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Abstract: Recently, studies on connecting distributed generation (DG) to power distribution systems
through DC links have been actively conducted. When a fault in feeder of this power distribution
system occurs, a voltage dip can happen in the grid. In order to prevent voltage dips, there are several
solutions such as the application of a superconducting fault current limiter (SFCL). If a SFCL with a
larger impedance is applied, the voltage dip of the grid is effectively prevented. However, this action
can bring about the malfunction or the delayed operation of the over-current relay (OCR) due to
the decreased fault current, which causes another problem of protection coordination between the
protective relays. On the other hand, if the impedance of the SFCL is too low, excessive reactive power
is supplied by the fault ride-through (FRT) regulation and the active power is reduced. This causes an
active power imbalance on the DC link and increases the DC link’s voltage. As previous solutions to
prevent the rise of DC links’ voltage, the deloading method and the application of a chopper resistor
have been suggested. In this paper, a technique called active power tracking control (APTC), was
proposed to suppress the rise of DC links’ voltage. Case studies considering the impedance of SFCL
in the constructed power distribution system were carried out, and the rise of DC links’ voltage could
be effectively suppressed without any significant delay in the operation of the OCR. This study is
expected to solve both the voltage dip of the grid and the rise of DC links’ voltage when distributed
generation is connected to a grid.

Keywords: distributed generation (DG); fault ride-through (FRT) regulation; DC link’s voltage;
superconducting fault current limiter (SFCL); active power tracking control (APTC); over-current
relay (OCR)

1. Introduction

Recently, global problems such as population concentration in metropolitan areas, environmental
pollution and global warming have led to the spread of renewable energy around the world. New
and renewable energy sources are generally classified as distributed generation (DG) because they
are small in capacity and distributed close to cities. When the DGs are connected into the grid, grid
code parameters such as total harmonic distortion (THD) and reliability must be satisfied. The fault
ride-through (FRT) regulation is one of the representative grid codes that define these requirements.
According to the FRT regulation, the voltage dip of the grid should be suppressed by supplying
reactive power when the DG is connected into the grid. Figure 1 shows a graphical representation of
the reactive current that is needed according to the grid voltage’s variation. When the grid voltage is
between 0.9 and 1.1, it is called a dead band and the DG does not have to supply reactive current or
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reactive power into the grid. However, in regions other than the dead band, the reactive current from
the DG between 0.2 and 1 p.u. according to the grid voltage should be supplied into the grid [1].
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The grid code that the reactive power should be supplied according to grid voltage is especially
called as low or high voltage ride-through (LVRT, HVRT) regulation. As a method of suppressing the
voltage-dip of the grid, a solution applying a superconducting fault current limiter (SFCL) has been
reported [2–5]. The larger impedance of the SFCL is expected to provide a more effective suppression
of the grid voltage. Another feature of the application of SFCLs is the reduction of the fault current,
which can affect the operating time of the over-current relay (OCR). The OCR, which determines the
trip time according to the magnitude of the fault current, sends the delayed trip signal to the circuit
breaker because of the decrease of fault current. This trip delay interrupts the proper operation of the
circuit breaker, which affects the protection coordination between the protective relays such as the
OCR. Therefore, the resetting of the OCRs considering the application of the SFCL is required to keep
the coordination time interval (CTI) between the OCRs [6–8].

A SFCL with lower impedance can avoid affecting the trip delay of the OCR, however, the lower
impedance of the SFCL can allow a larger reactive power to be supplied to the grid according to the
LVRT regulation. Due to the characteristics of the converter, the increase of the reactive power supply
causes a decrease in the active power supply. Reduction of the active power supply results in an
unbalance between the input and output active powers in the DC link comprising the voltage source
converter (VSC) system. This active power unbalance is a major cause for the rise of DC links’ voltage.
In order to suppress the rise of the DC links’ voltage, the balanced operation of both the input and the
output active powers in the DC link is needed. Previous solutions such as the deloading method and
the installation of a chopper resistor have been suggested to suppress the DC links’ voltage rise due to
this unbalance [9–13].

The deloading method is a technique that reduces the active power into the DC link by reducing
the active power through torque control of the DG [9–11]. The deloading method should reduce the
active power of the converter on the DG side at the same time as the torque control. However, this is
only possible if the torque from the DG and the voltage from the converter are exchanged with each
other instantaneously. For this purpose, an optical or wireless communication system considering
the distance between the converter system and the DG is required, which is a financial burden for
the system operator using this deloading method. Another method is where any excessive active
power input into the DC link is dissipated through a chopper resistor installed on the DC link in
parallel [12,13]. It is considered as the effective alternative because it is installed directly on the DC link
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and the transient response is much better than that obtained with the deloading method. However, the
additional chopper resistor also needs to be installed directly on the DC link.

In this paper, as the method to suppress the voltage-dip of the grid, the application of SFCLs was
considered and the FRT regulation due to the impedance of the SFCL was examined. In addition,
to alleviate the rise of the DC-links’ voltage in the VSC due to the SFCL application, the active
power tracking control (APTC) method was suggested. Through power system computer-aided
design/ electromagnetic transient design and control (PSCAD/ EMTDC; Manitoba Hydro International,
Winnipeg, Manitoba, Canada) simulation, the FRT capability of the power distribution system linked
by the DG was confirmed to be enhanced by using the suggested APTC method considering the
application of SFCLs.

2. Construction and Modeling

The construction of the power distribution system, examined in this paper, is similar to one
connected with DG such as a wind farm through a DC link of more than 100 kV voltage except for the
scale of the system voltage [14–17]. Figure 2 shows the configuration of the grid linked by the DG
through the DC link of VSC systems. The grid consists of a power source and two feeders via a main
transformer (Main Tr). Each feeder was constructed to be protected by the CBs, operated by OCR. In
the output terminal of each feeder, the SFCL was installed to limit the fault current and to suppress the
voltage-dip of the main bus line from the short circuit occurrence within the grid.
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Figure 2. Configuration of the grid linked by the distributed generator (DG) through direct current
(DC) link of voltage source converter (VSC) systems.

The DG is connected with the main bus line (Bus1) of the grid through the step-up transformer and
the VSCs system. The DC link is the middle point between two VSCs, which converts AC voltage from
the DG into DC voltage and then is converted to the AC voltage of the grid. Normally, the active power
from the DG is transmitted into the grid through the control of the VSCs. With the consideration for
each component’s operation, modelling of the VSCs, the SFCL and the OCR were performed. A short
circuit fault was simulated at point F of the grid and the voltage drop of the grid was observed in the
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main bus line, which was the connection point of the DG with the grid. Additionally, the operations of
the OCR due to the application of the SFCL were examined.

2.1. Modeling of VSC

The voltage of the DC-link in middle point between two VSCs needs to be a constant value.
In other words, any increased or decreased voltage in the DC-link, which is related with the unbalance
of the active power on either side of the VSC, must be kept to constant by the controlling the VSC. The
global trend is aimed at using a multi-DC terminal where multiple AC/DC converters are connected to
one another. Since the current source converter (CSC) system using the silicon controlled rectifier (SCR)
has an inherent problem that it cannot control the reactive power and the active power independently,
the VSC system using the insulated gate bipolar transistor (IGBT) or the gate turn-off thyristor (GTO)
that independently control the reactive power and the active power has received more attention all over
the world. These VSCs can selectively control the active power and the reactive power. "Selectively"
means that the active power is physically related with the DC voltage and that the reactive power is
physically related with the AC voltage. Therefore, one of them can be taken as the reference value to
adjust the desired value [18–21].

In the case of the VSC1 in Figure 2, the DC voltage (VDC-Ref) for the active power (PS_VSC1-Ref) and
the reactive power (QS_VSC1-Ref) are selected as the references as displayed in Figure 3. The VSC1 is
controlled to supply the active power corresponding to the reference value of DC-link’s voltage into
the grid. In the case of the VSC2, the reference values (PS_VSC2-Ref, QS_VSC2-Ref) for the active power
and the reactive power can be changed by SW as shown in Figure 3. In Figure 4, the internal circuit of
the ‘Current Controller’ in Figure 3 is designed.
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As can be seen in Figure 3, the input signal of the VSC (ma,b,c_VSC) for the IGBT’s 3-phase pulse
width modulation (PWM) is generated through the dq-abc frame-transform from md_VSC and mq_VSC.
In addition, the current controller receives the dq-axis currents (isd_VSC, isq_VSC) and the dq-axis voltages
(vsd_VSC, vsq_VSC) together with the dq-axis current references (isd_VSC_Ref, isq_VSC_Ref) and outputs the
modulating signal (md_VSC, mq_VSC).

In this process, the control in dq-frame has the feature of reducing the number of necessary control
loops from three to two. Additionally, the reference, feedback, and feed-forward signals in abc frame
have generally sinusoidal functions of time. Therefore, to satisfy the desired transient response and the
small steady-state errors, the compensators may need to be high order and the closed-loop bandwidths
must be adequately larger than the frequency of the reference values. Consequently, the compensator
design is not a simple task, especially if the operating frequency is fluctuating. If the control is carried
out in the dq-frame, a sinusoidal reference tracking operation is transformed to an equivalent DC
reference tracking one. Hence, the proportional-integral (PI) compensators can be properly applied for
the control [18].

The following Equations (1) and (2) are the formulas for generating the modulating signal in
dq-frame. These equations can be derived from the AC side voltage equation from Figure 3 and can be
represented by the control block diagrams as shown in Figure 4. The transfer functions (Kd(s), Kq(s)) of
the current controller is equal to Equation (3), and the proportional gain and the integral time constant
are specified in Table A1:

md_VSC(t) =
2

VDC(t)

{
ud_VSC(t) − Lwoisq_VSC(t) + vsd_VSC(t)

}
(1)

mq_VSC(t) =
2

VDC(t)

{
uq_VSC(t) + Lw0isd_VSC(t) + vsq_VSC(t)

}
(2)

Kd(s) = Kq(s) =
Ls + (R + ron)

τis
(3)

The dq-axis current references (isd_VSC_Ref, isq_VSC_Ref) are generated through the reference signal
generator with the input values of both the active power (PS_VSC_Ref) and the reactive power (QS_VSC_Ref)
as shown in Figure 3. The relationship between the active power (or, the reactive power) and the
d-axis current (or, the q-axis current) is expressed in equations (4) and (5). As mentioned for the LVRT
regulation in the introduction part, the q-axis current can be controlled to adjust the reactive power
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as seen in Equation (5) in case that the dip in the bus line’s voltage of the grid happens due to the
short-circuit occurrence in the grid:

isd_VSC(t) =
2
3

1
vsd_VSC(t)

Ps_VSC(t) (4)

isq_VSC(t) = −
2
3

1
vsd_VSC(t)

Qs_VSC(t) (5)

From Equations (4) and (5), if the bus voltage of the grid (vsd_VSC) is constant, it is analyzed
that the reactive power and the active power can be controlled by the d-axis current and the q-axis
current, respectively, which is confirmed that the reactive power and the active power can be controlled
independently. In addition, the relation of the DC-link’s voltage and the active power can be derived
using Equation (6). A seen in Equation (6), the difference (P̃s_VSC(s)) between the charged and the
discharged active powers in the DC-link is expressed with the transfer function (Kv(s)) for the difference
(Ṽ2

DC(s)) between the square of the DC-link’s voltage and the square of the reference DC-link’s voltage:

Ṽ2
DC(s)

P̃s_VSC(s)
= −

2
C

[1 + sτ
s

]
= Kv(s) (6)

τ =
2LPs_VSC

3v̂2
s_VSC

(7)

where subscripts ~ represents small perturbation of the variables. v̂s_VSC represents the magnitude
of vs_VSC.

2.2. Modeling of Superconducting Fault Current Limiter (SFCL)

In the past three decades, many studies on the application of the SFCL to power systems have
been reported and real field projects with SFCLs have been carried out. As the application model of the
SFCL into power system, the resistive type SFCL, which consists of only a superconducting module
(SCM) without other additional device, has been mostly considered because of its simple and compact
structure [22,23]. However, in real field systems, during fault occurrence, the continuous flow of the
larger fault current into the SCM may damage the SCM and take a longer recovery time to reach the
superconducting state after the fault current is removed. These problems are related to the economic
and the protective coordination issues.

In this paper, as the SFCL model chosen to alleviate the above problems, a trigger type SFCL was
considered. The trigger type SFCL consists of SCMs (SCMa, SCMb, SCMc) connected in parallel with
the current limiting impedances (CLRa, CLRb, CLRc) and power switches (SWa, SWb, SWc), such as
the IGBT or the GTO, connected in series to the SCM as shown in Figure 5. The control circuit in the
trigger type SFCL sends the opening signal to the power switches if the induced voltages across the
SCMs measured through the PTs exceed the setting voltage value and the SCMs can be separated from
the fault current path.

Although the SCMs’ resistance generation comprising the trigger type SFCL is affected by
the various physical parameters such as the magnetic field, the temperature and the current, the
mathematical modeling of the SCMs’ resistance is performed with consideration for the current flowing
into the SCM, as expressed in Equation (8), where Rn is the resistance that converges after the SCM is
quenched, and τ0 is the time constant [24,25]:

Rsc(t) =

 0 (iSC < critical current)

Rn

√
−e−

1
τ0

t
+ 1 (iSC ≥ critical current)

(8)
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Figure 5. Topology of a trigger type superconducting fault current limiter (SFCL).

Since the isc current does not exceed the critical current of the SCM before the fault occurrence,
the resistance of the SCM (Rsc) is zero as expressed in Equation (8). However, in case that the isc exceeds
the critical current of the SCM due to the short circuit occurrence, the SCM is quenched and changes
into the normal state and the resistance of the SCM increases as described in Equation (8). As a result,
the isc current is reduced and the iCLR is increased. If the voltage induced in the Rsc after the quench
occurrence exceeds the voltage value which is set for the opening operation of the SW, the SW is opened
by the opening signal from the control circuit. After the SW is finally opened, the fault currents flow
into only the CLRs and the fault current is limited without the power burden of the SCMs by the CLRs.

2.3. Modeling of Over Current Relay (OCR)

The mathematical equation for the OCR’s operational characteristics was utilized by using
Equation (9). In Equation (9), TD means time dial. A, B and p represent constant values to express
the operational characteristics of the various OCRs. The M is a variable depending on the current (Ip)

through the OCR, measured by current transformer (CT) as expressed in Equation (10). The Ipickup is
the presetting value that the OCR starts to calculate for its trip operation [6]:

Ttrip = TD
( A

Mp − 1
+ B

)
(9)

M =
Ip

Ipickup
(10)

For the OCR to generate the trip signal at the Ttrip (trip time), calculated from Equations (9) and
(10), the integration value (INT) is introduced in the operational modeling of the OCR. The definition
of INT is equal to the sum of the reciprocal values of Ttrip in every sampling time. In case that the INT
reaches ‘1’, the OCR sends the trip signal to the circuit breaker to open. As seen in Equation (9), Ttrip is
determined by IP since all variables except for M are constants.

From Equations (9) and (10), it is expected that the operation of OCR can be delayed in case of the
SFCL’s application due to its current limiting operation. To keep the original operational time of the
OCR irrespective of the application of the SFCL, some methods such as the correction of the TD or the
setting current (Ipickup) were proposed [6,7].
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3. Active Power Tracking Control (APTC) for Suppression of DC-Links’ Voltage Rise

As explained in the Introduction, in case that an abnormal voltage occurs in the grid, the VSC
system is required to supply or consume the reactive power according to the FRT regulation. Especially,
in case that the short-circuit occurs in the grid, the VSC system linked by the DG through the DC link
performs the supplying operation of the reactive power for the prevention of the grid’s voltage dip.
On the other hand, the active power from the VSC system is less supplied and the power imbalance in
DC-link results in the rise of its voltage. Figure 6 is a block diagram of the proposed method, and its
operation algorithm is shown in Figure 7.
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In this paper, as the method to suppress the voltage rising in DC-link due to the increase of the
active power from the VSC system linked by the DG, the APTC method was suggested. In the APTC
method, the new reference value of the active power (PS_VSC2_New_Re f ) is generated by adding the active
power’s control value (PS_VSC2_control) to the existing reference value of the active power (PS_VSC2_Re f )
as shown in Figure 6. The active power’s control value, which is calculated through the difference
for the square calculation of both the DC-link’s voltage and the DC-link’s reference voltage, is only
effective for the new reference value of the active power in both the cases; one is that the variation of
DC-link’s voltage exceeds its preset variation. Another is that the difference of input/output active
powers in the DC-link exceeds the power loss such as the cable and conversion loss. For the both
cases, the VSC2 system is operated to supply the decreased active power based on the APTC algorithm
from the DG into the DC-link, which is contributed to suppress the rise of the DC-link’s voltage.
The operational flowchart of the APTC algorithm, described in Figure 6, is also shown in Figure 7.

4. Results and Discussion

As a method of verifying the operation of APTC, we can use a simulation based on theoretical
modeling. It is more accurate to construct experiment with hardware and an experimental grid and
DG systems, but this is practically limited due to economic reasons.

In this study, a VSC2 that operates APTC algorithm, connected to DG, was considered. The VSC1

controls the DC voltage through the active power regardless of the fault, and the reactive power has
the output of 0 [MVar] on normal state, but performs the FRT operation at the low voltage due to the
fault. The FRT operation was modeled as shown in Figure 1 LVRT region. As the voltage decreases by
0.1 p.u., the reactive current is supplied by 0.2 p.u.

The VSC2 controls the active power to 15 MW without any reactive power under un-fault state.
However, when the voltage of the DC link rises due to the FRT operation of VSC1, the VSC2 performs
the APTC operation. At the same time, the trigger type SFCL operates in the fault location of the power
distribution system. If the fault continues, the circuit breaker is tripped by the OCR to remove the fault.

The simulation is divided into three parts to verify the proposed protection scheme. The cases are
as follows:

• with or without case about SFCL consisted of resistance CLR; 0.1–0.8 Ω
• with or without case about SFCL consisted of inductance CLR; 0.1–0.8 Ω
• case of APTC operation with SFCL

4.1. Simulation Setup

As indicated in Figure 2, a three-phase short-circuit fault was simulated at location in F at 0.3 s.
Simulation studies were carried out in EMTDC/PSCAD (Manitoba Hydro International, Winnipeg,
Manitoba, Canada) and the parameters for simulation in a whole system are given in the Appendix A.
In the event of the fault, the voltage of the fault location (F) of the feeder drops to 0 V at 0.5 s. The
current flowing through the feeder increases and the current through current transformer (CT) increases
beyond pickup current of OCR. The modeling parameters for the SFCL and the OCR operation in the
simulation are given in Table A2.

4.2. Protection of Distribution System (Operation of SFCL and FRT)

There is a 3-phase ground fault at the middle of the feeder, the voltage at the fault location becomes
zero and the current increases greatly. The SFCL’s resistance is zero until the SCM is quenched, but
when the SCM is quenched and SW is open, the SFCL’s resistance follows the set-up CLR impedance.
In Figures 8 and 9 below, the CLR impedance is changed from 0.1 to 0.8.
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In Figures 8 and 9, the grid bus voltage(Vgrid, Vsd_VSC1) is expressed in p.u. Also, the supplied
reactive power(Qs_VSC1) according to the grid bus voltage is shown separately as resistance CLR or
inductance CLR. When the SFCL is not used, the operation of the VSC is abnormal because the grid
bus voltage is excessively decreased. Therefore, it can be seen that reactive power has fluctuations.
When a SFCL consisting of resistance CLR is applied, the reactive power also fluctuates but tracks
the reference reactive power (Qs_VSC1_ref). As the CLR impedance increases, the grid bus voltage-dip
recovers, and less reactive power is supplied. However, if a SFCL consisting of inductance CLR is
applied, it provides a stable supply with little reactive power fluttering. At this time, it can be seen
that the longer the CLR impedance, the longer the trip time. The CLR inductance case was delayed
more than the CLR resistance case. Figures 10 and 11 show the waveforms of current and complex
power in the event of a fault in front of the feeder. Figure 10 shows the CLR impedance of a trigger
type superconducting fault current limiter (SFCL) with resistance. Figure 11 is a graph where the CLR
impedance consists of inductance. In the case of a resistance, it can be seen that the DC component of
the current occurs and disappears at the beginning of the fault. It disappears when the fault continues
because it is the DC component caused by the fault angle. However, when the CLR impedance is
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inductance, the current of the generated DC component is maintained. The peak value of the current is
similar to that of the resistance, but it can be checked that the current does not fall below zero.Energies 2019, 12, x FOR PEER REVIEW 11 of 17 
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As shown in Figures 8 and 9, the smaller the CLR impedance of the SFCL, the more reactive
power the VSC1 was supplied. As the reactive power of VSC1 increases, the active power of VSC1
should decrease further. Because, converter has a limited amount capacity of complex power. When
reactive power is supplied, if the amount of active power is not reduced, the VSC may be overloaded
and the converter may be damaged. Figure 12 shows the P-Vdc curve when SFCL and FRT operation
are applied. In Figure 12a, the active power of VSC1 decreases when reactive power is supplied. In
contrast, in (b), the active power of VSC2 is constant regardless of fault. Therefore, the smaller the
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CLR impedance, the higher the DC-link’s voltage. If the CLR impedance is an inductance, as shown in
Figure 13, the overall rise of the DC-link’s voltage is small.Energies 2019, 12, x FOR PEER REVIEW 12 of 17 
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4.3. APTC Operation

Previously, the smaller the CLR impedance, the higher the DC-link’s voltage. Figure 14 shows the
application of APTC. If APTC is not applied, it can be seen that the active power of VSC2 constant and
DC-link’s voltage increases up to 20.87 kV. However, when APTC is applied, in resistance CLR case,
the active power of VSC2 decreases rapidly to zero. The DC-link’s voltage rise is then suppressed to
19.71 kV or 15.53 kV, depending on the magnitude of the impedance. In the case of inductance CLR
impedance, it is suppressed to 19.13 kV and 16.15 kV, respectively.
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4.4. Discussion About Enhancement of FRT Capability

In the distribution system, the system protection proceeds using SFCL and OCR. And FRT
operation is proceeded due to the grid bus voltage-dip in the VSC1. In Figures 15 and 16, the grid bus
voltages are plotted according to the type of CLR impedance. When the CLR impedance is a resistance,
the grid bus voltage-dip can be effectively recovered with little trip delay even when the impedance is
increased. In the case of not applying SFCL and applying SFCL with an impedance of 0.2, the grid bus
voltage-dip recovered 0.33 Vp.u. and the trip delay was within 0.01 s. When the CLR impedance is
inductance, the overall recovery of grid bus voltage-dip is small, and the trip delay is long. In case of
applying SFCL with 0.2 impedance, voltage recovery was 0.28 Vp.u. and trip time delayed by 0.2 s. In
each case, the DC-link’s voltage rose smaller when the CLR impedance was inductance than resistance
case. However, when APTC was applied, it is effective about suppressing of DC-link’s voltage rise
irregularly, regardless of the type of CLR impedance.
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5. Conclusions

In this paper, the protection operation of power system in which DG and distribution system
are connected via DC link is studied. When the fault occurred, the grid bus voltage-dip causes VSC1
to perform FRT operation, which caused the DC-link’s voltage to rise. At this time, if the SFCL is
applied, the DC-link’s voltage rise is suppressed because the grid bus voltage-dip is recovered, and
less reactive power is supplied through the FRT operation. The type and magnitude of CLR impedance
were changed and APTC was applied to comprehensively examine the grid bus voltage-dip, trip
delay and DC-link’s voltage rise. This paper analyzed the factors that reduce the system reliability
when distributed power supply is connected to distribution system, and also analyzed the correlation
between SFCL protecting AC system and control method protecting DC link. Therefore, this paper
contributed to improving the reliability of AC / DC linkage power system. Following points are
confirmed in this paper:

• When designing the SFCL, it is hard to protect the superconducting element. Therefore, adding SW
to the superconducting element and connecting the CLR in parallel with these, the superconducting
element can be protected, and the limiting impedance can be increased.

• Using the trigger-type SFCL, the FRT capability could be enhanced while protecting the SCM. As
CLR impedance of SFCL increased, FRT capability improved but trip time delayed. When CLR
impedance is resistance, FRT capability enhancement and trip delay performed best.

• The APTC is effective at suppressing DC voltage rise. It is also more economical than other
techniques because it does not require installation to suppress the DC-link’s voltage and
long-distance communication devices.

• Resistance CLR type SFCL was used and APTC technique was applied, FRT capability, trip delay
and DC link suppression were effective.

Further consideration will be given when CLR impedance is used for both resistance and
inductance. It will also be verified on an experimental system. On the other hand, the operation of the
trigger type SFCL delayed the trip time of the overcurrent relay (OCR), and the OCR index correction
is needed to solve this problem.
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Nomenclature

VSC Voltage sourced converter
DG Distributed Generator
THD Total harmonic distortion
Low Voltage A situation where the voltage decreases
Voltage rise A situation where the voltage increases
F Fault location
MTR Main transformer of modeled system in this paper
VSC1 VSC on the grid side
VSC2 VSC on the DG side
DC-link DC system consisting of two or more VSCs
APTC Active power tracking control; proposed technic for suppressing DC voltage rise
SFCL Superconducting fault current limiter
CLR Current limiting reactor; generally meaning both inductor and resistor
FRT Fault ride through; German grid-code
DQ Axis Rotational two-dimensional frame for space phasor
mdq_VSC(t) Modulating signal
udq_VSC(t) isdq_VSC(t) signal through a compensator
isdq_VSC(t) AC system current in dq-frame
vsdq_VSC(t) AC system voltage in dq-frame
Ps_VSC(t) AC system active power
Qs_VSC(t) AC system reactive power
isdq_VSC_Re f (t) Reference value of AC system current in dq-frame
vsdq_VSC_Re f (t) Reference value of AC system voltage in dq-frame
Ps_VSC_Re f (t) Reference value of AC system active power
Qs_VSC_Re f (t) Reference value of AC system reactive power
RSC(t) Resistance of superconductor
CB Circuit breaker
OCR Over current relay
Ttrip Trip time of CB
TD Time dial of OCR
A, B, p Constant value of OCR
Ip Positive current flowing through OCR
Ipickup Pickup current of OCR; threshold vaule
INT Integration of Ttrip
Kv(s) Transfer function between ṽ2

DC and p̃s_VSC

Ps_VSC_control(t) Ps_VSC_Re f value to change
Ps_VSC_New_Re f (t) New value for APTC
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Appendix A

Table A1. Parameters for simulation in whole system.

Item Classification Value Unit

DC-link
Constant

Rated Voltage 15 [kV]

Cable Type XLPE
(ABB, July 2017)

Cable Impedance 0. 022 [mΩ/km]
Switching Frequency 1980 [Hz]

VSC2 Control (PRe f /QRe f ) 15/0 [MW]/[MVar]
VSC1 Control (VDC/QRe f ) 15/(0 or FRT) [kV]/[MVar]

AC Grid
Constant

Bus Voltage 154 [kV]
MTR Ratio 154/22.9 -

MTR Capacity 100 [MVA]

AC Distribution
System Constant

Load 30/3(+inductive) [MW]/[MVar]
Line Type CNCV/W 325 [mm2]

Line Impedance 0.0939 + j0.1492 [Ω/km]

Line length Z11 = 5, Z12 = 6
Z21 = 5, Z22 = 6 [km]

VSC PI Controller

Current Controller Proportional gain (kP):
3.33 -

Integral Time Constant
(τi): 0.0002 [s]

DC-link’s voltage Controller Proportional gain (kPv):
13.25 -

Integral Time Constant
(τ): 0.00001 [s]

Table A2. Modeling Index of SFCL and OCR.

Item Index Description Value Unit

OCR

Ipickup pickup current of OCR 3.5 [kA]
A OCR Trip Index1 39.85 -
B OCR Trip Index2 1.084 -
K OCR Trip Index3 0 -
Tr OCR Reset Index 0.5 -
p Nonlinear Index for OCR trip 1.95 -
q Nonlinear Index for OCR reset 2 -

TD Time Dial 0.02 -

SFCL
ZCLR CLR Impedance

0.1, 0.2, 0.4, 0.8
or

j 0.1, j 0.2, j 0.4, j
0.8

[Ω]

ICritical Critical Current of SCM 3 [kA]
VSW Opening Value of SW 2 [kV]
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