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Abstract: This paper proposes a cyber–physical approach to enhance the prediction accuracy of
electricity consumption of solid electric thermal storage (SETS) system, which integrates a physical
model and a data-based cyber model. In the cyber–physical model, the prediction error of the
physical model is used as an input of the cyber model to further calibrate the prediction error. Firstly,
customers’ behavior characteristics are extracted by the integration of K-means and one-versus-one
support vector machine. Secondly, based on the behavior characteristics and ambient temperature,
the physical model is developed to predict daily electricity consumption. Finally, the error levels of
physical model are classified, together with the temperature and prediction values of the physical
model, are selected as the inputs of the cyber model using the back propagation (BP) neural network
to calibrate the results of the physical model. The effectiveness of the proposed cyber–physical model
(CPM) is verified by a 1 MW SETS system. The simulation results show that, compared with the
physical model (PM) and cyber model (CM), the maximum relative errors (MRE) with the CPM are
reduced to 25.4% and 4.8%, respectively.

Keywords: solid electric thermal storage; cyber–physical model; K-means; support vector machine;
neural network

1. Introduction

Thermal energy storage is considered as one of the advanced energy technologies [1].
Electric energy can be stored in the form of heat during off-peak demand periods and used for
heating of rooms during peak demand periods. The improvement of thermal storage is useful to
reasonably arrange the electricity consumption of thermal storage loads and promote the thermal
storage peak shaving incentive mechanism realization. Therefore, solid electric thermal storage (SETS)
has become one of the most promising solutions as a flexible demand response (DR) in demand-side
management (DSM) [2]. Consequently, SETS prediction is an important precondition for peak shaving
in DSM. Due to the electric–thermal time shift characteristics of SETS, the electricity prediction can
provide multiple options for peak shaving and dispatching of the power system. However, there are
few studies on the SETS prediction, and the prediction accuracy needs to be improved. Therefore,
if the SETS prediction is applied to the actual operation of the power system, it is necessary to enhance
the prediction accuracy of SETS based on advanced algorithms.

There are few studies on the electricity prediction of those devices. A physical model (PM)
of SETS is integrated into an energy management system for isolated microgrids [3]. SETS is used
to accommodate wind power to supply heat load in isolated microgrids [4]. A PM for residential
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forced-air electric furnaces is built to predict the thermal energy storage, which is an early application
of SETS [5]. This work does not take into account the effect of continuously changing the ambient
temperature on thermal energy storage. A PM is integrated into the TRNSYS calculation tool to
evaluate the optimal thermal energy storage of forced-air electric furnaces with changing ambient
temperature [6]. Therefore, it is necessary to improve the basis of the existing methods, and enhance
the prediction accuracy. However, the customers’ behavior characteristics of SETS are not considered
in the above-mentioned PMs, which is very important to improve the accuracy of prediction.

In [7], a sparse continuous conditional random fields method was proposed to predict electric
load with the identification of behavior. The data from advanced metering infrastructure is used
to understand the power consumption patterns to improve the load forecasting accuracy in [8].
The prediction accuracy would be significantly enhanced with the consideration of behavior. However,
the working mode of SETS are completely different from those of conventional electric loads [9].
SETS is charged by the off-peak electricity, and its thermal energy is released all-day. During the
off-peak hours, usually from 21:00 to 6:00, the heating elements quickly heat the dense bricks to a
high temperature owning to its cheaper electricity prices. During the peak period from 6:00 to 21:00,
the heating elements are switched off, and SETS continues to release its thermal energy to warm the
rooms. Many behavior characteristics of SETS directly affect the heat load demand, such as all-day
continuous work (e.g., convenience store), and holiday and non-holiday period (e.g., star hotel),
which need to be considered. The conventional models of predicting electric load are not adequate for
SETS. Due to the wide geographical distribution of SETS installation, the PM cannot consider all the
situations comprehensively. The prediction accuracy of the PM still needs to be improved. Under this
motivation, this paper considers the behavior characteristics into the PM to enhance the accuracy
of SETS.

Another prediction approach of electric load is based on cyber models (CMs), such as
auto-regression algorithm [10,11], fuzzy algorithm [12], support vector machine [13], extreme learning
machine [14], stochastic methods [15], and multi-stages estimators of nonlinear additive models [16].
Among the existing methods, machine learning (neural network) is commonly used in heat load
prediction. A data-driven approach with machine learning is presented to predict the heat load in
the rooms [17], and a bi-directional long short-term memory recurrent neural network is proposed
to combine the correlation between past information and future information to predict the thermal
storage time in [18]. A linear regression model with the ambient temperature is proposed to predict
heat load in [19]. These prediction methods are based on historical data combined with multiple
machine learning methods. However, it is difficult to predict a sudden increase and decrease of heat
load for the above CMs.

With the comprehensive consideration, the PM is sensitive to the sudden increase and decrease
of heat load by adding the restriction conditions of electric behaviour, but it cannot consider all the
influencing factors. On the other hand, the CM can make good use of historical data to reflect the
influencing factors on the SETS, which lacks the guidance of the PM. Modern smart grids have applied
cyber–physical systems (CPS) to energy systems including modeling energy systems, energy efficiency,
energy resource management, and energy control [20]. Therefore, this paper used a method that
combines model-based and data-driven [21], that integrates the PM of SETS and the CM.

The difficulty in using the cyber–physical model (CPM) is how to integrate the cyber components
(including influencing factors) and physical components (including behavior characteristics and
average power consumption) of SETS. In this paper, we develop a PM of SETS to predict daily average
power consumption based on the ambient temperature. The integration of K-means and one-versus-one
support vector machine is applied to extract the behavior of SETS. The error levels of the PM and
influencing factors are considered as the input of the Back Propagation (BP) neural network-based
CM to further enhance the prediction accuracy of electricity consumption. Our contributions are
summarized as follows:
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• To the best of the authors’ knowledge, this is the first work to use the cyber–physical approach to
predict the SETS’ load change. The physical and cyber components of SETS are integrated.

• Using the existing knowledge of thermodynamics, a SETS PM is developed by considering the
customers’ behavior characteristics.

• The load data of 1MW SETS is used to validate the CPM, and the results show that, compared with
the PM and the CM, the maximum relative errors (MRE) with the CPM are reduced to 25.4% and
4.8%, respectively.

The rest of this paper is organized as follows: The PM of SETS, including its structure, principle,
formula derivation, the customers’ behavior characteristics of SETS, and influencing factors are
presented in Section 2. The cyber–physical approach combining the PM and CM of SETS is proposed
in Section 3. Simulations are conducted to validate the effectiveness of the cyber–physical approach in
Section 4. The conclusion is drawn in Section 5.

2. PM of SETS

In the PM of SETS, the structure of the temperature-based energy flow of the SETS is proposed
in Section 2.2. (Principle). The heat conduction of SETS is described in Section 2.3. (Thermal Energy
Storage). The heat transfer formulas of the heat exchanger are given in Section 2.4.1 (Heat Transfer).
The Formula (14) is developed by the authors in Section 2.4.2 (Customers Heating). The behavior
extraction of SETS is firstly considered in the model.

2.1. SETS Structure

Figure 1 shows a schematic diagram of SETS. It contains electric heating wires, magnesia bricks,
the temperature sensor of bricks, two layers of thermal isolation (including perlite and ceramic fiber)
wrapped in steel plates, heat exchanger, and fan. When the SETS operates, the resistive heating wires
generate thermal energy, which will be stored in the bricks for discharging. The cold air is blown into
the interior by the fan, and transferred into hot air by the heating wires for changing the entrance
temperature of the heat exchanger. The cold water is circulated into the heat exchanger through the
return water pipe and heated by the hot air to improve the customers’ room interior temperature.
SETS becomes a convenient DSM tool for utility companies.

Figure 1. Schematic diagram of solid electric thermal storage (SETS). (a) Cold air. (b) Perlite. (c) Ceramic
fiber. (d) Steel plates. (e) Thermocouple. (f) Flow channel. (g) Bricks. (h) Heating wires. (i) Partition
wall. (j) Hot air. (k) Exchanger. (l) Supply water. (m) Return water. (n) Fan.

2.2. Principle

The basic assumption of the proposed PM is that the temperature of the bricks is spatially uniform
in any transient process. This assumption implies that the temperature gradients within the bricks
are negligible. The proposed model is based on the following assumptions: all the electric energy
consumed by the electric heating wires is stored in the bricks in the form of thermal energy. The thermal
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energy stored in the SETS is mainly released by thermal radiation and convection. The isolation layer
can prevent the thermal energy of hot air in the SETS from flowing outside. In heat transfer of the heat
exchanger, the heat loss between the heat exchanger and the ambient environment, the pipe thermal
resistance and fouling effect are ignored. In Figure 2, the PM of SETS in this paper is based on the basic
principle of heat transfer instead of entransy dissipation-based thermal resistance theory presented
in [22].

Figure 2. The structure of the temperature-based energy flow of the SETS. (a) Heat storage.
Electric energy is consumed by the heating wires and stored in the thermal brick in the form of
thermal energy. (b) Heat transfer. The stored thermal energy is transferred to the circulating water
through the heat exchanger. (c) Customers heating. Uses the thermal energy to keep the room warm.

The initial and final temperatures of the bricks are assumed to be Tini and Tfin, respectively.
The internal and external temperatures of the isolation layer are Tint and Text, respectively. Tini is equal
to Tint before the electric heating wires are energized. The Tini is increased as the heating wires are
energized. In the heating process, thermal energy always transfers heat to the surroundings through
the isolation layer, so Tint can be calculated by the average temperature of the bricks. According to a
large number of survey and analysis of SETS operation, the Text approximation is 50 ◦C. The boundary
and initial conditions of the PM are described in Equation (1).

Tini = Tint (t = 0)
Tfin ≥ Tint > Tini (t > 0)
Tint = (Tfin + Tini)/2
Text = 50

(1)

The inlet and outlet temperatures of the hot air through the heat exchanger are Ta,in and Ta,o,
respectively. The inlet and outlet temperatures of the circulating water through the heat exchanger
are Tw,in and Tw,o, respectively. Tcri

a,room is the criterion minimum temperature of customers’ room.
The room temperature Ta,room is influenced by the environmental conditions (e.g., ambient temperature
Ta,amb. In Section 2.7. (Influencing Factors) explains why ambient temperature is selected). In order to
keep the room temperature close to Tcri

a,room, the supply and return water temperatures Tw,in and Tw,o

can be increased correspondingly. In the inlet of the heat exchanger, a high-temperature air is required
to be input, so the stored thermal energy final temperature Tfin needs to be higher (about 700 ◦C).
Tfin can be deduced by the change of ambient temperature Ta,amb, and the average power consumption
of the SETS can be obtained by the Tfin. According to engineering experience, the variation ranges
of Tini and Ta,o are very little that they are assumed to be constant. Tw,o is affected by the ambient
temperature Ta,amb, so the input and control variables of the heat exchanger Tw,o and Tw,in are deduced
based on Equation (12).
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Without considering the temperature gradients within the bricks, the initial temperature Tini

and final temperature Tfin changes in the SETS are used to predict the thermal energy consumption.
The proposed SETS PM prediction of the consumed thermal energy is equal to the electricity by the
ambient temperature change.

2.3. Thermal Energy Storage

According to the above principle, the electric energy consumption Epro,t is equal to the sum of
thermal energy Esto,t stored in the bricks and the thermal energy loss of the SETS Elos,t as shown in
Equation (2).

Epro,t = Esto,t + Elos,t. (2)

The Elos,t is not considered in the modeling. So the Equation (2) can be a simplify as Epro,t = Esto,t.
The thermal energy Esto,t is transferred to the hot air by thermal convection φconv, thermal radiation
φrad, and thermal conduction φcond. The three heat transfer formulas are introduced as follows:

2.3.1. Thermal Convection

Based on the initial temperature Tini and final temperature Tfin of the thermal storage, the thermal
convection from bricks into the isolation layer is given by Equation (3). The thermal convection
equation is conveniently expressed by Newton’s law of cooling [23].

φconv = hconv (Tfin − Tini) Acha = Nu
λ

D
(Tfin − Tini) Acha, (3)

where hconv is the surface heat transfer coefficient of the bricks, Acha is the surface area of the round
holes in the bricks as shown in Figure 3. Many bricks are superimposed to form the core frame of the
thermal storage. Two heat bricks are stacked together to form a circular hole in the center of the bricks
as shown in the zoom figure. Electric heating wires are placed in the middle of the hole. L, W, H, and
D are the length, width, height, and diameter of the brick, respectively. Acha is the area of hot airflow
channel which is stacked by two bricks together, Acha = L× D× N, where N is the number of bricks
in a row. Based on the Nusselt–Number Nu, the heat transfer coefficient hconv can be calculated by the
Zukauskas formula [24]. λ is the thermal conductivity.

Figure 3. Schematic diagram of bricks placement.
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In heat convection, multiple round holes can be approximately regarded as the tube bundle.
The average heat transfer performance of the tube bundle is related to the flow Reynolds-number
(Re) [24].

Re = ua ×D/νTave (4)

where ua is the hot air flow rate, D is bricks round hole diameter, and νTave is the aerodynamic viscosity
at the temperature of Tave = Tfin/2. According to the range of Re, the Nusselt-number (Nu) can be
calculated by Zukauskas formula in Equation (5).

Nu = 0.52R0.5
e P0.36

ra Prc if 102 < Re ≤ 103

Nu = 0.27R0.63
e P0.36

ra Prc if 103 < Re ≤ 205

Nu = 0.033R0.8
e P0.36

ra Prc if 205 < Re ≤ 206
, (5)

where Pra is the Prandtl-number (PN) of the fluid average temperature, PN reflects the contrast
between momentum diffusion and thermal diffusion in fluid. Prc is a constant. Prc =

(
Pra /Prbri

)0.25,
Prbri is the PN of the bricks average surface temperature. According to the temperature Tint and Tfin,
the Pra and Prbri can be queried.

When 102 < Re ≤ 206, the corresponding Nu can be selected. In most cases, the calculation results
satisfy the condition that 103 < Re ≤ 205. This paper uses Nu = 0.27R0.63

e P0.36
rg Prc as an example.

Substituting Equation (5) into Equation (3), the thermal energy φconv is obtained in Equation (6).

φconv = 0.27R0.63
e P0.36

rg Prc

λ

D
(Tfin − Tini) Acha. (6)

2.3.2. Thermal Radiation

The thermal energy φrad released from the bricks to the flow channel hot air, is expressed by
Equation (7), which is based on the Stefan–Boltzmann law [23].

φrad = εσ
(
(Tfin + 273)4 − (Tini + 273)4

)
Abri, (7)

where ε is the emissivity of the bricks’ surface, σ is the blackbody radiation constant (Stefan–Boltzmann
constant is 5.67× 10−8 W/m2K4), and Abri is the heat transfer surface area of the bricks.

2.3.3. Thermal Conduction

The isolation layer consists of fiberglass felt and perlite coated. The thermal conduction φcond
between the internal hot air and the external ambient environment is given by the Fourier’s law of
heat conduction in (8) [23].

φcond =
Tint − Text

δ f /λ f + δp/λp
Aiso =

(Tfin − Tini) /2− 50
δ f /λ f + δp/λp

Aiso, (8)

where δ f δp and λ f λp are the respective thickness, and thermal conductivity of fiberglass and perlite,
and Aiso is the isolation layer area.

The prediction of average power consumption Q̄sto can be obtained by Equations (6)–(8) as shown
in Equation (9).

Q̄sto = φconv + φrad + φcond (9)

= 0.27R0.63
e P0.36

rg Prc

λ

D
(Tfin − Tini) Acha + εσ

(
(Tfin + 273)4 − (Tini + 273)4

)
Abri

+
(Tfin − Tini) /2− 50

δ f /λ f + δp/λp
Aiso,
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where Tfin is unknown which can be obtained in Section 2.4 (Thermal Bricks Energy Release).

2.4. Thermal Bricks Energy Release

Thermal bricks energy release includes heat transfer and customers’ heating.

2.4.1. Heat Transfer

When the SETS releases thermal energy, the inlet hot air temperature of the heat exchanger is
regulated by the circulating wind speed of the fan. In the heat exchanger, according to the conservation
of energy, the thermal energy released Qa by the inlet hot air is equal to the thermal energy absorbed
Qw by the outlet circulating water. Therefore, the relationship between the inlet hot air temperature
and the outlet circulating water temperature is given in (10) [25].{

Qa = ṁaca (Ta,in − Ta,o)

Qw = ṁwcw (Tw,o − Tw,in)
(10)

where, ṁa and ṁw are the flow rate of hot air and water through the heat exchanger, respectively.
ca and cw are the specific heat of hot air and water through the heat exchanger, respectively.
Since Qa = Qw, Ta,i can be deduced as shown in Equation (11). Ignoring the heat loss from the
hot air at the outlet of the SETS to the heat exchanger inlet, and assuming that Ta,i ≈ Tfin, then, taking
this into Equation (9), the average power consumption Q̄sto can be obtained.

Ta,in = Ta,o +
ṁwcw (Tw,o − Tw,in)

ṁscs
, (11)

where, Tw,o − Tw,in is determined by the Section 2.4.2 (Customers Heating).

2.4.2. Customers Heating

The thermal energy storage is intended to exchange heat with the circulating water to maintain
the customers’ room temperature greater than or equal to the designed heating temperature Tcri

a,room.
The temperatures of supply and return water are obtained by the room and the ambient temperature
in Equation (12). 

Tw,o = Tcri
a,room+

(
Tcri

w,o−Tcri
w,in

2

)(
Tcri

a,room−Ta,amb
Tcri

a,room−Tcri
a,amb

)
+

(
Tcri

w,in+Tcri
w,o

2 − Tcri
a,room

)(
Tcri

a,room−Ta,amb
Tcri

a,room−Tcri
a,amb

) 1
1+η

Tw,in = Tw,o −
(

Tcri
w,o − Tcri

w,in

)(
Tcri

a,room−Ta,amb
Tcri

a,room−Tcri
a,amb

) , (12)

where Tcri
w,o and Tcri

w,in are the respective temperatures of water supply and return designed for SETS.
η is the heat transfer coefficient of the radiator. According to the standard of heating in the north of
China, the minimum value of Tcri

a,room is 18 ◦C. During the winter heating period, the average ambient
temperature of Shenyang is −16.9 ◦C.

The overshoot of water temperature and the frequent start of the fan are easily caused by the
use of Tw,o and Tw,in owing to the inertia of temperature change. Therefore, in this paper, the highest
supply water temperature Tw,o,max and lowest return water temperature Tw,i,min during the heating
period are designed. Taking Shenyang city as an example, the minimum and maximum temperatures
of Ta,amb are taken into Equation (12) to obtain the temperature curves of supply and return water as
shown in Figure 4. The minimum temperature of return water Tw,i,min is selected as the benchmark so
that the change of temperature Tw,o − Tw,in = γ can be deduced as shown in Equation (13).

γ =

(
1 +

Tw,o − Tw,i,min

Tw,o,max − Tw,i,min

)
Tw,i,min. (13)
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Figure 4. Influence curve of ambient temperature on circulating water temperature.

Substituting γ into Equation (11), Ta,in is obtained as shown in Equation (14).

Ta,in = Ta,o +
ṁwcw

(
1 + Tw,o−Tw,i,min

Tw,o,max−Tw,i,min

)
Tw,i,min

ṁscs
. (14)

Based on the above analysis, the thermal energy store in bricks at time t can be obtained as shown
in Equation (15).

Epro,t = Esto,t =
∫ i

0
Q̄sto,t dt (i ∈ t), (15)

where, Q̄sto,t is the average power consumption of SETS at time t. Epro,t is the electricity consumption
by the heating wires, and Esto,t is the stored heat energy in the bricks. The working time t is related to
the behavior characteristics, and the superscript i is the time index.

2.5. Customers’ Behavior Characteristics Extraction

The working time t of the SETS is determined by the different electricity consumption behavior
characteristics of customers. For example, two types of behavior characteristics of SETS customer
within one month is shown in Figure 5. One type starts from the previous night 22:00 and stops heating
at 1:00. Then, SETS starts again at 3:00 and ends the reservoir at 5:00. The other type starts from the
previous night 22:00 and then continues to work until the end at 5:00. The consumption time t of one
type is t = 3.5h on the left curve, and the other type is t = 7h on the right curve.

Since the load curves of the same electrical behavior have regular working time, it is necessary
to cluster the same electricity consumption behavior characteristics with the heat load data. Then,
the customers’ behavior types are used to determine the working time t of SETS. Also, the Epro,t daily
electricity consumption of SETS is predicted by Equation (15). The method of K-means is used to
identify customers’ behavior types. After all SETS data clustering, the customers’ behavior types are
obtained. The load data with the same type has a similar working time, the same type is identified
using the support vector machine that has been widely used to learn target class [26]. When the
target types are larger than binary, the one-versus-one is one of the effective methods to find the
discriminative binary classifiers to solve a multiclass problem [27]. Thus, the one-versus-one method is
adopted in behavior extraction. The overall process of the behavior characteristics extraction is shown
in Algorithm 1.
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Figure 5. Customers’ electricity consumption behavior curve.

Algorithm 1 The behavior characteristics extraction algorithm process.

1: Input SETS’ load data.
2: Label the data of the same customer from 1, 2, 3 to n;
3: Using unsupervised clustering method (K-Means) to identify target data types c1, c2;
4: Statistics time labels y1, y2, · · · , ym of the same type cj;
5: i f (m > 2) then
6: Using the one-versus-one method, divide the time labels into binary pairs as the support

vector machine output time labels;
7: else
8: Using the support vector machine directly;
9: end i f

10: Output the working time t.

2.6. Summary of the PM Prediction

Based on the above analysis, the proposed PM of SETS can be used to predict the daily electricity
consumption. The overall PM flowchart is shown in Figure 6. According to the initial values, the range
of Reynolds-Number (Re) is estimated. If Re > 206 or Re ≤ 102, return the initialization parameters,
otherwise, input the ambient temperature Ta,amb to obtain temperatures of Tw,o and Tw,in. Select the
maximum value of supply water Tw,o,max and the minimum value of return water Tw,in,min. Then,
obtain the inlet temperature Ta,in. Nu is selected based on the range of Re, so input the Nu and
Ta,in ≈ Tfin to predict the average power consumption Q̄sto. The Q̄sto,t is integrated over working
hours t. According to the stored thermal energy Q̄sto,t in the bricks, the predicted value of SETS heating
wires electricity consumption Epro,t can be obtained.

2.7. Influencing Factors

Since influencing factors (including humidity, wind speed, and temperature) influence the
prediction of the CPM, it is necessary to select the strong correlation factors as the input of the
cyber and PMs. Thus, the Pearson correlation analysis in Equation (16) is adopted to analyze which
one is strongly correlated. The influencing factors and the SETS load are represented as a and b,
respectively.
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ρa,b =

(
∑ ab− ∑ a ∑ b

N

)
√(

∑ a2 − (∑ a)2

N

)(
∑ b2 − (∑ b)2

N

) . (16)

The statistics on the correlation between the influencing factors and SETS load within 24 h is as
shown in Figure 7. The histogram explains which influencing factors are strongly correlated with the
SETS load. The influencing factors (including humidity, wind speed, and temperature) are negatively
correlated with the load, and humidity is positively correlated with the SETS load only in the range
of 8:00 to 10:00. The ranges of correlation coefficient of humidity (blue), wind speed (green) and
temperature (yellow) are [−0.24, 0.21], [−0.47, 0.13], and [−0.82,−0.66], respectively. It can be seen
that the correlation between the temperature and SETS load is strongly negative, while humidity and
wind speed are weakly correlated with SETS load. Thus, the temperature is selected as the input of the
cyber and PMs.

Figure 6. Flowchart for the physical model (PM).
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Figure 7. Correlation of SETS load influencing factors.

3. Cyber–Physical Approach

The parameters of SETS and ambient temperature are the inputs of the SETS PM. The PM
prediction result is shown in Figure 8. It can be observed that January has the best fitting with the least
error. The test result with the PM still has an irregular error as shown in Table 1. The root mean square
error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to
measure the prediction performance of the PM with a deviation between the predicted value and the
real value. 

RMSE =

√
1
m

m
∑

i=1
(yi − ŷi)

2

MAE = 1
m

m
∑

i=1
|yi − ŷi|

MAPE = 100%
m

m
∑

i=1

∣∣ yi−ŷi
yi

∣∣
(17)

where m is the number of data. yi is the real value of SETS load, ŷi is the prediction value of SETS PM.



Energies 2019, 12, 4744 12 of 18

Figure 8. PM prediction of the load curve of a customer’s SETS.

Table 1. Physical model (PM) prediction parameters.

Month 2017.11 2017.12 2018.1 2018.2 2018.3

Date 10–30 1–31 1–31 1–28 1–19
RMSE 372.05 310.29 167.36 227.1 389.45
MAE 323.36 264.99 139.33 183.92 318.54

MAPE% 9.08 4.82 2.49 3.75 9.53
Average ȳi(kWh) 3805 5526.9 5616 5035.1 3470.8
Average ¯̂yi(kWh) 3486.3 5323.3 5610 4990.2 3152.7

The PM predicts error according to the result of RMSE, MAE, and MAPE, and obtains a consistent
evaluation. Selecting the month of January which has the smallest RMSE in five months, the predicted
result RMSE error is 167.36 kWh. The electricity consumption of real value is 5616 kWh, the prediction
accuracy is approximately 29.8%. Therefore, the prediction accuracy of the PM still needs to be
further improved.

To improve the prediction accuracy, other prediction methods are considered. The CM is widely
used in load prediction because it can accurately model the past. Hence, the application of the CM
is considered to predict the electricity consumption of SETS. However, the electric behavior of SETS
is different from the other conventional electric loads, it is difficult to predict a sudden increase and
decrease in heat load, that is, the predictability of the CM is not good enough. On the contrary, the PM
is sensitive to a sudden increase and decrease in the heat load. Therefore, the CM and PM can be
combined to improve the prediction accuracy with mutual verification. CPS is widely used in many
fields, for example, measurement recovery in false data injection attacks [28], smart home cyberattack
detection [29], energy theft detection in multi-tenant data centers [30], and inter-well connectivity
estimation in petroleum [31], etc. Hence, the cyber–physical approach is developed to predict electricity
consumption of SETS. The CM established by the load data of SETS is used to calibrate the output
error of the PM.

The cyber components (including influencing factors) and the physical components (including
behavior characteristics and average power consumption) of SETS are integrated using the
cyber–physical approach. The cyber–physical approach is used to predict the electricity consumption
of SETS. The Pearson correlation analysis formula is used to solve the correlation coefficients ρa,b
between power consumption of SETS and influencing factors. The ambient temperature has the
greatest impact on the power consumption of SETS, which is considered as an input of the PM flow.

Firstly, the PM of SETS is utilized to predict the daily average power consumption based on
ambient temperature. Secondly, the integration of K-means and one-versus-one support vector machine
is applied to extract the behavior characteristics of SETS to obtain the work time t. Then the electricity
consumption of SETS is obtained by integrating average power consumption. The performance of the
prediction is tested by the error calculation Equation (17). The error levels are divided according to the
size of the errors.
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Since RMSE is a good reflection of the precision of the measurement, it is used to design the
error levels of the PM. According to the result of RMSE, which is represented by εs, the subscript
indicates s = 1, 2, 3, 4, 5 which represents the months from November 2017 to March 2018, respectively.
The number ε1 to ε5 are 372.05, 310.29, 167.36, 227.1, 389.45, respectively. Therefore, according to the
order of εs (ε5 > ε1 > ε2 > ε4 > ε3), the error is divided into 5 levels, and then the data is input in
the CM which is used in BP neural network.

Subsequently, the output of PM is calibrated by the error of CM output to obtain the electricity
consumption of the SETS. The specific method of the CM is introduced as follows.

The error levels, ambient temperature, and PM prediction values are taken as input vectors xn of
BP neural network. Output vectors on is the error as shown in Figure 9. The number of hidden neurons
is 13, the sigmoid function is selected as the activation function for the hidden layer and the output
layer, and the gradient descent method is used to update the parameters. In the CM, the influencing
factors and the power consumption of SETS are the input vectors xn of BP neural network, and the
electricity is the output vectors on. The number of hidden neurons is set as 25.

Figure 9. Cyber model (CM) structure of back propagation (BP) neural network.

During training, the CM of the BP neural network can automatically extract the “reasonable rules”
between the input layer and output layer data and memorize the learning content in the weight of the
network adaptively. The CM can predict the load deviation after training even if there is unknown
noise-pollution. BP neural network is used to train the CM. The CM prediction result plus the PM
predicted value is the electricity consumption of SETS.

4. Validation

In order to verify the effectiveness of the proposed CPM method, its prediction result is compared
with PM, CM and real value. MRE is used to evaluate the performance of the prediction model.

The proposed method to predict the electricity consumption of SETS is verified using real
operation data, the data is obtained from the power grid valley thermal storage system monitoring
platform of State Grid Company. This paper uses the data of one customer from the monitoring
platform. The SETS is located in the third printing plant of Heping District, Shenyang City, Liaoning
Province. The scene device of SETS is shown in Figure 10. The nominal power of the SETS is 1 MW,
and the maximum thermal storage capacity is 10 MWh.
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Figure 10. Scene device of SETS.

The load data of 1MW SETS during the heating period from 10 November 2017, to 19 March
2018, are taken. The PM parameters of SETS are selected as shown in Table 2. The data of 120 days
are used as the training set, and the data of the later 10 days are used for the testing. The simulation
results are shown in Figure 11. The four curves are the individual SETS real values, CPM, PM, and the
CM predicted value. The trained model is used to test the load condition in the following 10 days.
From the training results, the CPM predicted value coincides with the real value. In the testing results,
the comparison data in the orange dotted frame is enlarged for 121–130 days as seen in Figures 12–14.
The result after the application of the CPM is significantly better than that individually predicted by
the PM and CM alone.

Table 2. PM parameters.

Parts Symbol Number Unit Symbol Number Unit

Bricks

Tini 150 ◦C Ta,o 105 ◦C
L 0.225 m W 0.225 m
H 0.075 m D/2 0.02 m

L-row 7 W-row 16
H-row 43 ε 0.5

Exchanger

Tcri
w,in 45 ◦C Tcri

w,o 65 ◦C
ca 1.093 kJ kg−1◦C−1 cw 4.174 kJ kg−1◦C−1

ṁa 30,936 m3 h−1 ṁw 15 kg s−1

ua 1 m s−1

Isolation
δg 0.5 m λg 0.101 W m−1 K−1

δf 0.05 m λf 0.13 W m−1 K−1

Text 50 ◦C

Room

Tcri
a,room 18 ◦C Tcri

a,amb −16.9 ◦C
λ 0.0574 W m−1 K−1 ν 79.38×10−6 m2 s−1

Prbri 0.706 Pra 0.687
η 0.287
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Figure 11. The simulation results of one customer’s 130 days.

4.1. Comparison of CPM with Real Value

The simulation results are shown in Figure 12. The prediction of the CPM coincides with the
real value v. The prediction data are shown in Table 3. Comparing the real value v with the CPM,
the predicted absolute error is e1. Selecting three days (123, 124, and 125) for calculation gives the CPM
prediction with the MRE (∆1 = e1

v × 100%) of 2.4%, 3.3%, and 5%, respectively. Therefore, the MRE
(∆1) of the prediction by the CPM is not more than 5%.

Figure 12. Comparison of CPM with real value testing curves.

Table 3. Performance comparison of simulation results (unit MWh).

Day Real Value CPM MRE PM MRE CM MRE
v e1 ∆1 e2 ∆2 e3 ∆3

121 3.771 0.038 1 0.632 16.7 0.086 2.3
122 3.216 0.02 0.6 0.223 6.9 0.174 5.4
123 3.173 0.076 2.4 0.356 11.2 0.179 5.6
124 3.479 0.113 3.3 0.56 16.1 0.186 5.3
125 2.922 0.15 5 0.891 30.4 0.21 7.2
126 3.503 0.018 0.5 0.185 5.2 0.179 5.1
127 3.489 0.039 1.1 0.074 2.1 0.152 4.4
128 3.195 0.037 1.1 0.145 4.5 0.083 2.6
129 2.956 0.039 1.3 0.321 10.8 0.086 2.9
130 2.973 0.067 2.3 0.613 20.6 0.14 4.7

4.2. Comparison of CPM with PM

The simulation results are shown in Figure 13. Compared with the real value v, the prediction
error of the PM is larger than in the CPM. The prediction data are shown in Table 3. Comparing the
real value v with the PM, the predicted absolute error is e2. Selecting three days (121, 125, and 130)
for calculation gives the PM prediction with the MRE (∆2 = e2

v × 100%) of 16.7%, 30.4%, and 20.6%,
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respectively, while the CPM prediction gives the MRE (∆1) of 1%, 5%, and 2.3%, respectively. Therefore,
the prediction result of the CPM when compared with the PM has the MRE reduced by 25.4%.

Figure 13. Comparison of cyber–physical model (CPM) with PM testing curves.

4.3. Comparison of CPM with CM

The simulation results are shown in Figure 14. Compared with the real value v, the prediction
error of the CM is larger than in the CPM. The prediction data are shown in Table 3. Comparing the
real value of v with the CM, the predicted absolute error is e3. Selecting three days (122, 123, and
125) for calculation gives the CM prediction with the MRE (∆3 = e3

v × 100%) of 5.4%, 5.6%, and
7.2%, respectively, while the CPM prediction gives the MRE (∆1) of 0.6%, 2.4%, and 5%, respectively.
Therefore, the prediction result of the CPM when compared with the CM has the MRE reduced by 4.8%.

Figure 14. Comparison of CPM with CM testing curves.

5. Conclusions

Dispatching electricity consumption of SETS is an effective method for peak shaving in the power
system. The prediction of thermal storage is a prerequisite for dynamic optimal dispatching, and the
thermal storage can be used to shift times of resources. The CPS approach is proposed to predict power
load, which promotes the application of the CPS in smart grids and ubiquitous power internet of
things. This paper proposes a cyber–physical approach to predict the electricity consumption of SETS
with consideration of the ambient temperature and electric behavior of the SETS into the PM. The CM
adopts the BP neural network to calibrate the errors obtained in the PM. The 1MW SETS is established
to validate the proposed cyber–physical approach. The simulation results show that when the CPM is
compared with the PM, the MRE is reduced by 25.4%, and when compared with the CM is reduced by
4.8%. Using the CPM to calibrate the PM effectively improves the prediction accuracy. Conclusively,
the prediction of SETS using the CPM is better than the individual PM and the CM alone.

The recommendations for future research are as follows.
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• Thermal storage is an effective method for peak shaving and dispatching in power system.
The electricity consumption prediction of SETS is worth to explore the combination with the heat
and power generation unit.

• The application of the proposed cyber–physical model in other resources of the power system is
recommended to be studied.
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