 2 1 6 - - - -
Class 3 - - 9 1 - -
Class 4 - - - 7 - -
Class 5 - - - - 9 -
Class 6 - - - - - 10
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The results reveal that the RUL prediction RMSE of the test data is 0.1929%.

4.2. Remaining Useful Life Prediction Using Partial Discharge Data

The classification and regression model were trained by using different range of PDD. The training
accuracy and error results of both the models are listed in Table 3.

Table 3. Performance of classification and regression models under different PDD range.

Range of
Discharge Data

(V)

Classification Regression Model

Training Accuracy Root Mean Square
Error (RMSE)

Mean Average
Error (MAE)

Mean Square
Error (MSE)

4.2–3.9 71.40% 0.19607 0.14638 0.039031
4.2–3.7 81.50% 0.21118 0.16373 0.042453
4.0–3.5 91.10% 0.16607 0.14091 0.034821
4.0–3.75 87.50% 0.1789 0.14123 0.034012
3.75–3.5 93.50% 0.14195 0.10699 0.02145
3.6–3.5 86.30% 0.16218 0.12876 0.028954
3.6–3.3 87.50% 0.17678 0.13085 0.031245
3.5–3.3 77.40% 0.16191 0.12016 0.027865
3.4–3.2 85.70% 0.16867 0.13084 0.029756
3.3–3.1 82.10% 0.21805 0.16672 0.046891
3.2–3.0 85.70% 0.20317 0.14746 0.039856
3.1–2.9 81.50% 0.17385 0.14947 0.034958
3–2.6 76.80% 0.15124 0.11542 0.024658
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It is evident from Table 3 that the ranges of PDD have an impact on the accuracy of both training
models. The range 4.2–3.9 V shows only 71.40% accuracy for classification with 0.19607 RMSE in
regression model training. The PDD region between 4.0–3.5 V has 91.10% training accuracy for
classification model, its corresponding RMSE, MAE, and MSE for regression model training are 0.16607,
0.14091, and 0.034821, respectively. So, after carefully analyzing the results, it was found that the best
classification accuracy and low regression model error lies in the range of 3.75–3.5 V.

The PDD trained models of range 3.75–3.5 V were tested using the remaining samples (50). The
classification results of the classifier listed in Table 4.

Table 4. Test results of the RUL classification model using feature of PDD (range 3.75–3.5).

Class No.
Classified as

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 6 - - - - -
Class 2 1 8 - - - -
Class 3 - - 8 - - -
Class 4 - - 1 7 1 -
Class 5 - - - - 8 -
Class 6 - - - - 1 9

The classifier accurately classified the 46 samples out of 50 into their respective classes. The
10 samples of Class 6 were used to predict the estimated RUL. Figure 6 shows the accuracy of the
predicted RUL.
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The PDD models were also tested for B0006, B0036, and B0056 batteries. The results of classification
accuracy and RUL prediction error are summed up in Table 5.

Table 5. Classification and estimation results of different batteries using features of PDD.

Battery Number
Classification Regression

Accurately Classified
Samples

Total Number of
Samples

Accuracy
(%)

RMSE
(%)

B0005 46 50 92.0 0.2159
B0006 47 50 94.0 0.3108
B0036 55 60 91.6 0.2250
B0056 36 40 90.0 0.4267
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5. Discussion

The accurate estimation of RUL is an essential component of a smart BMS. In [34], the authors
classified the RUL estimation into four different classes. They trained a regression model to estimate
the exact value of RUL for the final class. The regression model was trained by using the full discharge
data features of only the last class. They used full discharge data features (energy and fluctuation
index) of the voltage signal to train the classification and regression models. The shortcoming of this
technique is that in real-time applications, the features of full discharge data are not likely to correlate
with the testing feature in each cycle because the battery is not fully discharged every time. In addition
to this, large storage capacity required to train the SVM models.

In this work, the PDD features (energy of voltage signal and logarithmic band power of temperature
signal) were used to train the SVM models. The classifier distributes the RUL in different six classes,
and the regression model was utilized to predict the exact value of RUL for the sixth class. Different
discharging data ranges were used to train the classifier and regression model (refer to Table 3). After
carefully analyzing the training results, we conclude that the best accuracy lies between the range of
3.75–3.5 V, and the SOC level of the batteries is around 70–50% for this range. In the best of the authors’
knowledge, the battery does not get recharged beyond 70–50% of SOC in most cases. So, it means in
every cycle the features of this range can easily be extracted for accurate RUL prediction, and it also
requires less storage capacity for training.

To validate our claim, full discharge data and PDD trained models were compared. Full discharge
data of battery B0005 correctly classified 48 samples out of 51 (see Table 2), and the RUL prediction
RMSE was only 0.1929% (Figure 5). On the other hand, PDD (3.75–3.5 V) trained model correctly
classified the 46 samples out of 50 (see Table 4). The regression prediction model almost has a similar
RMSE of 0.2159% (see Figure 6) and take almost 12–24 min for the extraction of these features. Full
discharge data and PDD used 63,641 and 23,483 samples to train the model and utilized 0.68 ms and
0.31 ms computation time, respectively (for battery B0005). It means the PDD model almost requires 3
times lesser storage space than the full discharge data model with almost the same accuracy. Three
more batteries were tested to check the effectiveness of the proposed algorithm. The results validated
that the proposed methodology classify and predict the RUL with high accuracy (see Table 5). In the
future, the authors will investigate the accuracy of the proposed approach under dynamic conditions
such as different operating temperatures, C-rates, and charging modes. Being a data-driven approach,
the accuracy of the approach should be checked by training the model using data of one battery and
test it by using the data of other battery.

6. Conclusions

In this work, a novel SVM-based RUL predictive algorithm is presented. The proposed algorithm
trains the SVM models using the features (energy of voltage signal and logarithmic band power of
temperature signal) of PDD. Firstly, the multiclass algorithm classifies the samples into six classes, and
if the classified class is near to the EOL, then the regression model predicts the actual value of RUL.
After extensive training of SVM, the optimal PDD range of 3.75–3.5 V was found. The PDD based SVM
classifies and predicts the RUL with high accuracy. The prediction results of four different batteries
validated the effectiveness of the proposed SVM models. The proposed PDD based SVM is adaptable
for on-board RUL prediction in electric vehicles.
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