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Abstract: The purpose of the present paper is to investigate the micropolar nanofluid flow on
permeable stretching and shrinking surfaces with the velocity, thermal and concentration slip effects.
Furthermore, the thermal radiation effect has also been considered. Boundary layer momentum,
angular velocity, heat and mass transfer equations are converted to non-linear ordinary differential
equations (ODEs). Then, the obtained ODEs are solved by applying the shooting method and in the
results, the dual solutions are obtained in the certain ranges of pertinent parameters in both cases of
shrinking and stretching surfaces. Due to the presence of the dual solutions, stability analysis is done
and it was found that the first solution is stable and physically feasible. The results are also compared
with previously published literature and found to be in excellent agreement. Moreover, the obtained
results reveal the angular velocity increases in the first solution when the value of micropolar
parameter increases. The velocity of nanofluid flow decreases in the first solution as the velocity
slip parameter increases, whereas the temperature profiles increase in both solutions when thermal
radiation, Brownian motion and the thermophoresis parameters are increased. Concentration profile
increases by increasing Nt and decreases by increasing Nb.

Keywords: micropolar nanofluid; partial slips; dual solutions; shrinking/stretching surface;
shooting method

1. Introduction

The boundary flow and heat transfer phenomena of all types of fluids have remained
of great interest for many researchers, especially for purpose of the practical implementation.
Originally, fluids are classified into Newtonian and non-Newtonian fluids. There are many industrial
applications of non-Newtonian fluids, such as drilling mud, polycrystal melts, oils, certain paints,
volcanic lava, cosmetic product, fluid suspensions, molten polymers and food product, etc. There are
many mathematical models for various constitutive equations that deal with flow phenomena with
different parameters. Among such models, the micropolar fluid model is one of the non-Newtonian
models introduced by Eringen [1]. This model deals with the flow of the micropolar fluids, whereas
some examples of the micropolar fluids are liquid crystals with rigid molecules, suspensions or
colloidal solutions, some biological fluids, exocytic lubricants and the blood of the animals, etc. In
many industries, fluids are used for heat transport purposes, but common fluids are weak source of
the heat transport. So, with development of nanotechnology, in the field of fluid mechanics, Choi
and Eastman [2] introduced a new kind of modern fluid that could suspend the solid nanoparticles
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into common base fluids, later named as nanofluid. Nanofluids possess high thermal conductivity as
compared to all concerned host fluids. Nanofluids is a sub-class of the modern rapidly growing field
of nanoscience and technology.

Several practical problems have been discussed by many researchers in order to enhance thermal
conductivity for the last many years. There are two well-known models that support transport
phenomena of nanofluids, which are the Tiwari and Das model [3] and Buongiorno’s model [4].
It should be noted that Buongiorno’s model is considered a two-phase non-homogeneous model in
which the slip velocity of the base fluid and nanoparticles are not equal to zero. This model contains
seven slip parameters, including diffusiophoresis, inertia, fluid drainage, gravity, Brownian motion,
Magnus and thermophoresis [5]. On the other hand, the Tiwari-Das model is one of the single-phase
(homogeneous) models in which the thermophysical characteristics of the base fluid are improved
with the impact of nanoparticles allied with viscosity and thermal conductivity. Many researchers
considered these two models to study all types of nanofluids as well as micropolar nanofluids, such as
Hsiao [6], Lund et al. [7,8], Hashemi et al. [9], Hussain et al. [10], Dero et al. [11–13], Alarifi et al. [14]
Pourfattah et al. [15], Alsarraf et al. [16], Jafarimoghaddam et al. [17,18], and Pal and Mandal [19].
Further work on nanofluid is referenced in [20–22]. In the present research, Buongiorno’s model is
considered in order to develop the mathematical model for boundary layer micropolar nanofluid flow
with slip parameters and radiation effect. It is observed that a little attention is given to this model for
the case of existing multiple solutions in flow of the micropolar nanofluid.

The velocity, temperature and concentration slip factors may exist in case of rising the relative
difference among velocity, temperature and the concentration entities. Awais et al. [23] studied the
different slip conditions on a stretching sheet. They stated that if the temperature in the fluid flow
is controlled by the thermal slip parameter then there is the possibility the concentration may also
be controlled through transport phenomena of mass transfer. Das [24] examined the velocity slip on
micropolar viscous fluid and found the increasing value of the velocity slip parameter will decrease
the velocity as well as the thickness of the boundary layer. Ramya et al. [25] considered the nanofluid
with thermal and velocity slip parameters. Some studies of micropolar nanofluid with different slip
conditions can be found in [26–29].

It has been observed in previous literature that the work on the non-Newtonian nanofluid
flow is very limited. Therefore, in present research work, a non-Newtonian micropolar nanofluid is
considered by using a two-phase model. There study of Hayat et al. [30] examined the two-dimensional
incompressible micropolar nanofluid flow over a linearly stretching/shrinking sheet with velocity,
thermal and concentration slip effects. To the best of the author’s knowledge, the multiple similarity
solutions with stability analysis of micropolar nanofluid flow on a permeable stretching and shrinking
surface along the velocity, thermal and the concentration slip effects have not been studied by any
other researcher in the past years. Thus, the purpose of the present work is to determine the multiple
similarity solutions with stability analysis of the micropolar nanofluid flow with thermal radiation and
slip effects. Buongiorno’s model is used due to its novelty of thermophoresis and Brownian motion
of small particles. Furthermore, numerical solutions have been obtained by applying the shooting
technique with shootlib function in the Maple software. There has been stability analysis performed in
order to determine the stable solution with the help of BVP4C solver. The graphical results of different
applied parameters are illustrated in the discussions. Furthermore, the physical behaviors of the skin
friction coefficient, and the local Nusselt and Sherwood number are discussed. The main focus of this
paper is to determine the multiple similarity solutions with stability analysis of micropolar boundary
layer nanofluid and to understand the behavior of different parameters in the flow and heat transfer
characteristics. It is expected that the present study will help those researchers interested in multiple
similarity solutions with stability analysis in micropolar nanofluid flows.
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2. Flow Analysis

Two-dimensional incompressible micropolar nanofluid flow through a linearly shrinking and
stretching surfaces with velocity, thermal and concentration slip effects are shown in Figure 1 Furthermore,
the effects of Brownian motion and the thermophoresis have been considered in Newtonian heat and
concentration equations with thermal radiation effect. By using the above-mentioned assumptions as
well as boundary layer approximations, the system of governing equations of micropolar boundary
layer nanofluid flow will be written as:

∂u
∂x

+
∂v
∂y

= 0 (1)
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Figure 1. Geometry of flow problem and coordinate system.

Subject to boundary conditions

v = v0; u = λuw(x) + β∂u
∂y ; N = −m∂u

∂y ; T = T w + β1
∂T
∂y ; C = C w + β2

∂C
∂y at y = 0

u→ 0; N→ 0; T→ T∞; C→ C∞ as y→∞
(6)

Where u and v represent velocity components in the directions of the x-axis and y-axis, respectively.
While ϑ, ρ, κ, N,γ and j are kinematic energy, fluid density, vortex viscosity, angular velocity,
spin gradient viscosity and micro-inertia density, respectively. Furthermore, T, α, K∗, σ∗, τw, DB, DT, T∞
and C are temperature, thermal diffusivity of nanofluid, mean absorption coefficient, Stefan–Boltzmann
constant, ratio of effective heat capacity of nanoparticles of solid material to the heat capacity of fluid,
thermophoretic diffusion coefficient, coefficient of Brownian diffusion, free stream temperature and
concentration field, respectively. v0 is mass flux velocity, uw(x) = ax is shrinking/stretching velocity of
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surface and λ is shrinking/stretching parameter where λ < 0 indicates shrinking surface while λ > 0
indicates stretching surface and β, β1 and β2 are the velocity, heat transfer and the concentration slip
parameters, respectively.

The following similarity variables are applied to determine the similarity solutions of the problem.

η = y
√

a
ϑ , u = ax f

′

(η), v = −
√

aϑ f (η), N =
√

a
ϑaxg(η),θ(η) = (T−T∞)

(Tw− T∞)
,

∅(η) =
(C−C∞)
(Cw− C∞)

,
(7)

By using similarity transformations (7) in Equations (1)–(5), the following ODEs are obtained,

(1 + K) f ′′′ + f f ′′ − f
′2 + Kg

′

= 0 (8)(
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K
2

)
g′′ + f g

′

− g f
′
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4
3

Rd
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′
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′

θ
′
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(
θ
′
)2

= 0 (10)

1
Sc

∅′′ + f∅′ + 1
Sc

Nt

Nb
θ′′ = 0 (11)

subject to boundary conditions

f (0) = fw, f
′

(0) = λ+ δ f ′′ (0), g(0) = −m f ′′ (0), θ(0) = 1 + δTθ′(0), ∅(0) = 1 + δC∅
′

(0)
f
′

(η)→ 0, g(η)→ 0, θ(η)→ 0, ∅(η)→ 0 as η→∞
(12)

where, prime indicates differentiation with respect to the variable η, K = κ
µ is the micropolar material

parameter, Pr = ϑ
α is a Prandtl number, Rd =

4σT3
∞

K∗k is thermal radiation parameter, Nb =
τwDB(Cw−C∞)

ϑ

is a Brownian motion parameter, Nt =
τwDT(Tw−T∞)

ϑT∞ is a thermophoresis parameter and Sc = ϑ
DB

is the

Schmidt number. Moreover, fw = − v0
√

aϑ
is the suction parameter ( fw > 0), δ = β

√
a
ϑ is a velocity slip,

δT = β1

√
a
ϑ is a thermal slip and δC = β2

√
a
ϑ is concentration slip parameters. It should be noted that

the values of m = 0 show that the microelements are closed to surface with a strong concentration,
which means the particles are not rotatable. In the same manner, m = 0.5 shows that the concentration
is week due to vanishing of the anti-symmetric part of the stress tensor. In addition, m = 1 specifies
the turbulent boundary layer flow model of Ramzan et al. [31].

Quantities of the physical interests are the coefficient of the skin friction C f , local Nusselt number
Nu and Sherwood number Sh that are stated as,

C f =

[
(µ+ κ) ∂u

∂y + κN
]

y=0

ρu2
w

, Nu =

−x
[(

16σ∗T3
∞

3K∗ + k
)
∂T
∂y

]
y=0

(Tw − T∞)
,Sh =

−x
(
∂C
∂y

)
y=0

(Cw − C∞)
(13)

Using Equation (7) in (13), it is obtained

C f (Rex)
1
2 = (1 + (1−m)K) f ′′ (0),Nu(Rex)

−
1
2 = −

(
1 +

4
3

Rd
)
θ
′

(0),Sh(Rex)
−

1
2 = −∅′(0) (14)

where Rex = ax2/ϑ is a local Reynolds number.

3. Stability Analysis

The numerical computation of the Equations (8)–(11) with boundary conditions (12) shows the
occurrence of the dual solutions. Therefore, it is necessary to perform the stability analysis to find the
stable and physically feasible solution. For stability of solution, the first step is to convert governing
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Equations (2)–(5) into unsteady form by introducing a new time dependent variable τ as mentioned
by [32–34].

∂u
∂t

+ u
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∂x
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∂2u
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Now, the new similarity variables have been introduced as follows

η = y
√

a
ϑ , τ = at, u = ax∂ f (η, τ)

∂η , v = −
√

aϑ f (η, τ), N =
√
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,
(19)

By using Equation (19) in Equations (15)–(18), it is obtained
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∂ f
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)2
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−
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(
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K
2
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∂ f
∂η
−Kg−K

∂2 f
∂η2 −

∂g
∂τ

= 0 (21)

1
Pr

(
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4
3
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)
∂2θ

∂η2 + f
∂θ
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∂∅
∂η

∂θ
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(
∂θ
∂η

)2

−
∂θ
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∂2∅
∂η2 + Sc. f

∂∅
∂η

+
Nt

Nb

∂2θ

∂η2 −
∂∅
∂τ

= 0 (23)

Subjected to boundary conditions

f (0, τ) = S; ∂ f (0, τ)
∂η = λ+ δ

∂2 f (0, τ)
∂η2 ; g(0, τ) = −m∂2 f (0, τ)

∂η2 ; θ(0, τ)

= 1 + δT
∂ θ(0, τ)

∂η ; ∅(0, τ) = 1 + δC
∂∅(0, τ)
∂η

∂ f (η, τ)
∂η → 0; g(η, τ)→ 0; θ(η, τ)→ 0;∅(η, τ)→ 0; as η→∞

(24)

Now, there has been perturbed the basic solutions f (η) = f0(η), g(η) = g0(η), θ(η) = θ0(η) and
∅(η) = ∅0(η) with disturbances as

f (η, τ) = f0(η) + e−ετF(η)
g(η, τ) = g0(η) + e−ετG(η)

θ(η, τ) = θ0(η) + e−ετH(η)

∅(η, τ) = ∅0(η) + e−ετS(η)

(25)

where smallest eigenvalue is ε and F(η), G(η), H(η) and S(η) are small relative to f0(η), g0(η), θ0(η)

and ∅0(η) respectively. In the last one, the following system of linearized eigenvalue problems
was obtained:

(1 + K)F′′′0 + f0F′′0 + F0 f ′′0 − 2 f
′

0F
′

0 + KG
′

0 + εF
′

0 = 0 (26)



Energies 2019, 12, 4529 6 of 20

(
1 +

K
2

)
G′′0 + f0G

′

0 + F0g
′

0 − g0F
′

0 − g0F
′

0 − 2KG0 −KF′′0 + εG0 = 0 (27)

1
Pr

(
1 +

4
3

Rd
)
H′′0 + f0H

′

0 + F0θ
′

0 + Nb∅
′

0H
′

0 + NbS
′

0θ
′

0 + 2Ntθ
′

0H
′

0 + εH0 = 0 (28)

S′′0 + Sc
(

f0∅
′

0 + F0S
′

0

)
+

Nt

Nb
H′′0 + Sc.εS0 = 0 (29)

with boundary conditions

F0(0) = 0, F
′

0(0) = δF′′0 (0), G0(0) = −mF′′0 (0), H0(0) = δTH
′

0(0), S0(0) = δCS
′

0(0)
F
′

0(η)→ 0, G0(η)→ 0, H0(η)→ 0, S0(η)→ 0 as η→∞
(30)

The above-mentioned linearized Equations (26)–(29) with boundary conditions (30) are solved by
using BVP4c solver function in MATLAB software and found values of smallest eigenvalue ε. In order
to find the smallest eigenvalues, there is to be relaxed one of the boundary conditions into initial
condition as recommended by Harris et al. [35] and Ali et al. [36]. In this particular problem, there is
relaxed the G0(η)→ 0 as η→∞ into G

′

0(0) = 1. It should be noted that negative smallest eigenvalues
indicate the initial growth of disturbance, henceforth the solution of fluid flow becomes unstable.
Whereas, if smallest eigenvalue value is positive, that flow of fluid is stable and physically realizable.

4. Result and Discussion

The governing equations of boundary layer micropolar nanofluid flow [8–11] subject to boundary
conditions (12) are solved by shooting method with help of Maple software. The results of the
momentum, angular velocity, temperature and concentration profiles are demonstrated graphically for
different values of various physical parameters such as micropolar material, Brownian motion, thermal
radiation, thermophoresis, and slip parameters. The obtained results are compared to those obtained
by Hayat et al. [30] using homotopy analysis method (HAM) for the values of skin friction coefficients
presented in Table 1. It is found that the present results show good agreement with those obtained
by Hayat et al. [30]. So, it can be said that the obtained results are correct and reliable. Furthermore,
the numerical solutions indicate the occurrence of dual solutions in the micropolar nanofluid flow
problem for all profiles. Therefore, another technique, the three-stage Lobatto IIIa formula is created in
BVP4c with the help of finite difference technique. Afterward, stability analysis is performed by using
of the BVP4c solver function.

Table 1. Comparative results for surface drag force (C f (Rex)
1
2 ) for various values of m = 0, 0.5 for the

micropolar fluid with Hayat et al for the various values of K at λ = 1 and fw = 0. Reproduced with
permission from [30]. Elsevier, 2017.

m=0 m=0.5

K Hayat et al., [30] Present Hayat et al., [30] Present

0 −1.00000 −1.00000 −1.00000 −1.00000
1 −1.367870 1.367996 −1.224739 −1.224819
2 −1.621222 −1.621570 −1.414214 −1.414479
4 −2.004129 −2.005420 −1.732047 −1.733292

According to Lund et al. [37,38], “this collocation formula and the collocation polynomial provides
a C1 continuous solution that is fourth order accurate uniformly in [a , b]. Mesh selection and error
control are based on the residual of the continuous solution.” Values of the smallest eigenvalue are
given in Table 2. With the help of these values, it is expressed that the first solution (upper branch
solution) is stable and physically realizable because the smallest eigenvalue is positive. Whereas the
second solution (lower branch solution) is unstable because of the smallest eigenvalue is negative, so it
is not physically realizable.
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Table 2. Smallest eigenvalues for different values of K and S.

ε

K S 1st solution 2nd solution

0 3 0.65232 −1.04592
0 2.5 0.3938 −0.77841
0 2 0.03269 −0.13870
1 3 0.49827 −0.85106
1 2.5 0.14281 −0.49401
2 3 0.26092 −0.52380

Numerical values of skin friction coefficient f ′′ (0), couple stress coefficient g′(0), local Nusselt
number−θ′(0) and local Sherwood number−∅′(0)with variation of the stretching/shrinking parameter
(λ) for different values of suction parameter fw are illustrated in Figures 2–5, where values of
Pr = 1, K = 1, Rd = 0.2, Nb = 0.2, Nt = 0.5, Sc = 1, δ = 0.1, δT = 0.1, δC = 0.1 are fixed. Figure 2
indicates the plot of the skin friction coefficient f ′′ (0) for the different values of fw with variation of the
λ. From the figure, it is examined that for the specified values of fw, the dual similarities solutions exist
when λc ≤ λ where λc represents critical points that are presented in figures as a λc0, λc1 and λc2.
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In this work, the obtained critical points for variation of the λ are λc0 = −1.4312, λc1 − 1.6535
and λc2 − 1.8933 for the different values of fw = 2.8, 3, 3.2, respectively. Thus, |λc| increases as the
fw is increased. It is interesting to mention that dual solutions for this problem exist for the linearly
stretching (λ > 0) as well as for the shrinking (λ < 0) surfaces. Figure 2 illustrates that in the second
solution, the skin friction coefficient f ′′ (0) reduces as the value of fw is increased. Whereas in the first
solution, the skin friction coefficient increases with an increment in the fw for λ ≤ 0 and for λ > 0 an
opposite result is noticed. The effect of fw with variation of λ on the coefficient of the couple stress g′(0)
is presented in Figure 3. It is observed that the couple stress coefficient g′(0) decreases in first solution
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for λ > 0 but at λ ≤ 0 opposite trend of the result is observed. In the second solution, it can be seen that
the coefficient of the couple stress g′(0) decreases in both cases of the stretching and shrinking surfaces
throughout the flow. Moreover, Figure 4 shows the rate of heat transfer −θ′(0) increases in both first
and second solutions when λc ≤ λ for a different values of fw. The absolute value of critical point λc
increases as the value of the suction parameter is increased. The rate of concentration (local Sherwood
number) decreases in both first and second solutions with increment in the values of fw at variation
of the λ when λ > −0.4 but for λ < −0.4 the rate of concentration is increased that is mentioned in
Figure 5.
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Furthermore, variations of the skin friction coefficient f ′′ (0), couple stress coefficient g′(0),
local Nusselt number −θ′(0) and local Sherwood number −∅′(0) with variation of the suction
parameter fw for different values of material parameter (K) are presented in Figures 6–9. In these figures
for the values of the Pr = 1, λ = −1, Rd = 0.2, Nb = 0.2, Nt = 0.5, Sc = 1, δ = 0.1, δT = 0.1, δC =

0.1 are fixed . Figure 6 represents the effect of material parameter (K) on skin friction coefficient f ′′ (0).
It is analyzed when K = 0 (Newtonian case), dual similarity solutions exist in the range for fw ≥ 1.90906
and no solution at fw < 1.90906. It is worthwhile to specify the increasing values of K reduces the
range of multiple solutions versus suction parameter fw. For K = 1 (K = 2), dual solutions occur when
fw ≥ 2.35601 ( fw ≥ 2.7314) and no solution at fw < 2.35601 ( fw < 2.7314). Furthermore, any increment
in the value of the suction parameter increases the rate of skin friction in first solution and decline in
the second solution. The effect of K with variation of fw on couple stress coefficient, rate of heat and
concentration transfers are shown in Figures 7–9, respectively. The couple stress is increased in first
solution and diminished in second solution when K is increased along variation of fw. Heat transfer
rate increases in both solutions by increasing the value of K along fw. Figure 9 shows that the rate of
concentration decreases in first solution and against it, it increases in second solution as value of K is
enhanced with variation of fw. Another point that is important is that in this figure, the increasing
value of K decreases the range of variation of fw.



Energies 2019, 12, 4529 10 of 20

  

Energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

increases in both first and second solutions when  𝜆𝑐 𝜆 for a different values of 𝑓 . The absolute 
value of critical point 𝜆𝑐 increases as the value of the suction parameter is increased. The rate of 
concentration (local Sherwood number) decreases in both first and second solutions with increment 
in the values of 𝑓  at variation of the 𝜆 when 𝜆 0.4 but for 𝜆 0.4 the rate of concentration is 
increased that is mentioned in Figure 5. 

Furthermore, variations of the skin friction coefficient 𝑓 0 , couple stress coefficient 𝑔′ 0 , local 
Nusselt number 𝜃′ 0  and local Sherwood number ∅ 0  with variation of the suction parameter 𝑓  for different values of material parameter (𝐾) are presented in Figures 6–9. In these figures for the 
values of the 𝑃𝑟 1, 𝜆 1, 𝑅𝑑 0.2, 𝑁 0.2, 𝑁 0.5, 𝑆𝑐 1, 𝛿 0.1, 𝛿 0.1, 𝛿0.1 are fixed . Figure 6 represents the effect of material parameter (𝐾) on skin friction coefficient 𝑓 0 . 
It is analyzed when 𝐾 0 (Newtonian case), dual similarity solutions exist in the range  for 𝑓1.90906 and no solution at 𝑓 1.90906 . It is worthwhile to specify the increasing values of 𝐾  
reduces the range of multiple solutions versus suction parameter 𝑓 . For 𝐾 1 ( 𝐾 2 ), dual 
solutions occur when 𝑓 2.35601  (𝑓 2.7314  and no solution at 𝑓 2.35601 𝑓 2.7314 . 
Furthermore, any increment in the value of the suction parameter increases the rate of skin friction 
in first solution and decline in the second solution. The effect of 𝐾 with variation of 𝑓  on couple 
stress coefficient, rate of heat and concentration transfers are shown in Figures 7–9, respectively. The 
couple stress is increased in first solution and diminished in second solution when 𝐾 is increased 
along variation of 𝑓 . Heat transfer rate increases in both solutions by increasing the value of 𝐾 
along 𝑓 . Figure 9 shows that the rate of concentration decreases in first solution and against it, it 
increases in second solution as value of 𝐾 is enhanced with variation of 𝑓 . Another point that is 
important is that in this figure, the increasing value of 𝐾 decreases the range of variation of 𝑓 . 

 
Figure 6. The coefficient of skin friction with different values of  𝐾 with variation of 𝑓 . Figure 6. The coefficient of skin friction with different values of K with variation of fw.

  

Energies 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/energies 

 
Figure 7. The coefficient of couple stress with different values 𝐾 with variation of 𝑓 . 

 
Figure 8. The heat transfer rate with different values 𝐾 with variation of 𝑓 . 

Figure 7. The coefficient of couple stress with different values K with variation of fw.

Figure 10 represents the variations of velocity profile for different values of K. It is analyzed that
the thickness of momentum boundary layer and velocity of micropolar nanofluid flow increase in the
first solution as K is increased. On the other hand, velocity decreases in the second solution as the effect
of micropolar material parameter (K) is enhanced, this is because of the increasing the rate of material
increases the viscosity that makes resistance during fluid flow. The effect of the velocity slip parameter
at the velocity profile is presented in Figure 11. The velocity boundary layer thickness and nanofluid
velocity decrease as the velocity slip parameter δ is increased in the first solution. Whereas fluctuation
is seen in second solution, the velocity of the nanofluid decreases at the start, but after a point it
increases as δ is enhanced.
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Figures 12 and 13 show the impact of m and K on microrotation profiles. In both, the microrotation
boundary layer thicknesses and microrotation profiles are decreasing in the first and second solutions
with increment in the value of the constants m and K. The behavior of temperature profile on account
of thermal radiation is illustrated in Figure 14. The thermal radiation parameter Rd defines the
relative contribution of conduction heat transfer to thermal radiation transfer. The expanding rate
of radiation increase the thermal boundary layer and the rate of the heat transfer in both solutions.
The impact of Nt and Nb on temperature profiles is shown in Figures 15 and 16, respectively. It is
examined that any increment in thermophoresis parameter Nt is caused to produce the high thermal
conductivity of the nanoparticles in the base fluid, where the thickness of thermal boundary layer and
temperature profile are enhanced in both solutions (see Figure 15). On the other hand, enhancement in
Brownian motion parameter Nb expands the temperature of the micropolar nanofluid (mentioned in
Figure 16). This is due to “gradual development in nanoparticles percentage with Brownian motion
parameter”. Figure 17 demonstrates the effect of thermal slip parameter δT on the temperature profile.



Energies 2019, 12, 4529 12 of 20

Both the thermal boundary layer thickness and temperature profile decline when thermal slip is
enhanced in both solutions. Originally, enhancement in thermal slip parameter retards the fluid
motion, which consequently shows a decline in net molecular movement. Consequently, less molecular
momentum decreases the thermal boundary layer and the temperature profile subsequently diminishes.
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It can be clearly observed that any increment in 𝑁  increases the concentration profile and its 
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Figure 17. The temperature profile for the various values of the δT.

The effect of the thermophoresis parameter on the concentration profile is revealed in Figure 18.
It can be clearly observed that any increment in Nt increases the concentration profile and its boundary
thickness in both solutions. Contrary to this, Figure 19 shows reverse behavior in both solutions when
the Brownian motion parameter Nb is increased. This is due to the fact that the increment in the
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magnitude of Brownian motion raises the rate of time at which nanoparticles transport with distinct
velocities in arbitrary direction. Figure 20 shows a small enhancement in concentration profile when
δC is enlarged in both solutions.
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5. Conclusions

The steady two-dimensional laminar boundary layer flow of micropolar nanofluid over a linearly
shrinking/stretching surface has been studied with the effects of thermal radiation and slip parameters.
The governing equations of micropolar nanofluid flow are transformed to ordinary differential equations
by applying similarity transformations. The equations are solved by the shooting method in the Maple
software. The effects of the different physical parameters involved in the system of the equations were
suction, micropolar material, radiation, Brownian motion, thermophoresis parameters, and the slip
parameters. The main findings of this study are as follows:

1. Dual solutions exist for skin friction coefficient, couple stress coefficient, local Nusselt number
and local Sherwood number for certain parameters.

2. From stability analysis, it is examined that the first solution is stable and physically realizable,
while the second solution is not stable so it is not physical realizable.

3. There exist different ranges of dual similarity solutions. For K = 1 (K = 2), dual solutions occur
when fw ≥ 2.35601 ( fw ≥ 2.7314) and no solution when fw < 2.35601 ( fw < 2.7314).

4. The velocity profile declines in the first solution by increasing the values of the velocity
slip parameter.

5. The impact of m and K on microrotation profiles show that the microrotation boundary layer
thicknesses and microrotation profiles decrease in both solutions.

6. Temperature profiles increase in both solutions when thermal radiation, thermophoresis and the
Brownian motion parameters are enhanced.

7. The concentration of nanoparticles increases by increasing Nt and decreases by increasing Nb.
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Nomenclature

u, v velocity components (m/s) δC concentration slip (mol/m3)
N Microrotation Rd thermal radiation
uw shrinking velocity (m/s) Pr Prandtl number
δ velocity slip (m/s) Nt thermophoresis parameter
K material parameter DT thermophoretic diffusion (m2/s)
m a constant Cw variable concentration at the sheet (mol/m3)
T Temperature (K) Nb Brownian motion parameter (m2/s)
T0 a constant DB Brownian diffusion (m2/s)

Tw variable temperature at the sheet (K)
Sc
λ

Schmidt number
stretching/shrinking parameter

T∞ ambient temperature (K) fw injunction/suction parameter
C Concentration (mol/m3) C f skin friction coefficient
C0 a constant Sh local Sherwood number
C∞ ambient concentration (mol/m3) Nu local Nusselt number
ϑ kinematic viscosity (m2/s) Rex local Reynolds number
γ spin gradient viscosity (m2/s) ε smallest eigenvalue
K vortex viscosity (m2/s) τ Stability transformed variable
j microinertia per unit mass δT thermal slip (K)
α thermal diffusivity (m2/s) η transformed variable
K∗ thermal conductivity (W/m K)
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