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Abstract: Renewable energy sources (RESs) are the replacement of fast depleting, environment
polluting, costly, and unsustainable fossil fuels. RESs themselves have various issues such as
variable supply towards the load during different periods, and mostly they are available at distant
locations from load centers. This paper inspects forecasting techniques, employed to predict the RESs
availability during different periods and considers the dispatch mechanisms for the supply, extracted
from these resources. Firstly, we analyze the application of stochastic distributions especially the
Weibull distribution (WD), for forecasting both wind and PV power potential, with and without
incorporating neural networks (NN). Secondly, a review of the optimal economic dispatch (OED) of
RES using particle swarm optimization (PSO) is presented. The reviewed techniques will be of great
significance for system operators that require to gauge and pre-plan flexibility competence for their
power systems to ensure practical and economical operation under high penetration of RESs.

Keywords: renewable energy sources; forecasting; Weibull distribution; neural networks; optimal
economic dispatch; particle swarm optimization

1. Introduction

Renewable energy sources (RESs) are the primary solution to the growing environmental concerns,
which include carbon and nitrogen emissions and power shortages around the world. The climate
change, the variable cost, continuously increasing environmental issues, and fast depletion of fossil
fuels have urged the electric power suppliers to incorporate RESs more strappingly into the power
system [1]. Nuclear energy was considered to be a source of cheap electricity production. Accidents in
the Nuclear reactors during the last two decades, issues-oriented with disposing-off the nuclear waste
and increasing awareness regarding global warming [2] have led to immense emphasis on integrating
renewable RESs such as wind and solar energy into the power system.

RESs such as wind and solar-based photovoltaic (PV) with all their benefits have the issue of being
unpredictable as weather conditions keep on changing throughout the year; besides, they require high
initial cost for installation. These sources have maximum and minimum generation limits that vary
over time, unlike conventional power plants, where we know the maximum generation possible [3,4].
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Wind power has more probability as well as variability. Solar power is less uncertain and less variable,
as compared to wind power. The intermittent nature of wind and solar power is a significant issue in
employing them on a priority basis as long term planning gets tough. The feasible solution to this
problem is accurate resource forecasting. Due to the sporadic nature of these resources, there has been
widespread interest in the optimal integration of wind and solar power over various times windows [5].
Considering all these facts, the first half of the paper proposes a review of the forecasting techniques to
predict wind and PV power potential.

Electric power extracted from RESs can be classified in three possible ways: (a) Distributed
Generation (DG), in which RESs have been installed individually by the consumers. DG is mostly
employed by domestic and small commercial consumers [6–9]; (b) Micro-Grid (MG), in which a small
number of PV panels or wind turbines have been installed and integrated to supply power to a small
community. These MGs are mostly near to the load centers and they are employed by small towns,
villages, very small industrial units and shopping malls [10–13]; (c) Large-Scale Generation (LG),
in which a large number of power generation units have been installed to form large scale wind
farms or solar panel farms. These farms have the potential to produce power from a few hundred
to thousands of MWs. This category requires a properly planned ED scheme to supply the major
load centers.

Stochastic distribution, especially Weibull distribution (WD) is used to predict the life of products
or outputs of a system according to the statistical distribution of the sample measurement [14].
This stochastic technique can provide forecasted wind and solar power data at a particular location
but, accuracy remains an issue, as there may be a difference in the predicted and actual values.
Neural networks are more robust to minimize this error between the forecasted and actual values [15].
The accuracy in the forecasted values is critical since the system requires predictive planning to meet
the varying demand from the supply and load side to make the system more reliable [16].

Neural networks (NNs) or Artificial neural networks (ANNs) or connectionist systems are
computing mechanisms inspired by the biological neural networks mimic brains [17]. The effectiveness
of these NN systems is because they can learn and improve performance like self-repair, be fault-tolerant,
and handle nonlinear data processing [15,18]. The incorporation of NNs or their variants into the
forecasting system helps in reducing error thereby ensuring the predicted value falls in the permissible
range to better balance the supply and demand in real-time [19]. Although the author in [20] performed
an extensive review of the forecasting techniques, it lacked the survey of techniques used for the
removal of error emergence in the predicted values.

The low energy density of RES requires a large area to generate an adequate amount of power
to become a significant load bearer. Hence, to be sustainable over a more extended time, power
sources should be economically dispatchable [21]. The requirement of large areas forces locations to
be hundreds or even thousands of miles away from load centers. Hence, a comprehensive review of
the Optimal Economic Dispatch (OED) techniques is also required [22–24]. Of the many optimization
techniques, particle swarm optimization (PSO) stands out due to its fast convergence, flexibility in
application, simplified approach and good adaptability to variation [25–27]. The second half of the
paper, thus, proposes a review on the solution of OED of RES using PSO.

The researchers around the world have reviewed and analyzed PSO for the solution of the
economic dispatch problem, and WD for the forecasting of RESs. Authors in [28,29] investigated
PSO and its variants in a very comprehensive manner. Their analysis, however, was confined to the
application of PSO for the solution of the Economic Dispatch Problem (EDP) in thermal systems only.
Reference [30] reviewed the impact PSO had on improving the performance of flexible alternating
current transmission system (FACTS) devices by providing a solution to the FACTS allocation problem.
However, the author in [30] focused only on the FACTS allocation problem through standard PSO and
did not discuss the dispatch constraints that can be solved by the variants of PSO. The authors in [31]
reviewed independent and hybridized optimization techniques employed for the optimization of
wind-PV hybrid power systems. In [31] the authors studied the optimization techniques for generation
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but ignored the source variability issue of RESs in the modern power system. Power fluctuation control
is essential for a sustainable power system as regulatory bodies are compelled to provide a check on
moment-to-moment variations in system load and inconsistent power generation [32]. Reference [20]
described the uncertainties related to the modern power system and reviewed the techniques used for
the solution of this problem. The paper comprehensively gives a review of PSO-based solution to OED
incorporating RESs and considers the realistic constraints associated with OED problems.

To be precise, the first half of the paper provides a review of forecasting mechanisms employed
using WD, both with and without the incorporation of NNs for the removal of error in forecasted value,
whereas the second half of the paper emphasizes on the solution of EDP using PSO and its variants
while considering all constraints that emerge for the Economic Dispatch (ED) of RESs. This paper will
provide researchers, power system engineers, planners, and developers a comprehensive survey on
forecasting through WD for understating the working and possible issues in the regular, stable, reliable
and efficient operation of power systems, and on solving ED problem incorporating RESs through PSO.

More descriptively, the paper is organized as follows. Section 2 reviews wind power generation
forecasting through WD with and without the incorporation of NNs. Section 3 provides forecasting of
solar (PV) generation using WD with and without incorporation of NN. Comprehensive tables are
also designed to provide the objective function(s) and mathematical relations for forecasting power
generation from the said resources. Section 4 discusses a detailed survey of the application of PSO in
OED of RESs without and with the incorporation of resource forecasting, followed by the conclusion
and references at the end of the paper.

2. Forecasting of Wind Power Generation

2.1. Wind Power Generation Fundamentals

Amongst the various solutions of RESs, wind energy is a popular source that works by converting
the kinetic energy of the wind using a turbo-generator into electricity. The power output of a wind
turbine is given by Equation (1).

P =
ρA
2

v3cp(λ) (1)

where P, Cp, ρ, A, v and λ are mechanical output power, turbine’s performance coefficient, air density,
turbine swept area, wind speed, tip speed ratio, respectively [33].

Wind power is more certain to occur, although its speed is varied during 24 h [34,35]. Forecasting
and optimization techniques must be worked upon to make them more dependable. Forecasting also
requires the consideration of ramp event and potentially high-risk scenarios of wind power. Amongst
numerous wind power forecasting techniques, many authors proposed to employ the WD function due
to its reliability, accuracy, stability, and sophisticated computations and accurate results as compared to
other techniques like the Rayleigh distribution [36].

2.2. Weibull Distribution (WD) for Wind Power Forecasting

Wind power forecasting through stochastic techniques (especially WD) has been a very important
topic for researchers, power producers, and planning engineers. It enhances the share of wind power
in meeting the load demand [37]. The basic formula for probability density function (PDF) f (v, v0, β)
of WD in its most basic form is given in Equation (2).

f (v, v0, β) =

 β
v0

(
v
v0

)β−1
e−(

v
v0
)β ; v ≥ 0

0; v < 0
(2)

where β > 0 is the shape parameter, and v0 > 0 is the scale parameter of the distribution. Depending
on the complexity of the problem, WD can have multiple variables that are defined according to the
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requirement like the translated distribution containing three variables has the Equation (3) shown
below [38].

f (t) =
β

η

(
t− γ
η

)β−1

e−(
t−γ
η )β (3)

where β, η and γ are WD shape, scale parameters, and wind speed, respectively.
PDF and multi-variable forms of WD have been mentioned in Equations (2) and (3), respectively.

Cumulative density function (CDF) of WD is given by Equation (4).

F(v, v0, β) =

 1− e−(
v

v0
)β , v ≥ 0

0, v < 0
(4)

Reliability function (RF) in WD finds major significance in forecasting, as it computes the amount
of time for a particular item can operate without failure. Mathematically, it is given by Equation (5) [39].

F(t) =

t∫
0,γ

f (s)ds (5)

RF is a function of time and is important for life data analysis. It can be computed using the CDF
of WD as given in Equation (4).

One of the major apprehensions in implementing wind power at a large scale is the impact of
ramps, and it requires proper handling. An event took place at the Electric Reliability Council of Texas
(ERCOT) system on 26 February 2008, which caused a system emergency due to the occurrence of a
large down ramp [40]. Therefore, proper forecasting of the ramp emergence in wind power is essential
for the sustainability of the power system.

A brief comparison of the stochastic techniques like Weibull Distribution (WD), Rayleigh
Distribution (RD), and Normal Distribution (ND) is presented in Table 1.

Table 1. Comparison of stochastic forecasting techniques.

Characteristics Weibull Distribution (WD) Rayleigh Distribution (RD) Gaussian/Normal
Distribution (ND) Ref. No.

Mathematical
representation &

parameters

f (v) = β
v0

(
v
v0

)β−1
e−(

v
v0
)β ; v ≥ 0

0; v < 0
where β > 0 is the shape

parameter, and v0 > 0 is the
scale parameter of
the distribution.

f (v) ={
v
σ2 e−v2/2σ2

, v > 0
0, v ≤ 0

where σ is the scale
parameter of

the distribution.

f (v) = 1
√

2πσ2
e−

(v−µ)2

2σ2

where µ is the mean,
whereas σ is the

standard deviation.

[41–44]

Flexibility

WD is very flexible as a
small sample size; the
estimated shape of the

distribution may be
altered considerably.

Not flexible as a response to
the out of range parameters

are strict.

Not flexible as the
shape doesn’t vary.

[45–49]Accuracy

Fatigue test results follow
WD, showing it to be more
accurate. It is effective for

both values above and
below the sample size N.

Close to WD.
Effective only for
values below the

sample size N.

Reliability

WD is more reliable even in
situations where distribution
parameters (shape and scale)

tend to vary.

RD loses its effectiveness in
situations where variables

undergo variation.

Reliability in ND
suffers severely at the

hands of variation
in variables.



Energies 2019, 12, 4392 5 of 30

2.3. Review of Wind Power Forecasting without NN

Wind power has captured the biggest share amongst all RESs due to its certainty, but the variability
of wind speed still poses a hurdle in its implementation at large scale discussed. This issue can be
addressed by predicting the wind speed for a particular time period and planning the power dispatch
mechanism accordingly.

In [50], the authors discussed that the probability of wind speed at a particular site has to be
modeled for calculation of the energy production by a wind farm. Methodical computation of the
generation capacity factor of a wind turbine at the planning stage is of vital importance. The authors
performed the comparison of WD computation using graphical, empirical, modified maximum
likelihood, and energy pattern factor methods used monthly for the estimation of parameters at the hub
height of 65 m. They concluded that parameters of WD assessed through the proposed modification of
the maximum likelihood method, complemented the measured values accurately and the graphical
method provided the most erroneous results.

The authors in [51] presented an analysis of wind speed data based on fitting curve methods
applied for wind farms in Galicia, Spain. The results of the fitting methods applied for determining
the Weibull parameters were calculated using a set of pointers defined by wind speeds and wind
power density distributions. The authors concluded when the energy produced by the wind turbine
generators (WTGs) is considered, the proposed part density energy method (PDEM) demonstrated the
best results when the energy produced by the wind turbine generators (WTGs) is considered.

Reference [52] proposed an approach that used three procedures (maximum likelihood, least
squares, and method of moments) for the estimation of the Weibull parameters. The approach was based
upon the shape parameter k and scale parameter λ. They concluded that the presented methodology
indicated good agreement between the data obtained from actual measurements, and enabled the
investigators with the knowledge of calculating the wind potential of a region for future installations.
The authors in [52] modeled wind power forecasting mechanisms for effective management and
balancing of the power grid. The designed system followed a data-driven approach to overcome
uncertainties attached to the wind source. The designed model was implemented at a location in the
state of Karnataka, India for analysis over a period of three months. The authors used the graphical
method, maximum likelihood estimation and Monte Carlos methods for estimation and prediction of
wind power. The authors concluded that the wind power followed WD as compared to wind velocity
that followed Rayleigh distribution. The plots derived from the computed Weibull parameters also
showed significant accuracy. They also projected that the forecasting systems for longer durations,
possessing required accuracy can also be designed as discussed in [53].

The optimal power dispatch of multi-microgrid (MMG) has gained its significance in the
replacement of fossil fuel, as discussed in reference [53]. The authors presented a stochastic and
probabilistic model for both small-scale energy resources (SSERs) and load demand at each micro-grid
(MG) and emphasized the significance of forecasting through the WD based model. They emphasized
that the stochastic approach must be considered for load-supply modeling. The normal distribution
function for modeling of the load on MG was computed using Equation (6).

f (Pl) =
1

√
2π× σ

exp

− (Pl − µ)
2

2× σ2

 (6)

where µ is the mean value and σ is the standard deviation. A predefined number of load samples were
considered. The authors concluded that the power-sharing between MGs and the main grid reduced
the total operational cost of the future distribution network. They also proved that by probabilistic
modeling of the input variables, the output variables could be represented as random variables.
The proposed WD model provided the distribution of wind speed and wind power estimation for long
term planning as compared to [52] where WD provided only wind power forecasting. This WD model
enabled them to calculate the wind power available during a specified time duration.
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In [54], the authors presented a mechanism of wind power forecasting and load estimation for a
wind-thermal system. They developed energy and spinning reserve market clearing (ESRMC) system.
The authors targeted overall cost minimization and reduction in system-risk levels through the designed
system. The solution provided the best comparison in the resource availability and decision-makers’
judgment while meeting the system requirements and avoiding uncertainties more accurately than
other research models. The system security level is described by a linear fuzzy membership function λ
for wind penetration, which is given by Equation (7).

µ(Fi) =


1, Fi ≤ Fmin

i
Fmax

i −F

Fmax
i −Fmin

i
, Fmin

i < Fi < Fmax
i

0, Fmin
i ≥ Fmax

i

(7)

where µ(Fi) was assumed to be strictly monotonic and decreasing.
The authors emphasized after analyzing the results that the variability in the supply may cause

the system cost to rise, which was minimized by the implementation of the designed system. They also
concluded that the reserve contribution in calculations improved the efficiency of the system. However,
the authors ignored the significance of the initialization method of WD.

The authors in [55] presented an analysis of the wind energy conversion system using WD.
Four methods were used to calculate the shape factor “k” and the Weibull scale factor “λ”. Six statistical
tools were employed for analyzing the goodness of curve fittings and precisely ranked the methods.
The designed methodology was tested with the available data of the Hatiya island, Bangladesh.
The authors concluded that the method of moments (MOM) was most efficient amongst the four tested
methods because it endured much lower error percentage and better forecasted the wind power and
energy density for a particular site. However, dispatching of the generated power to the load was
not considered.

Reference [56] presented model predictive control (MPC) based control of DED using WD. The cost
related to lifted states was worked-out at every step during the MPC formulation of DED. An optimal
input sequence was determined by resolving the optimization problem on-line in the MPC optimization
procedure. The formulation used for the linear relationship between wind speed and power by the
authors is given by Equation (8).

P(v) =


0, v < vci or v > vco

Pr
( v−vi

vr−vi

)
, vci ≤ v ≤ vr

Pr, vr ≤ v ≤ vco

(8)

The authors concluded that the proposed method provided a better prediction of the source
availability and attained more ED. The presented technique managed a good efficiency over dispatch
duration, both in the long-term plan and occurrence of an abrupt event.

The authors in [57] performed a statistical analysis of the wind energy available at the Iskenderun
region in Turkey using WD and RD. The data taken was of one year and was analyzed on an hourly
basis. The mathematical equations adopted by the authors are mentioned in Table 2. Based on the
analyzed data, the authors concluded that the WD provided better-fitting when tested for monthly
PDF as compared to the RD. They also concluded that the WD also provided better power density for
the whole year under analysis.

Table 2 summarizes the discussed approaches, proposed by different researchers to use a stochastic
distribution like WD for wind speed and power forecasting while considering different constraints and
OED of the produced energy.
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Table 2. Wind speed and power prediction with Weibull distribution (WD) and without incorporating
neural networks (NN).

Wind Speed Probability
Distribution Wind Power Distribution Explanation

f (v) =
( β

v0

)(
v
v0

)(β−1)
e−(

v
v0
)β Pe(v) = Pr ×


0, v < vci or v > vco
Pcinr (v), vci ≤ v ≤ vr
1, vr ≤ v ≤ vco

where Pe(v) is electric output power of
WT; vci , vco and vr represent cut-in,
cut-out, and the rated wind speed,

respectively [50,51].

f (v) =
{

v
σ2 e−v2/2σ2

, v > 0
0, v ≤ 0

P(v) = β
v0

(
v
v0

)β−1
e−(

v
v0
)β

with β = 1/3; v0 = b;

The authors suggest that wind velocity
follows Rayleigh distribution, whereas the
power follows Weibull distribution [52].

f (v) =
( β

v0

)(
v
v0

)(β−1)
e−(

v
v0
)β P(v) =


Pr.

(
vn

co−vn

vn
ci−vn

r

)
, vci ≤ v ≤ vr

Pr, vr ≤ v ≤ vco
0, otherwise

where P(v) is generated power at speed v,
and vci, vco and vr are wind turbine

parameters [53].

f (v) =
( β

v0

)(
v
v0

)(β−1)
e−(

v
v0
)β P(v) =


0, v < vci or v > vco

Pr
(

v−vi
vr−vi

)
, vci ≤ v ≤ vr

Pr, vr ≤ v ≤ vco

Here β and v0 are the shape and scale
parameters; P is power output against

wind speed [54,56].

f (v) =
( β

v0

)(
v
v0

)(β−1)
(e)−(

v
v0
)β P =

ρA
2 v3cp(λ) [55]

f (v) =
( β

v0

)(
v
v0

)(β−1)
e−(

v
v0
)β Pm,R =

n∑
j=1

[
1
2ρv3

m, j f
(
v j

)]
[57]

fR(v) =
(
π
2

)(
v

v2
m

)
exp

[
−

(
π
4

)(
v

v2
m

)β]
PR = 3

πρv3
m

2.4. Review of Wind Power Forecasting with the Incorporation of NN

WD has emerged as the most accurate and effective technique for wind power forecasting;
however, errors may occur in the calculated value. This requires continuous monitoring and correction
of the forecasting to make the RESs based system more sustainable. The appearance of error in the
forecasted value can be handled through its computation using NNs and incorporating it further in the
calculations. For the purpose, researchers have incorporated NN or Artificial Neural Networks (ANN)
with WD to make forecasted values more precise [58,59].

The authors in [60] proposed a model that utilized the ANN to foresee the wind speed data,
which had similar sequential and seasonal features to the actual wind data. The model was tested on
wind speed databases from Mersing, Kudat, and Kuala Terengganu in Malaysia for its authentication.
The results indicated that the presented hybrid artificial neural network (HANN) model had the
capability of illustrating the fluctuations in the wind speed during different seasons of the year at
different locations. However, the model did not consider a range satisfying lower and upper bound
of estimations that are important in forecasting mechanisms. The authors presented a wind speed
prediction model designed by the integration of WD and ANN. They addressed the crucial need for
wind speed forecasting and seasonal variations. The proposed model utilized ANN to predict the
wind speed data, which had similar sequential and seasonal characteristics as of the actual wind data.
The proposed mechanism was authenticated by applying it to the wind speed data collected from
different locations in Malaysia. The inverse transform of the PDF, designed by combination of WD and
random variables that were implemented for modeling of wind speed is given in Equations (9) and (10).

U = F(υ) = 1− exp
[
−

(
υ
λ

)k
]

(9)

υ = c
[
− ln(1−U)

1
k

]
(10)

where U is the uniformly distributed random variable between [0, 1]. The authors concluded that the
proposed Hybrid ANN (HANN) improved the effectiveness and efficiency of WD by considering the
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variations in the seasonal characteristics. The authors did not consider the duration of the forecast
short, medium, or long term.

Reference [61] proposed a lower-upper bound estimation (LUBE) method and extended it to
develop prediction intervals (PIs) using NN models sorting out the problem in [60]. The presented
technique translated the primary multi-objective problem into a constrained single-objective
problem [62]. In comparison to the cost function, the presented mechanism was nearer to the
principal problem and had lesser parameters. PSO was combined with the mutation operator to solve
the problem. Comparative analysis of the obtained results showed that the proposed method could
construct higher-quality PIs for load and wind power generation forecasts in a much shorter time.

The authors in [63] investigated two different methods for wind power forecasting.
A comprehensive comparison was performed using ANN, and a hybrid prediction method was used
for wind power perdition, and a comprehensive comparison was performed. The authors performed
short-term wind power prediction for a wind farm having 40 wind generators. The computations
concluded that the individual ANN prediction method yielded the estimated results swiftly but,
precision in forecasted data was low and the root mean squared error (RMSE) was 10.67%. On the
other hand, the hybrid prediction method operated slowly but, the prediction accuracy was high and
the RMSE was 2.01%. Also, in contrast to [62], the authors in [63] considered the impact of wind speed
on error emergence. They concluded that the prediction errors were small when the wind speeds were
lower than 5 m/s or higher than 15 m/s.

References [64,65] designed an algorithm based on an extreme learning machine (ELM) for
computation of shape and scale parameters of WD. The authors in [65] tested the algorithm developed
in [64] and compared the results obtained with those obtained from support vector machine (SVM) and
genetic programming (GP) for estimation of the same Weibull parameters. The wind density calculated
using the wind speeds was computed through Equation (1). The coefficient of determination used by
the authors in [64] was calculated using Equation (11).

<
2 =

∑n
i=1

(
Xi,act −Xact,avg

)2
−

∑n
i=1(Xi,est −Xi,act)

2∑n
i=1

(
Xi,act −Xact,avg

)2 (11)

where the value of co-efficient of determination provided a linear relationship between the actual and
estimated values. The authors concluded that the developed algorithm improved the precision level in
the estimation of Weibull parameters and also performed the calculation for the available wind power
that was not done in [63].

In [66], the authors emphasized mechanisms to integrate multiple wind farms with the aim of
enhancement in the wind power capacity and decrease in the wind power curtailment. The authors
used WD approximation and maximum-likelihood estimation methods for forecasting. They also
presented an algorithm QRCNN, designed by the combination of the convolutional neural network
(CNN) and quantile regression technique to achieve detailed quantiles of corresponding predicted
wind power output from the system. The forecasted wind power was calculated using Equation (12).

Pt = F
(
Pt−k, Wh

t−k, Wh
t , Wh

t+m

)
(12)

where Pt denotes the forecasted wind power at time t; Pt−k denotes all historical wind power data
between t − k and t; W denotes the wind speed data from numerical weather prediction (NWP);
h represents all wind speed components, which contains horizontal and vertical information, in general.
They concluded that based on the forecasted multidimensional random variables and joint distribution
function, the output generation scenario for multiple wind farm power could be achieved.

Reference [67] presented a wind speed forecasting mechanism called WindNet that was based
on Convolutional Neural Networks (CNN). The forecasting mechanism was designed to provide the
predicted data for the following three days. Wind speed data was accumulated on an hourly basis for
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the previous seven days, and the data set was developed as 24 × 7 = 168 sets. The WindNet performed
1D convolution on the collected data and authors used 16 filters that developed 168 × 16 1D convolved
map shapes. The authors tested WindNet for a wind site in Taiwan to examine its efficiency and
compared the results with following four techniques; Support vector machine (SVM), Random Forest
(RF), Decision tree (DT), and Multi-layer perception (MLP). The authors used MAE and RMSE as
indicators to estimate the performance of the presented architecture. Based on the comparative results,
the authors concluded that the designed architecture presented better and more efficient results than
MLP and DT while SVM showed the worst performance.

The authors in [68] combined Principal Component Analysis (PCA) and Independent Component
Analysis (ICA) to improve the accuracy of the wind forecasting, and it was then forwarded to Radial
Based Function (RBF) for improving the prediction accuracy of wind speed. The developed mechanism
worked by processing the sample that can weaken the mutual interference among multiple factors
to obtain precise independent components, resulting in improved accuracy of the predicted wind
speed. The authors compared the results with the traditional wind speed forecasting models like
backpropagation (BP) and Elman neural network (ENN). They concluded on the basis of extracted
results that their developed architecture performed better, as it made proper and complete use of the
available information in contrast to the other NN based wind prediction schemes.

Table 3 summarizes the discussed approaches, proposed by different researchers to use WD and
NN for wind power forecasting and prediction error.

Table 3. Wind resource and power prediction with WD and NN and prediction error.

Resource/Power
Forecasting Model Prediction Error Description

P =
ρA
2 v3cp MAPE = 1

n
∑n

t=1
yi(ANN)−yk(measured)

yk(measured)

Here v, σ and Γ are mean wind
speed, standard deviation, and
gamma function, respectively.

Also, n, yi(ANN) and yk(measured) are
total input and output pairs,

forecasted wind speed, and actual
wind speed for one hour,

respectively [61].

__
P = 1

2nρ
n∑

i=1

__
v3

MAPE = 1
n

n∑
i=1

∣∣∣∣Pi,pred−Pi,means

Pi,means

∣∣∣∣× 100

MABE = 1
n

n∑
i=1

∣∣∣Pi,pred − Pi,means
∣∣∣

R2 =
∑X

i=1 (Pi,means−Pmeans,avg)
2
−
∑n

i=1(Pi,pred−Pi,means)
2∑X

i=1(Pi,means−Pmeans,avg)
2

Here n denotes the specified time
period Pi,pred and Pi,means are

predicted and calculated wind
powers [64].

v = 1
n

h∑
i=1

vi

σ =

[(
1

n−1

n∑
i=1

(vi − v)2
)]0.5

P =
ρA
2 v3cp

R2 =
∑n

i=1 (Xi,act−Xact,avg)
2
−
∑n

i=1(Xi,est−Xi,act)
2∑n

i=1(Xi,act−Xact,avg)
2

∂2Ω
∂u2

MAPE = 1
n

n∑
i=1

∣∣∣∣Xi,est−Xi,act
Xi,act

∣∣∣∣× 100

MABE = 1
n

n∑
i=1

∣∣∣Xi,est −Xi,act
∣∣∣

RMSE =

√
1
n

n∑
i=1

(
Xi,est −Xi,act

)2

[65]

Pt = F
(
Pt−k, Wh

t−k, Wh
t , Wh

t+m

) min
θ = weights

√
n∑

t=1

[
yt − F

(
Xt,i,θ

)]2
Here n denotes the specified time
period, and Pi,pred and Pi,means are

predicted and calculated wind
powers, respectively [66].

In addition to the above-reviewed techniques for wind forecasting, the authors in this paper also
give consideration to machine learning for wind prediction and have presented a brief review of the
research work based on machine learning-based wind forecasting.

The authors in [69] presented a wind forecasting model as an application of machine learning.
They developed a neuro evolutionary technique of Cartesian genetic programming to evolve ANN for
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the development of the resource prediction model. The proposed model was developed using three
different forecasting models, and each model predicted the generation of wind power for next one
hour. The authors calculated percentage error such as MAPE, NRMSE of the calculated values in time
series. The NRMSE was calculated using Equation (13).

NRMSE =

√√√
1
N

N∑
i=1

(Pia − Pi f

Pia

)2

(13)

where Pia is the observed power, Pi f is the forecasted power at the instant i, and N is the number of
hours. The authors concluded the MAPE improved the accuracy of the forecasted value by the models
making the system more reliable and consistent. They also concluded that the proposed model could
be further improved by introducing parameters like wind flow direction at the site, instantaneous
humidity, atmospheric temperature, and pressures.

3. Forecasting Solar PV Power Generation

3.1. Solar PV Power Generation Fundamentals

Solar energy is the most abundantly available source for electric power generation. Amongst
RESs, Solar PV has been widely implemented throughout the world, and countries are continuously
shifting towards such sources from conventional fossil fuels. According to a report published by World
Energy Council (WEC) in 2016, the installed potential of solar PV generation reached 227 GW till
the end of 2015, and future projects around the globe have a target to at least double this generation
around the globe by 2022 [70]. PV power generation depends upon the solar irradiance and the power
in relation to it is calculated using Equation (14).

P = γSη(1− n∆t) (14)

where P, γ, η, S, ∆t and n stand for solar active power, amount of solar irradiance, efficiency, a
total area of PV modules, PV cell temperature’s forecast error, and co-efficient of the temperature,
respectively [71].

Although the variability of solar power is less than the wind, and it also has one factor
affecting its predictability (i.e., cloud cover) besides, the consistency of PV generation is also highly
region-dependent. Still, it requires substantial consideration of its forecasting [4,72,73]. Initially, WD
was used for forecasting of wind power; however, now, many researchers have effectively used it for
the forecasting of solar power as well.

PV systems suffer a major issue of being highly dependent on the direct impact of sunlight;
this results in a 10–25% loss of efficiency if a properly designed tracking system is not employed [74].
Besides, cloud cover, dust accumulation, and impediments present in the atmosphere also reduce the
power output [75]. The mentioned issues make it essential for power system planners and utility
companies to have an accurately designed forecasting mechanism for sun irradiance. WD after making
its mark in the wind power forecasting has started finding its significance in the PV power forecasting
as well. Like in wind power forecasting, solar power forecasting also may require the inclusion of NN
to bound prediction of error. The following sub-sections consider both calculations with and without
inclusion of NN.

3.2. Weibull Distribution (WD) for Solar (PV) Forecasting

WD, for its reliability and accuracy, has started to find its mark in the forecasting of solar radiation
as well. PV cells generally follow a bathtub curve, where they have three stages for their working
mechanism. The output of PV modules directly depends on the irradiance, so its forecasting has a major
part in the planning of the working mechanism of the power system. The basic formulas of PDF and
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CDF of WD have already been discussed in Equations (2) and (4), respectively. The reliability function
R(t) and the failure rate λ(t) for irradiance calculation are given in Equations (15) and (16), respectively.

R(t) = e−(
t−γ
η )β (15)

where η, β and γ are the parameters for scale, shape, and location, respectively.

λ(t) =
f (t)
R(t)

=
β

η

(
t− γ
η

)β−1

(16)

where λ(t) is the failure rate function over time, and it requires the values of η and β to be computed for
finding the failure rate [76]. The failure rate is important as it provides information about the accuracy
of the system and makes the computations more reliable.

The preceding sub-sections explain the mechanisms that have already been developed for the
forecasting using stochastic techniques (such as WD) for PV power without and with the incorporation
of the NN or ANN.

3.3. Review of PV Power Forecasting without NN

PV power has been widely used but, the problem with these panels is of their low efficiency and
impact of environmental conditions on their performance. These efficiency and performance issues
require an adequately designed forecasting mechanism of solar irradiance as the PV power output is
directly proportional to the amount of irradiance available.

Reference [77] presented a very comprehensive solar irradiation forecasting analysis by computing
Global Horizontal Solar Irradiation (GHI) and annual Direct Normal Solar Irradiation (DNI) probability
density functions. Annual DNI and GHI distributions were defined through WD and normal
distribution functions, respectively. They concluded that Weibull fitting of annual DNI distributions
provided very appreciable results as the yielded uncertainties in scale and shape parameters were ~1%
and ~15%, respectively. In [78] the author presented a suite of largely applicable and value-based metrics
for solar forecasting to accommodate a comprehensive set of scenarios like different time horizons,
geographic locations, and applications to improve the accuracy of solar forecasting. The results showed
that the proposed metrics proficiently calculated the quality of solar forecasts and also assessed impacts
on economics and reliability due to the improved solar forecasting. Sensitivity analysis resulted in
achieving the suitability of the proposed scheme to enhance precision in solar irradiance forecasting
with uniform forecasting improvements.

The authors in [79] proposed a scheme, designed by using the Pearson system based on the
calculation of probability distribution by matching theoretical moments with empirical moments.
The authors developed a data processing system to perform distribution fitting and future potential
analysis. The equation used by the authors for computation is given in Equation (17).

f ′(x)
x(x)

=
A(x)
B(x)

=
x− a

c0 + c1x + c2x2 (17)

where f ′ is the density function, a, c0, c1 and c2 are the distribution parameters, and x is the variable.
The authors compared the results through plots with the computed values of WD and the actual
value. The results ignored several seasonal variations but confirmed that WD maintained its efficiency,
in comparison to Pearson parameter irradiance forecasting [79].

Reference [80] proposed a model by combining different distribution schemes for different
purposes understudy in their research. They also considered a clear-sky index for PV power production
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that was ignored in [79], and the mathematical formulas used for calculation of mean and variance of
WD are mentioned in Equations (18) and (19), respectively.

µ = λΓ(1 + 1/k) (18)

σ2 = λ2Γ(1 + 2/k) − µ2 (19)

The authors used the data obtained from the above equations in their simulation. They concluded
that besides forecasting, seasonal variations in PV power production needs to be considered as the
application of forecasting model could be helpful in grid designing and future power system planning.
However, the possible emergence of error was not considered by the authors.

In [81], the author determined the most efficient distribution for global radiation modeling and
measured it for the Iadan site in Nigeria. The WD function used by the author for solar irradiance
forecasting is given in Equation (20).

f (x) =
β

x0

(
x
x0

)β−1

exp

−( x
x0

)β (20)

where f (x) is the WD for solar radiation x. The author concluded that the logistic distribution
along-with WD appeared as the most appropriate distribution function for global solar radiation
modeling as the percentage error calculated was the lowest.

The authors in [82] developed and tested the solar radiation models for the city of Tirana, Albania.
The models were used for the estimation of the monthly average total solar radiation on the horizontal
surface based on the measured data for solar radiation intensity and the time duration. The monthly
average daylight hours were calculated using Equation (21).

N =
2

15
·ωs (21)

Along-with WD, other models were also considered but, the WD stood-out because of its accuracy
and reliability and hence provided better results. After statistical analysis, this model presented the
most appropriate results for the solar radiation prediction model. However, this designed system
lacked tractability, and the authors in [83] tackled this issue.

Reference [83] proposed a new mechanism for enhancing the overall efficiency by using the
tracking system designed by the V-trough technique. The formula for the calculation is given in
Equation (22).

f(x) =
kΓ(1 + 1/k)

µ

(
xΓ(1 + 1/k)

µ

)k−1

× e−(
kΓ(1+1/k)

µ )
k

(22)

where Γ is the gamma function. The authors concluded that the presented techniques permitted
adjustment of the range, shape, and the bias function towards the desired mean of WD. The proposed
mechanism also provided better control, more flexibility.

Table 4 summarizes the discussed mechanisms for solar irradiance distribution functions and PV
based power production.
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Table 4. Solar prediction with WD and without incorporation of NN.

Solar Distribution Functions for Prediction PV Power Production Reference

f (t) = β
η

( t−γ
η

)(β−1)
× e−(

t−γ
η )

β

R(t) = e−(
t−γ
η )

β

f (t) =
Γ( ν+1

2 )
√
νπΓ( ν2 )

(
1 + t2

ν

)(− ν+1
2 )

P = γSη(1− n∆t)

Here R(t), β, γ and η are the
reliability function, slope, location and

scale parameters,
respectively [78]; P, γ, η, S, ∆t and n
stand for solar active power, amount

of solar irradiance, efficiency, the total
area of PV modules, PV cell

temperature’s forecast error, and
co-efficient of the temperature,

respectively.

f
(
X; x, k

)
=

 β
x

(
X
x

)(k−1)
e−(

X
x )

β

, x ≥ 0

0, x < 0

P = max
P≤PSET

{
ηPPV(V)

}
P = γSη(1− n∆t)

Here P, PPV(V) and η are active
power, active power-voltage

relationship, and converter efficiency,
respectively [80].

f (x) = β
x0

(
x
x0

)β−1
exp

[
−

(
x
x0

)β]
β =


n∑

i=1
Tk

I ln(x)

n∑
i=1

xk
−

n∑
i=1

ln(x)

n


−1

& x0 =

[
1
n

n∑
i=1

xk
] 1

k

P = γSη(1− n∆t)
[81]

f(x) =
kΓ(1+1/k)

µ

(
xΓ(1+1/k)

µ

)k−1
× e−(

kΓ(1+1/k)
µ )

k Here f(x) is the solar irradiance
function [83].

3.4. Review of PV Power Forecasting with the Incorporation of NN

The significance of PV power forecasting and the role of WD in this regard have been discussed but,
the problem of error emergence persists with the stochastic techniques such as WD. The requirement
of accurate forecasting emphasizes the inclusion of NN or ANN in the forecasting computations.

In [84], the authors reviewed the application of available ANN techniques on solar radiation
prediction and identified the research gap. They also discussed the prediction accuracy of ANN
models regarding dependency on different combinations of input parameters, training algorithms, and
architectural configurations. Further research areas in ANN-based methodologies are also identified in
the presented study.

In [85], the authors proposed a mechanism for PV-wind hybrid generation systems employed
for the residential load. They also presented steps supportive in the enhancement of hybrid system
penetration at the distribution voltage level. The equation used for the calculation of the output PV
power is given in Equation (23).

Ppv = Pnpv ×

(
G

GSTC

)
× (1 + K(Tcell − TSTC)) (23)

where G and GSTC are the solar irradiance and the solar irradiance in standard testing conditions.
The authors investigated different levels of penetrations in residential and commercial applications.
Their analysis concluded that the proposed system improved the performance of residential distributed
generation with a 1-min temporal resolution along-with the incorporation of active and reactive powers.
The mechanism worked efficiently for low power applications, ignoring the requirement of power at
large scale.

Reference [86] performed the prediction of global horizontal irradiation (GHI) for different
locations in Zimbabwe. The proposed NN contained 10 neurons and a tensing transfer function for
both input and output layers. The formulas for the calculation of inputs to the output neurons and
final output are given in Equations (24) and (25), respectively.
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B j =
10∑

j=1

O jWpj (24)

O f =
2

1 + e−2B j
− 1 (25)

The authors in [86] also considered statistical indices (RMSE, MPE, R2, etc.) for achieving better
accuracy of the forecast. The authors concluded that the pure linear transfer function emerged as the
worst performer amongst the tested transfer functions, and the proposed model predicted the GHI for
the specified period with relatively good accuracy.

In [87], the authors presented a new model formed by the integration of the advantages of non-linear
artificial neural networks and the linear auto-regressive moving average (ARMA). The mathematical
representation of the ARMA model used by the researchers is given in Equation (26).

Yt =

p∑
I=1

φ

i

Yt−1 −

q∑
j=1

θ jet− j + et (26)

where φi, θ j and et are the auto-regressive parameter, average parameter, and white noise with variance,
respectively. The authors also included the statistical indices for improving the accuracy of forecast by
computing the percentage error in the calculation. The authors concluded that the proposed integrated
model showed better results than the individual performances of ARMA and ANN, especially in terms
of the statistical indices.

Reference [88] also presented a prediction model developed by the combination of Empirical
Model Decomposition (EMD) and ANN for long-term prediction of the intensity of solar irradiance.
The formula used to find the standard deviation (SD) is given by Equation (27).

SD =

T∑
k=1

(∣∣∣h1(k−1)(t) − h1k(t)
∣∣∣2)

h2
1(k−1)

(t)
(27)

where T is the length of the sequence. The authors used daily historical data in the proposed system.
They concluded that the predicted results showed the system to be more accurate with a simplified
calculation model than the many available mechanisms.

Reference [89] proposed an ANN-based forecasting model for the PV generation system.
The developed model was provided with available data for initialization, and this data was used in
a vector having 146 network values. These values were labeled as training inputs, X, and network
had just one single training target, T. The first input was taken as the season of the day is forecasted,
the second input of the network was linked to the time of day, and the remaining 144 values were used
to represent the solar irradiation values in an interval division of 10 min earlier 24 h. The single output
of the presented ANN model was target “T’ as the predicted irradiation value. The authors computed
the generated power from the predicted solar irradiance values by Equation (28).

PS = ηSI(1− 0.005(t0 − 25)) (28)

where PS is generated electrical power, η is conversion efficiency co-efficient, S is the area of the
module, I is the solar irradiance, and t0 is the measured temperature. Through the results, the authors
concluded that the developed model provided sufficiently high precision for the solar irradiation
parameter when employed to micro-grids. They also remarked that the system would improve the
instantaneous control of micro-grids, based on the fact that the uncertainty of solar irradiation was
reduced and made the system more reliable.
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The authors in [90] presented an algorithm based on deep neural networks, namely DeepEnergy
to perform precise short-term load forecasting (STLF). The designed mechanism was initiated by
flatting the pooling layer in 1D and build a structure with a fully connected output layer. The authors
addressed the overfitting problem of NNs dropout technology was adopted in the fully connected
layer. The authors evaluated the accuracy indexes by testing through Mean Average Percentage Error
(MAPE) and Cumulative Variation of Root Mean Square Error (CV-RMSE). The experimental results
were compared with five artificial intelligence algorithms commonly employed for forecasting, and
the results were MAPE (9.77%) and CV-RMSE (11.66%), showing the system to be very accurate.
The results concluded DeepEnergy to be a robust system with strong generalization ability. Table 5
given below summarizes the discussed schemes.

Table 5. Photovoltaic (PV) power forecasting with the incorporation of NN.

Model Used for Power
Production or

Resource/Power Forecasting
Prediction Error Reference

Ppv = Pnpv ×

(
G

GSTC

)
×(1 + k(Tcell − TSTC))

%VFk =
n−1∑
i=1

|Vk,i+1−Vk,i|

(n−1) × 100

%VIF = 2

√
1− 2
√

3−6β

1+ 2
√

3−6β
× 100

Here Pnpv , G, GSTC and k are rated
power of PVsystem, solar irradiance

on PV surface, solar irradiance in
standard test conditions, and

efficiency temperature coefficient,
respectively. Also,VF and VIF are
voltage fluctuations and voltage

imbalance factor, respectively [85].

P = γSη(1− n∆t)
R = R0

(
1− 0.75n3.4

)
R0 = 990 sinφ− 30

φ =
φtp+φp

2

MAE = 1
n
∑n

i=1

∣∣∣GHI(measured) −GHI(predicted)

∣∣∣
MAPE =

(
1
n
∑n

i=1

∣∣∣GHI(measured) −GHI(predicted)

∣∣∣)
RMSE =

(
1
n
∑n

i=1

∣∣∣GHI(measured) −GHI(predicted)

∣∣∣2) 1
2

R2 =

(
1−

(∑n
i=1

∣∣∣GHI(measured)−GHI(predicted)

∣∣∣2
GHI(measured)

))

Here R2, n, R0, φtp and φp are solar
radiation, cloud cover, clear sky

insolation, solar elevation angle and
for previous and current hours,

respectively.
R2 is the coefficient of determination.
Also, GHI(measured) and GHI(predicted)

are measured and predicted solar
irradiations respectively [86].

P = γSη(1− n∆t)
kt =

H
H0

H0 = ISCE0
×(sin δ sinϕ+ cos δ cosϕ cosω)

RMSE =

√∑N
i=1

(yi−xi)2

N

MBE =
∑N

i=1
(yi−xi)

N

MPE =
∑N

i=1

(
(yi−xi)

Nxi

)
× 100

R2 =
∑N

i=1(yi−xi)2∑N
i=1(yi−yi)

2

Here kt, H and H0 are clearance
index, global ground radiation, and

extraterrestrial global radiation,
respectively. Also, yi and xi, y and x

are estimated, measured, and
average estimated and measured

values, respectively [87].

P = γSη(1− n∆t)

RMSE =

√
1
n

(
n∑

i=1

(
Xhist,i −Xpred,i

)2
)

MAPE =

(
1
n

n∑
i=1

∣∣∣∣Xhist,i−Xpred,i
Xhist,i

∣∣∣∣)× 100%

R =

n∑
i=1
(Xhist,i−Xhist)(Xpred,i−Xpred,i)√

n∑
i=1
(Xhist,i−Xhist)

2
(Xhist,i−Xhist,i)

2

hist and pred historical and predicted
results [88]. P, γ, η, S, ∆t and n

stand for solar active power, amount
of solar irradiance, efficiency, total

area of PV modules, PV cell
temperature’s forecast error, and
co-efficient of the temperature,

respectively.

In addition to the above-reviewed techniques for solar irradiance forecasting, the authors in this
paper also give consideration to machine learning for solar irradiance prediction and have presented a
brief review of the research work based on machine learning-based wind forecasting.

Reference [91] introduces the mechanism for hourly forecasting of solar irradiance using machine
learning algorithms. The developed prediction model was designed in two forms: the first step
used the environmental parameters like temperature, pressure, wind speed, and relative humidity.
This network was trained to find the new input values by using the data of the previous few months
or years. This mechanism made the system capable of predicting the solar irradiance with relative
accuracy by correcting the errors using ANNs; the second step used the time-series prediction of the
solar irradiance. This system developed models to determine future values. This mechanism required a
continuous database of solar irradiance to predict future values. The developed systems were assisted
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with multi-layer feed-forward neural networks (MLFFNN), radial basis function neural networks
(RBFNN), support vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS) for
improving the precision of resources forecasting.

4. Optimal Economic Dispatching (OED) using PSO

Economic dispatch (ED) has been a significant concern for planners due to the rising fossil fuel
prices and long-distance transmission from hydro-electric plants. With the growing penetration of
RESs, the significance of ED gets re-emphasized because large scale power generation from RESs is
possible only at distant locations where a number of wind turbines and/or PV panels can be installed,
integrated, and utilized [92,93]. Considering the bulk amount of energy that can be extracted from
large-scale RE farms, researchers and power system planners have presented many ED schemes to
dispatch the generated power efficiency. PSO stands-out because of its fast convergence, simplified
approach, and flexibility. Before presenting the review of the solution of the OED problem by PSO,
a brief review of the PSO algorithm is presented here.

4.1. A Brief Review of PSO Algorithm

PSO is a stochastic algorithm used to obtain the most suitable solution for the optimization
problems and was proposed by Kennedy in 1995. The algorithm of PSO is based on the simulation
of behavior in which flock of birds flies together in a multi-dimensional search space, adjusting their
movements and distances is to discover an optimum objective, subject to the constraints imposed [94].
PSO is described graphically in Figure 1.
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Mathematically, PSO velocity and position formulas are expressed by Equations (29) and (30).

vt+1
id =

Inertial Component︷︸︸︷
ωvt

id +

Cognitive Component︷                  ︸︸                  ︷
c1r1()(pbestid − xt

id) +

Social Component︷                   ︸︸                   ︷
c2r2()(gbestgd − xt

id), (29)

xt
id = xt

id + vt+1
id ; i = 1, 2, . . . , n; d = 1, 2, . . . , m (30)

where i is particle’s index, t discrete-time index, d dimension being considered, n number of particles
in a group, m dimensions of a particle, ω inertia weight factor, and c1, c2 acceleration coefficient for the
cognitive and social components, respectively [95–97].

4.2. Review of PSO Applied to OED Incorporating RESs

In [98], the authors proposed a linearized network model in the form of the DC power flow model
while considering the thermal limits of transmission lines and real power constraints. The cost curves
for generating units have been developed in the form of a piecewise linear model, and simulation was
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analyzed on HOMER software for intermittent RESs, specifically wind turbines. They concluded that
the steady-state analysis of the power system with the inclusion of RESs is very important and results
in significant cost saving.

Reference [99] presented a chaos PSO based algorithm for dispatch cost reduction of hybrid power
system by treating wind and solar power generations as negative load. The proposed algorithm gives
the best convergence competence and search performance in evaluation. They concluded that chaos
PSO provides better results in convergence time and efficient mechanism for the use of RESs.

The incorporation of RESs in the power system reduces the emissions that pollute or environment.
However, large-scale power generation using these resources is possible only at locations that are
hundreds or thousands of kilometers away from the load centers. This emphasizes the use of a properly
designed dispatch mechanism [100].

The authors in [101] designed the double-weighted PSO (DWPSO) to cater to the non-convexity in
combined emission economic dispatch (CEED) when intermittent wind energy is used. Equation (31)
shows the formula used for conversion double objective CEED problem into a single optimization problem.

min

C =
m∑

i=1

Fi(Pi) + h
m∑

i=1

Ei(Pi)

 (31)

where h is the ratio between maximum fuel cost and maximum emission for each unit given in
Equation (32).

h =
Fi

(
Pmax

i

)
Ei

(
Pmax

i

) (32)

The designed algorithm resulted in the successful reduction of the fuel cost by providing a solution
to the non-convex wind penetration in the power system. The authors also concluded that the solution
proposed also showed a decline in perilous emissions.

Reference [102] developed a mechanism of optimal operation for the distributed generation at the
micro-grid (MG) level, in contrast to the algorithm developed for large-scale generation presented
in [101]. The authors also performed the resource estimation for wind and calculated the power that
could be extracted from wind and PV (without forecasting). They also focused on the formulations for
the economic operation of small-scale energy zones. The designed cost function for generation and
operation and maintenance are given in Equations (33) and (34), respectively.

Costgen,si = Costgen,MT,si + Costgen,FC,si + Costgen,CHP,si (33)

CostO&M,s = CostO&M,WT,s + CostO&M,PV,s + CostO&M,MT,s + CostO&M,FC,s + CostO&M,CHP,s (34)

where these functions are of generation cost, transaction powers, and O&M cost pollutant emission.
The authors solved the dispatch problem in the imperialist competitive algorithm (ICA), and the
results proved to be better than the Monte-Carlo simulation (MCS). In all the cases mentioned above,
the requirement is to satisfy the load requirements as mentioned in Equation (35).

n∑
i

Pi = PD + Pl

Pmin
Gi ≤ PGi ≤ PMax

Gi , i = 1, 2, . . . , NG

(35)

where Pt, PD, and Pl are total power, power demand, and power losses respectively, and the second
portion of Equation (35) presents the generation limits that must be met to keep the system balanced.
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4.3. Constraints Handling by PSO

Despite many benefits, the application of PSO requires proper consideration of certain constraints
such as frequency fluctuation, ramp-rate limits, compensation of load variation, and battery storage.
Some prominent schemes to manage these constraints while performing OED of the generated energy
are discussed in the following sub-sections.

4.3.1. Compensation for Load and Voltage Variation

The occurrence of load variation is a major limitation, as it disturbs the normal operation of
the power system. The load variation is eminent, but the researchers and planners are interested in
designing the mechanisms that have the capability of compensating the load variations. A model of
Multi-Microgrid (MMG) for voltage regulation against load variations has already been discussed.

Reference [103] proposed an optimal generation rescheduling mechanism designed through
dynamic PSO, for RESs to overcome load variations. Dynamic PSO worked by the variation in the
acceleration co-efficient, and this resulted in fast convergence, improved global search capability, and
achievement of the global optima at the end-stage. The calculation for the amount of solar and wind
powers was performed using Equation (36).

PS + PW ≤ η× Pa
D (36)

where PS, PW , and Pa
D are the solar power, wind power, and the actual load demand, respectively. Solar

and wind powers generated have been taken as a negative load. The effectiveness of the proposed
solar-wind system with the hybrid system emerged with a reduction in the fuel cost. The formula for
calculation of the percentage reduction is given in Equation (37).

∆C =

(
1−

F f R

F f N

)
× 100 (37)

where F f R and F f N represent the fuel costs with and without RES. The authors concluded that the
presented algorithm prevented premature convergence and also maintained the voltage by scheduling
the generation as per load variation. But, the specific class of power generation value was ignored by
the authors that is being discussed in the preceding discussions.

The authors in [104] presented Chaos PSO based optimization method for standalone MGs to
achieve economic dispatch and voltage compensation. The proposed mechanism controlled not just
the electricity but the cooling and heating systems as well. The power balance constraints are given in
Equation (38).

Q∑
m=1

Pm(t) =PE.L(t) − PE.L,c(t); PH(t) = PH,L(t)&PC(t) = PC.L(t) (38)

where PE.L(t), PH,L(t) and PC.L(t) are electricity, thermal and cooling load of the MG, respectively.
The simulations performed by the authors proved the designed system to be capable of effectively
solving the optimization problem for different situations while keeping the voltage variations in the
limit and improving the overall economic and environmental efficiency.

4.3.2. Control of Frequency Fluctuations

The availability of RESs is never constant over a period of time. This uncertainty in the available
supply demands proper consideration of the system frequency. This frequency control is very important
in the sense that it enables the system to automatically and dynamically adjust generation to meet the
load demand that improves load factor and consumption of energy. Frequency control mechanisms
also increase the flexibility of the system components, which encourages the integration of a number of
MGs to develop MMGs and supply good quality of energy to the load while keeping the frequency
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and other power system parameters in their specified limits [105]. Many researchers have investigated
and presented different mechanisms to provide frequency control in RES based power system while
having a proper plan for OED.

In [106], the authors presented a comprehensive review of the mitigating methods adopted to
control the fluctuations of a power system containing PV cells. Load variations cause the system
frequency to deviate, and the situation becomes even worse when the solar radiation causes the PV
output to vary as well, as it was discussed in [107]. The authors also analyzed that the frequency
fluctuations in PV based systems were less than the wind-based systems. However, this difference
is of lesser significance as the modern grid system has interconnected hybrid solar and wind power
systems. They also proposed that in order to compensate for the drooping frequency due to a rise
in load, a battery storage system can be implemented. The authors presented simulation models to
demonstrate the presented schemes for controlling power fluctuations especially variations in the
frequency of PV sources.

Reference [108] presented a mechanism to control the frequency stability and ED of the power
system networks. The authors presented asymptotic stability for integral frequency control to
accommodate a decentralized power system. The authors then developed a distributed averaging-based
integral (DAI) control that is designed to operate by sense and control system of local frequency.
The formula for ED of the generated power is given in Equation (39).

min
θ, u

∑
j∈N

1
2 a ju2

j

subject to
p j + u j −

∑
k∈N

B jk sin
(
θ j − θk

)
= 0, j ∈ N∣∣∣θ j − θk

∣∣∣ ≤ γ jk <
π
2 , j, k ∈ ε

(39)

The explicit synchronization frequency is given by Equation (40).

ω∗ =

∑
j∈N p j+u j∑

j∈N D j
(40)

The results concluded that the proposed DAI control system provided the closed-loop stability to
the system and achieved the desired ED. These conclusions were also validated by the simulations
performed. However, the impact of back-up supply on frequency control was not considered.

The authors in [109] presented a droop control method for the frequency stability of RES based
power systems. Unlike [108], the proposed system worked by controlling the charging power through
the aggregated participation of the system frequency, which was instated as soon as the system
frequency deviated from the rated frequency. The mathematical formula required to be satisfied for
the power, while the system frequency remained regulated is given in Equation (41).

Pagg,t,h = Pc,grant,t,h + ∆P; Pagg,t,h ≥ P f orce,t,h (41)

The authors concluded through their results that the proposed system performed well in frequency
regulation even when the penetration of RES increased. They also proved that the higher the RES
penetration in the power system, the more significant the frequency regulation mechanism.

4.3.3. Regulation of Ramp-Rate Limits

The ramp rate (RR) is defined as the rate of change in power at the given time interval. If the
change in power is positive, it is known as a ramp-up, and if the power change is negative, then it
is known as a ramp-down event. Ramp rate accounts for the difference in power over the specified
time interval [110]. The RR occurs due to the intermittent nature of RES as the wind speed or solar
irradiation endures variation during different time intervals of a day. This variation in wind speed
or solar radiation causes the power supply to change, thus impacting the overall performance of
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the power system as it may cause other imbalances to appear and disturb the normal operation of
the power system. The wind energy is more prone to these RR limits (RRL) violation than the solar
radiation, because of more variation of wind speed during different periods of the day. The overall
impact of power generation variation should be considered by the planners to maintain the continuity
and reliability of the supply. Many researchers have developed mechanisms to measure and sort-out
the RRL violations.

Reference [111] developed an optimal operation mechanism for grid-connected hybrid RESs for
residential applications. The designed system incorporated a variety of sources like PV, wind, fuel cell
and solar thermal and supplied electricity and heating. The modified PSO performed the optimization
problem. The ramp rate occurrence and the fuel cell (FC) assembly, start and stop cycles are given in
Equation (42).

Pmin ≤ PFC,i ≤ PMax(
To f f

t−1 −MDT
)
(Ui −Ui−1) ≥ 0(

Ton
t−1 −MUT

)
(Ui−1 −Ui) ≥ 0

PFC,i−1 − PFC,i ≤ ∆Pd

PFC,i − PFC,i−1 ≤ ∆Pu

(42)

where To f f and To f f denote the FC off and on time respectively, and U denotes the on-off status of
the FC following the binary system MUT and MDT represents the upper and lower ramp rate limits
respectively. The simulation results obtained were after implementation of the proposed system
for four different cases, and assessment of the results validated that the proposed hybrid energy
system was more cost-effective and simpler than the stand-alone single-source systems, even when the
system must supply energy to full load demand. A comparison between the optimization of modified
PSO and genetic algorithm (GA) also concluded that modified PSO was more accurate with better
convergence time.

In [112], designed a stochastic ED model for hybrid power systems with the wind, solar, and thermal
power plants, to solve dynamic economic emission dispatch (DEED) problems while considering the
environmental constraints. They used a weighted aggregation method for enabling PSO to solve
multi-objective (MO) problems. The RR constraint incorporated in [112] is given in Equation (43).

Pi j − Pi j−1 ≤ URi; Pi j−1 − Pi j ≤ DRi (43)

where URi and DRi are ramp-up and ramp-down for the ith unit, respectively. The authors based on
their simulation and results, concluded that the presented model provided an optimal solution to the
DEED problem. The developed system tackled the uncertainty and system imbalance issues efficiently
and operated the system securely and optimally.

The authors in [113] presented a model for combined economic emission dispatch (CEED)
with a PV system integrated with serval thermal generating plants. The formulated problem was
tackled through a decomposition framework that divided the problem into two sub-problems. PSO,
Newton-Raphson method, and binary integer programming techniques were incorporated in the
designed mechanism. The proposed solution for the optimization problem is given in Equation (44).

min
Pi,Us j,Psk

n∑
i=1

(Fi(Pi) + Ei(Pi)) +
m∑

j=1

G j −Us j −

NB∑
k

Psk −

m∑
j=1

Us j (44)

The authors concluded that the presented mechanism could reduce overall fuel costs and had
the potential to reduce emissions by enhancing the share of solar generation in the power system.
The hybrid optimization scheme also provided an optimal solution for the ED of generation while
satisfying RRL.
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4.3.4. Storage Mechanism as a Solution

RESs based supply keeps on varying throughout the time period besides, their supply is also not
available during a day as wind flow can vary, or a cloud cover may emerge at any time [114–116].
This intermittent nature of these sources also gives rise to certain issues such as frequency fluctuations
and RRL that requires proper backup arrangement to keep up with the continuous load demand.
The backup system can be of two categories:

(i) Thermal Power Generation is dependable, but it presents major issues such as a rise in carbon
emissions, an increase in fuel cost, and special consideration is required in system coordination.
We cannot use thermal plants as backup generation only as they take a significant amount of
time in their start-up, and fuel cost for spinning reserve contributes to disturbing the economic
dispatch that is a major concern in current power system.

(ii) Battery Storage compensation through batteries is a modern age replacement of backup thermal
plants. It requires a properly designed storage system to provide adequate power to supply
the load when power from RESs is lesser than the demand. The battery storage system also
provides an additional benefit of peak shaving as RES starts supplying an excessive supply for
storage [117,118]. The major concern is of designing a properly designed storage system to
achieve the optimum cost-saving and stability of the power system.

Many researchers have presented mechanisms based on backup storage systems that maintain
continuous supply according to the load demand while keeping the system constraints within
their limits.

In [119], the authors discussed the economic allocation of energy storage systems for Wind Power
Distribution. The authors argued that the improper size selection and wrong placement of the storage
units cause voltage instability and an undesired increase in the cost of the power system. To solve
this, issue the authors presented an algorithm based on the hybrid multi-objective PSO (HMOPSO)
to improve the voltage profile and cost of the power system. The proposed algorithm was designed
by the combination of MOPSO, non-dominant sorting GA, and probabilistic load flow techniques.
The mathematical relation used for computation of the operational cost is given in Equation (45).

Costi =
NG∑
j=1

C(PGi) + Cw + Cs (45)

where C(PGi), Cw and Cs are the fuel cost of the generator, cost of wind power generator, and cost
of energy storage system, respectively. They concluded through the presented simulation results
that the system provided proper placement and sizing of the Energy Storage System (ESS) as well as
minimizing the total operational cost and improved the voltage profile. But, the power compensation
extracted from batteries was slow.

The authors in [120] presented optimization of the battery ESS (BESS) through PSO implemented
on stand-alone MGs. The proposed method was designed to install a battery of optimum size to
compensate for the load demand when required and simultaneously control the frequency to avoid
any instability occurrence in the power system. The proposed model was also compared on an
economic basis with some of the available modern technologies. The authors also discussed some of the
materials used in batteries to find out the optimum material for better battery storage. They proposed
polysulfide-bromine based BESS to be cost-effective than the redox-based BESS for long-duration
applications. The formulas used by the authors for BESS calculation are given in Equation (46).

Ebac =
rbp

1 + STbp
IBESS; IBESS =

Ebt − Ebac − Eb1

rbt + rbs
; Eb1 =

rb1

1 + STb1
IBESS (46)

where IBESS, Eb1, Ebt, Ebac, rbp and rb1 are current through the battery, battery resistance, Vphase of the
battery side, Vopen-circuit of battery, self-discharge resistance, and over-voltage resistance, respectively.
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Based on the presented results, the authors concluded that the presented system offered very fast
compensation for active power that improved the dynamic stability of the power system. The results also
validated the significance of the BESS based PSO mechanism for optimum sizing of the storage system.

Reference [121] emphasized the use of ESS to tackle the inherent uncertainty of the wind power
system to make the power system more reliable. The authors discussed several technologies available
for ESS of different stability purposes and concluded that the properly designed battery system is key
to success. The formulas incorporated for ESS power output and remaining energy level (REL) is given
in Equation (47).

Pord
bess =

−sT f

1 + sT f
Pwind; REL =

Pord
bess
s

=
T f

1 + sT f
Pwind (47)

where T f is time constant. It is also clear from Equations (46) and (47) that the larger the value of
time-constant, higher will be smoothing effect and larger will be ESS power.

The authors concluded that recent models focused on the daily dispatch of the ESS operation
and control to compensate for the power fluctuations [122]. The authors also discussed the technical
constraints, some of which have already been discussed in this paper for the OED of RESs. The authors
also emphasized the significance of time-constant in the smoothing effect along-with system power
stability and capacity rating.

The authors in [123] designed a mechanism of optimal energy storage system (ESS) along-with
a PV generation system. The mechanism presented by the authors was based on four steps, i.e.,
prediction of load and daily power generation, an optimization process for best battery power “Pb” and
state of battery charge “SOCb”, power requests calculus, and E-broker auction algorithms. The value
of Pb was computed using Equation (48).

Pb = 2 · Pcont · xp (48)

where xp is the optimization variable. SOCb was used to trigger the power requests from the system.
The method avoided the scenario faced by researchers where they had to impose a division on the
battery peak shaving and energy shifting as it optimized suitable variables and prevented the ESS from
capacity wasting. The presented model also prevented power losses and unforeseen peaks occurring
due to the supply or absorption of power by optimizing the boundaries of battery behavior. However,
the system was not effective for active distribution systems (ADSs).

Reference [124] presented a fuzzy multi-objective bi-level problem for the planning of ESS in
(ADS). The authors designed a model using PSO and differential evaluation (DE) for the solution to
the mentioned problem. They considered two scenarios of ADSs like peak load shaving and failure
status responsibility support system. The mechanism worked by dividing the yearly data into 365
intervals according to the load demand and power output by the REGs. The objective functions
developed for peak load shaving, restraining voltage ESS reserve capability are given in Equations (49)
and (50), respectively.

min f1 = min
24∑

t=1

(
PNL(t) − PNL,average

)2

min f2 = min
24∑

t=2
(PNL(t) − PNL(t− 1))

2

min f3 = min

 1
24∑

t=1
Pava(t)


(49)

and

Pava(t) = min

PR
ESS,

(
ESS(t− 1) − Emin

ESS

)
ηD

∆t

 (50)
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where PNL,average is the average of the net load demand of the ADS, ESS(t) is energy stored in battery
bank at time t, and Emin

ESS is the minimum energy stored in the battery bank of the ESS.
Based on the simulation results, the authors concluded that the propped scheduling model

contributes to obtaining a reasonable planning scheme by taking into consideration the ESS operation
strategy. The system implemented in designing a proper ESS can help in tackling the time-varying
nature of RESs and the load demand as well.

The authors in [125] presented a stochastic planning and scheduling model for ESSs to handle the
congestion in the electric power systems consisting of RESs. The model provided a design mechanism
for charging the dis-charging of ESSs to handle the intermittent nature of RESs. The output power of
wind and solar using Gaussian probability density function (PDF) and Monte-Carlos simulation (MCS)
along-with ESS to tackle unpredictability. The objective functions for congestion management and ESS
cost minimization are mentioned in Equations (51), (52) and (53), respectively.

o fcm = Cn + INESS (51)

INESS = (DVE × PESS × IPE) × EAC (52)

Cn =

 mll∑
ll=1

 NL∑
nl=1

(
Sll

nl × FTRll
nl

)
 × Tan (53)

where INESS is annual installation cost of ESS, EAC is applied converter for life-cycle, Cn is power
flow through all lines, and FTR is financial transmission right for daily congestion cost, respectively.
The planning system requires three identical ESSs to manage the congestion and cost of the system.
The network without ESS cannot meet the constraints, and simulation results concluded that ESS not
only reduced the loss but also improved the voltage profile and stability margin. Table 6 summarizes
the discussed solutions to the constraints along-with their presented models and objective functions.

Table 6. Constraints and their solutions for optimal economic (OED) of Renewable Energy Sources
(RESs).

Constraints Presented Model Objective Function Reference

Load and Voltage
Variations

Pa
D + PL −

NG∑
i=1

PGi = 0

Pa
D = Pt

D − (Ps + PW)

minF f (PGi)

=
NG∑
i=1

(
ai + biPGi + ciP2

Gi

)
Here Pa

D, PL, Psand PW
are the load demand,

transmission losses, solar
and wind powers,

respectively [103,104].

Frequency
Fluctuations

P f orce,t,h =
Kt,h∑
k=1

PUn
rate,k +

Mt,h∑
j=1

PM
rate, j

Pc,max,t,h =
Nt,h∑
i=1

Prate,i

min
T∑

t=1


Ng∑

g=1

 ag ·

(
PG,re f

g,t

)2
+

bg · P
G,re f
g,t + cg


 [105–109]

Ramp-Rate
Limits

Fi(Pi) = αiP2
i + βiPi + γi+

εi exp(δi × Pi)

min
Pi,Us j,Psk

n∑
i=1

(Fi(Pi) + Ei(Pi))+

m∑
j=1

G j −Us j −
NB∑
k

Psk −
m∑

j=1
Us j

[110–113]

Storage
Mechanism

Pi −Vi
N∑

j=1
V j

(
Gi j cos δi j + Bi j sin δi j

)
= 0

Qi −Vi
N∑

j=1
V j

(
Gi j sin δi j − Bi j cos δi j

)
= 0


min f1 =

5∑
i=1

Probi ·Costi

min f2 =
n∑

k=1

(
Vk−Vspec

k
∆Vmax

k

)2

 [114–125]

5. Conclusions

This paper reviews the constraints faced and their solutions for reliable, efficient, cost-effective, and
sustainable RESs based power systems. The fluctuating RES input power categorized in time and space
has different solutions. In the time domain, forecasting helps plan for the supply-demand mismatch.
In the spatial domain, different regions across vast space have different generation capabilities and
hence can be used to balance out load mismatch. The combination of time and space variations, both of
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which have different solutions integrated gives the best overall system solution. The intermittency of
RESs poses a major hurdle in their large-scales implementations but, supply forecasting (i.e., wind
speed and solar irradiance) helps power system planners to design and implement large RESs based
on power generation farms. WD emerges as an accurate, reliable and fast technique for predicting
resource availability during a specified time period. The forecasting mechanisms may also require
the incorporation of NN for the correction of an error in the predicted value to make the system even
more precise. The RESs dependent power systems also have to face some other constraints such as
load and voltage variation, frequency fluctuations, ramp-rate limits, and energy storage mechanisms
in OED. The proposed mechanisms and algorithms for the solution of these constraints have been
discussed and summarized. The review showed that the consideration of these constraints improves
the performance of the power system for optimal economic dispatching. This paper comprehensively
provides a manuscript for investors and power system planners to be able to learn about constraints
and their available solutions, and it can be beneficial for researchers by providing a broad source for
their literature review.

Author Contributions: Conceptualization, M.E. and G.A.; data curation, A.R.; formal analysis, I.K., G.A. and
P.M.K.; investigation, U.F.; methodology, M.E., G.A., A.R. and M.N.; resources, I.K., P.M.K. and M.N.; supervision,
G.A.; validation, I.K. and P.M.K.; visualization, U.F.; writing—original draft, M.E. and G.A.; writing—review &
editing, M.E., A.R., M.N., U.F. and G.A.

Funding: The open access publishing fees for this article have been covered by the Texas A&M University Open
Access to Knowledge Fund (OAKFund), supported by the University Libraries and the Office of the Vice President
for Research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ANN Artificial Neural Networks
ANFIS Artificial Neuro Fuzzy Inference System
CNN Convolutional Neural Networks
CEED Combined Emission Economic Dispatch
DED Dynamic Economic Dispatch
DWPSO Double Weighted Particle Swarm Optimization
DNI Direct Normal Solar Irradiation
ED Economic Dispatch
EDP Economic Dispatch Problem
ERCOT Electric Reliability Council of Texas
ESRMC Energy and Spinning Reserve Market Cleaning
EMD Empirical Mode Decomposition
GHI Graphical Horizontal Solar Irradiation
GP Genetic Programming
HANN Hybrid Artificial Neural Network
ICA Independent Component Analysis
LUBE Lower-Upper Bound Estimation
MLFFNN Multi-layer Feed-forward Neural Networks
MAPE Model Predictive Control
MG Micro-grid
MMG Multi Micro-grid
MOM Method of Moments
NN Neural Networks
NWP Numerical Weather Predictor
OED Optimal Economic Dispatch
PSO Particle Swarm Optimization
PV Photovoltaics
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PDEM Part Density Energy Method
PI Prediction Interval
PCA Principal Component Analysis
RES Renewable Energy Sources
RF Reliability Factor
RBFNN Radial Basis Function Neural Networks
RMSE Root Mean Squared Error
SVM Support Vector Machine
SD Standard Deviation
SVR Support Vector Regression
SSER Small-Scale Energy Resource
WD Weibull Distribution
WT Wind Turbine
WTG Wind Turbine Generator
WEC World Energy Council
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