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Abstract: The techniques of Dynamic Line Rating (DLR) for Overhead Transmission Line (OTL)’s are
currently dynamically developed. DLR systems typically rely on weather, temperature, inclination,
and current measurements to calculate tension and sag, where sensors need to be installed directly on
wires. Such systems are very reliable and ensure high accuracy in determining maximum allowable
current. However, their installation may require switching off the transmission line from the operation.
In order to receive precise values regarding the actual operating conditions of the whole transmission
line, DLR sensors measuring wire temperature or tension should be installed at many points of OTL.
The minimum number of installation points should cover at least each tension section and critical
spans, thereby increasing installation costs. The alternative method that allows for the monitoring of
OTL is the use of the vision system based on cameras. Installed on the OTLs’ poles, cameras can take
photos which, appropriately processed, can provide data about the sag and temperature of wires,
without the necessity of switching OTL from the operation for installation or further maintenance.
Such a vision system facilitates also data transmission, because it does not require measurement
data to be transmitted from the sensor station installed on the wire to the base station located on
the pole (for instance, via radio). This article aims to present the concept of a vision system that
monitors sag and temperature of Overhead Transmission Lines (OTLs)’ using Long Range (LoRa)
wireless communication and data transmission. The developed system consists of a camera and a
microcomputer equipped with LoRa communication module. The whole system monitors OTLs’
spans by taking photos, processing images for wire sag-temperature estimation, and sending results
to the operator’s Supervisory Control And Data Acquisition (SCADA). The system communication
architecture is also proposed and investigated for data transmission time when monitoring the
whole OTL.

Keywords: overhead transmission line; sag; temperature; estimation; dynamic line rating; vision
system; image processing; wireless sensor networks; LoRa; transmission time

1. Introduction

The techniques of DLR for OTLs are currently dynamically developed. DLR systems typically rely
on weather, temperature, inclination, and current measurements to calculate tension and sag, where
sensors need to be installed directly on wires. Such systems are very reliable and ensure high accuracy
in determining maximum allowable current. However, their installation may require switching off the
transmission line from the operation. In order to receive precise values regarding the actual operating
conditions of the whole transmission line, DLR sensors measuring wire temperature or tension should
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be installed at many points of OTL. The minimum number of installation points should cover at least
each tension section and critical spans, thereby increasing installation costs. The alternative method
that allows for the monitoring of OTL is the use of the vision system based on cameras. Installed on
the OTLs’ poles, cameras can take photos which, appropriately processed, can provide data about sag
and temperature of wires, without the necessity of switching OTL from the operation for installation
or further maintenance. Such a vision system facilitates also data transmission, because it does not
require measurement data to be transmitted from sensor station installed on the wire to the base station
located on the pole (for instance, via radio).

1.1. Related Work

There exist many successfully installed and developed DLR systems [1–7], which can be used
for improving the accuracy of power system models [8,9] and then applied for optimal generation
scheduling [10], or congestion management [11,12]. In typical DLR solutions [13], measuring
stations equipped with temperature [14], elongation [15], strain, or inclination sensors [16,17]
are mounted directly on the transmission line wires [14–16]. Such sensor stations are usually
powered by a rechargeable battery during a normal line operation [11]. The measuring station
typically communicates with the base station, using radio or other applicable wireless communication
technology [18,19]. In the case of the measurements provided with a direct fiber-optic cable [14,16],
the radio communication between sensor head and base station can be neglected. The installation of
measuring stations on wires is usually performed when the power line is out of service, which in some
cases can be challenging to achieve. There are techniques that allow for mounting sensor stations on
the energized power line. However, in the case of high voltage lines and due to human safety, such a
technique is avoided.

1.2. Motivation and Contribution

To facilitate the DLR system installation and future maintenance, there are alternative contactless
monitoring methods of OTLs’ operational state [20,21], such as temperature, sag, or icing [13,17,22].
One of the many possibilities of OTL contactless monitoring can be the usage of cameras mounted
on the lines’ poles [1,20,23,24]. The data concerning the actual operational state can be sent to the
SCADA system via Wireless Sensor Network (WSN) [19,25–27] or, as presented in this article, using
LoRa [28,29]. Currently developed cameras equipped with object detection algorithms based on image
semantic segmentation using deep learning and Convolutional Neural Networks (CNNs) [30–32] can
be used for early warnings of arc flashes, dangerous objects approaching (e.g., planes, drones, and
skydivers), events such as excessive icing, or unwanted persons climbing the pole. Such a vision
system can provide supplementary data supporting the OTLs’ Intelligent Electronic Devices (IEDs), so
the critical feature is the time of sending information to the protection device or operator’s SCADA to
react to disturbance in a certain time.

The main contribution of this paper is the concept and the practical realization of the vision system,
which monitors the sag and temperature of overhead transmission lines (OTLs) using long-range
(LoRa) wireless communication. The contribution of this paper is summarized as the list of the
following components:

1. The concept of a vision system for spans’ contactless sag–temperature monitoring is presented;
2. The algorithm of image processing for wire sag–temperature estimation is implemented and its

operational performance is practically measured;
3. The communication architecture based on LoRa is proposed, and in-situ data transmission

performance under 110 kV power line is investigated;
4. The proposed system for monitoring real OTL consisting of 80 poles is modeled in Automated

Quality of Protection Analysis (AQoPA) and examined for overall performance.
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The rest of this paper is organized in the following way: Section 2 covers the description of
methods and developed system of OTL’s sag and temperature monitoring using cameras, including
image processing with a sag–temperature estimation algorithm and a LoRa communication architecture.
Moving on to Section 3, the results from system operation are presented, while in Section 4 the overall
performance is investigated. Finally, Section 5 covers conclusions and future work.

2. The Vision System for Transmission Line Sag and Temperature Monitoring with
LoRa Communication

Many DLR systems determine the OTL’s ampacity based on weather conditions, the actual
current, and/or wire tension measurements. In such cases, the critical parameter is temperature and
sag, which depend on the safe wire clearance from the ground or from the obstacle.

2.1. Sag–Tension Calculations of the Transmission Line Span

In mechanical overhead transmission line calculations, it is assumed that the shape of a hanging
wire can be approximated by the catenary curve. The shape of a catenary is a function of the conductor
weight per unit length weight w, the horizontal component of wire tension H, span length S, and the
maximum sag of the conductor D. The exact catenary equation uses hyperbolic functions, as shown
in Equation (1). The right side of Equation (1) is an approximation of the hyperbolic cosine using the
Maclaurin series expansion:

y(x) =
H
w

cosh
[(w

H
x
)
− 1
]
=

w(x2)

2H
. (1)

For flat spans, assumed in this paper, the low point is at the center and the wire sag D is found
by substituting x = S/2. Exact and approximate formulas for the sag calculations are shown in
Equations (2) and (3):
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H
w
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2H

x
)
− 1
]
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D =

√
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8
. (3)

It can be seen from Equation (3) that wire sag D depends strongly on wire length L, which varies
as a function of initial conditions, temperature, and stress (4):

L2 = αL1(T2 − T1) + βL1(σ2 − σ1) (4)

where L1, L2—initial and end state wire length; T1, T2—initial and end wire temperature; α—
conductor’s thermal elongation coefficient; β—conductor’s modulus of elasticity; σ1, σ2—initial and
end state conductor stress calculated as σ = H/A; A—wire cross-sectional area.

The standard temperature–tension calculations of the power line spans are performed using
Equation (5) and solved using iterative methods [15,33]:

σ2 −
S2g2

2
24βσ2

2
= σ1 −

S2g2
1

24βσ2
1
− α

β
(T2 − T1). (5)

The classical method for sag calculation in power line spans presented above requires many
measurements distributed along the OTL, which can be difficult to achieve. The classical method
of sag–tension calculation is presented in Figure 1a [34] and compared to the proposed method
in Figure 1b.
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Figure 1. Temperature and sag calculation methods: (a) typical c©, reproduced from [34], IEEE, 2008;
(b) implemented in the proposed system.

As presented in Figure 1a, the typical method of sag and temperature estimation requires the
measurements of wire tension, conductor current, and actual weather parameters such as insolation,
ambient temperature, and wind speed with its direction [11]. Having those values, the thermal
model [35,36] calculates the actual wire temperature. The mechanical state estimation is performed by
solving Equation (5) and calculating wire temperature T and strain σ, which allow for the determination
of length L (4) and sag estimation D using Equation (3). In the proposed approach (Figure 1b), the
wire sag D can be estimated assuming wire centenary or parabolic shape in the span in Equations (1)
and (2) having known pole-span dimensions and wire parameters, combined with imagery taken
by a camera as shown in Figure 2. The image is filtered and processed for final sag–temperature
estimation as presented in Figure 3. Calculated wire length L using Equation (3) from sag D allows
for the temperature estimation using Equations (4) and (5). In the proposed method, the wire thermal
model and direct measurements from the OTL are not required.

Figure 2. Transmission line single span monitoring using smart camera, where D—wire sag;
C—clearance (distance from the ground or obstacle); S—span length; M—horizontal distance between
camera and monitored phase wire insulator; L—wire length in the monitored span; T—conductor
tension in the suspension point; H, V—horizontal and vertical components of wire tension T.
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As presented in Figure 1b, the proposed system performs wire sag–temperature calculations
based on previously processed image used for the extraction of wire shape between two poles.
The successive stages of span image processing are presented in Figure 3. The image processing
and sag estimation algorithm (Figure 3) has been developed using Matlab/Simulink c© [37] with Image
Processing Toolbox [38] and implemented on Raspberry Pi 3 B+ c© equipped with a camera after
successful implementation of IEC61850 presented in [39]. The algorithm prototyping was possible
through the use of Matlab/Simulink Hardware Support Package for Raspberry Pi 3 B+ [40], but
the final standalone application was embedded on Raspberry Pi 3 B+ using Python 3.6.5 and the
scikit-image library [41]. In the presented algorithm (Figure 3), Canny’s edge detection method was
used [42].

Figure 3. Sag and temperature estimation method based on image processing.

2.2. Communication Architecture of the Transmission Line Sag and Temperature Monitoring System

There is now an increased interest in very promising LoRa technology, typically used for
communication or data transmission in various applications [43–45]. Recently, the LoRa technology
has been successfully implemented in the monitoring of different components in power systems such
as grid [29] or Renewable Energy Sources (RES) [28,43]. The impressive range of 112 km is shown
in [46]. In typical applications, LoRa can achieve a range from 2 to 15 km [47,48]. Some security issues
and improvements have been identified and examined in [49,50]. Based on the research above and
in [18,19,51], the power line sag–temperature communication architecture is proposed and is shown in
Figure 4.

In the presented power line monitoring system, all spans’ images are processed on RPis estimating
local sags and temperatures. Next, the values of wire sag and temperature with time stamps are
transmitted to the sink. The sink node receives the sag–temperature data from adjacent poles of up
to a 2 km distance, which typically covers from 4 to 7 poles. The calculated and transmitted sink
sag–temperature values are then sent further to the operator’s SCADA system through GSM/LTE.
The necessity of installing cameras on every transmission tower depends on the many factors such as
geographical and weather conditions and the possibility of line overloading. Such factors are typically
analyzed by operators or utility experts when deciding if all or only chosen spans need to be monitored.
We chose the scenario where all spans are monitored, which ensures complete information about line
operating parameters. However, in some situations, the sag–temperature monitoring nodes can be
identified by operators’ critical spans, which would lower application and operational costs.
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Figure 4. Parallel monitoring scenario of OTL using a cellular network.

2.3. LoRa Communication Configuration

As previously mentioned, LoRa is a wireless transmission technology adapted to exchange
small portions of data over long distances. The real effective range depends on terrain, ambient
conditions, and used antennas [46]. In the presented system, the Pycom LoPy4 modules are used as a
communication backbone. Modules are based on ESP32 development boards with an inbuilt SX1276
transceiver connected over the SPI interface. An important advantage of utilized LoPy4 modules
is low-energy consumption, which requires only 25 µA in sleep mode. This feature makes LoPy4
modules ideally suited for the developed system. During tests, the communication is configured
in MAC mode (raw LoRa), which allows for bypassing the LoRaWAN layer. In such a connection
type, the transmitting packet does not contain additional information such as addressing and is not
formatted or encrypted by default [52]. Table 1 shows the LoRa connection settings used in the tests,
where TX is the transmission power, SF is the spreading factor, BW is the bandwidth, and CR is the
coding rate.

Table 1. LoRa connection settings.

Region TX SF BW CR

dBm - kHz -

EU868 14 12 125 4/8

Settings presented in Table 1 are allowed for the most reliable transmission. The TX parameter
has been set to the maximum possible value to achieve the required distance. The SF parameter is
responsible for the duration of the chirp. The higher SF values are, the more reliable the connection
is, while the lower SF values reduce the range and increase the bit rate. The spreading factor was set
to 12, which is the highest possible setting. The BW parameter was set to 125 kHz. This is a measure
between the upper and lower frequency of the chirp. The coding rate was set to 4/8. This parameter
is connected with forward error correction. In this technique, the message contains redundant data
that help detect errors. In fact, the coding rate corresponds to the proportion of bits that actually carry
information. In this setting, twice as many bytes are transmitted. The transmitted data structure is
presented in Figure 5.
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Figure 5. Payload data structure.

Sending a packet of this size takes 2093 milliseconds assuming the settings shown above. It also
provides all the required data to identify the measurement.

3. Results

This section covers the results achieved from the operation of the developed vision system in the
flat span testbed (Figure 6), where the draw-wire displacement sensor Micro-Epsilon WDS 2500-P96
with an accuracy of ±2.5 mm was used for direct sag measurement. The horizontal tension was
measured using Instron PM-L 2526-802 10 kN load cell with an accuracy of 0.5%. The wire temperature
was measured with a DS18B20 sensor connected to an Arduino borad.

Figure 6. Outline of the outdoor testbed used for the proposed wire sag and temperature monitoring
accuracy, where 1—developed vision system, 2—ACSR Hawk wire, 3—draw-wire displacement
sensor Micro-Epsilon WDS 2500-P96, 4—load cell Instron PM-L 2526-802 10 kN, 5—temperature
sensor DS18B20.

The single node consisting of Raspberry Pi 3B+ with a NOIR Camera and Pycom communication
modules is shown in Figure 7. The Raspberry Pi board is powered with 5 V and needs approximately
610–700 mA when running Raspbian operating system and performing extensive calculations on CPU.
Depending on the operating system configuration and running interfaces (e.g., HDMI, WiFi, and USB),
the power consumption can be lowered to approximately 145 mA. In the proposed vision system, the
sag and temperature estimation procedure is launched in a 10 min interval, where less than 25 s is
needed for the image processing and sag-temperature computations. It can be assumed that, during
575 s, Raspberry Pi consumes 200 mA, and in 25 s it consumes approximately 700 mA. Based on
technical data, battery capacity with a solar panel that allows for charging of the battery and powering
of a Raspberry Pi equipped camera and LoRa transmitter can be designed. A similar power supply
solution has been examined in [11]. Presented in Figure 4 is an RPi with a LoRa receiver additionally
equipped with an LTE communication module consuming an additional 400 mA.
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Figure 7. Developed vision system node for OTL wire sag and temperature monitoring.

3.1. The Image Processing Algorithm for Wire Sag and Temperature Estimation

In the presented vision system, firstly, the sag of the wire is extracted from the image, and, using
catenary equation, the actual wire temperature is then calculated taking the span’s technical data
as input parameters. The step-by-step image processing results, according to the stages defined in
Figure 3, are presented in Figures 8–11 with the final stage and results presented in Figure 12.

Figure 8. Span image taken by 8 MPix camera in a resolution of 3840 × 2160.

Figure 9. Color to grayscale and grayscale to black–white conversion where threshold = 130.

The final results with estimated sag and wire temperature are presented in Figure 12 and Table 2.
The parameters of ACSR 26/7 Hawk wire have been assumed to be equal, as follows: A = 276.2 mm2,
1/β =75 MPa, g = 34.47 N/(m·mm2), α = 18.7·10−6 1/K.
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Figure 10. Edge detection using Canny’s method [42].

Figure 11. Image after removing noise.

Figure 12. Estimated sag and temperature of an ACSR 26/7 Hawk power line wire on a 50 m flat span.

Table 2. Results of sag and temperature calculations for ACSR 26/7 Hawk power line wire on a
50 m span.

State Tension Strain Sag Temperature

H (kN) σ (MPa) D (m) T ◦C

1 3.650 13.215 0.8152 7.51
2 2.996 10.848 0.9932 27.54

where: State 1—the initial state at the beginning of the long-term tests (April 2018); State 2—the last recorded
state at the end of the tests (June 2018).

The image processing algorithm performance results, implemented in Python and embedded
on Raspberry Pi 3B+, are presented in Appendix A.1, Figure A1, A2, and Table 3. From the analysis
of results gathered in Table 3, it can be easily observed that the mean time of a single run is 22.548 s,
which has been taken for system performance modeling and simulations in AQoPA.

Table 3. Algorithm performance statistics.

Min Max Mean Median Mode Std Std. %

22.5091 22.8085 22.5480 22.5342 22.5091 0.0433 0.1920
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The results of proposed vision system operation estimating wire sag and temperature are
presented in Figures 13 and 14, respectively. The error statistics for sag and temperature estimation are
summarized in Tables 4 and 5.

Figure 13. Estimated sag of an ACSR 26/7 Hawk power line wire on a 50 m flat span.

Table 4. Vision system sag estimation error statistics—all values in centimeters (cm).

Min Max Mean Median Mode Std

−6.878 6.406 0.06157 0.0298 −6.878 1.803

Table 5. Vision system temperature estimation error statistics—all values in degrees Celsius (◦C).

Min Max Mean Median Mode Std

−7.191 6.532 0.04932 0.02974 −7.191 1.891

Figure 14. Estimated wire temperature of an ACSR 26/7 Hawk wire on a 50 m flat span.

The analysis of achieved results allows us to conclude that the standard deviation of sag estimation
is ±1.8 cm in a 50 m span, while the temperature estimation standard deviation is approximately
±1.9 ◦C. Very promising is the mean error, varying around 0.06 cm for sag estimation and 0.05 ◦C
for temperature estimation. This shows that the presented method accuracy can be improved by
performing more than one photo of the span and calculating the mean value from multiple sag and
temperature estimations.
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3.2. LoRa Experiment and Results

The LoRa transmission time measurements were realized on real 110 kV OTL. During the tests,
a two-way connection was configured. One module sent data and waited for confirmation that the
message was received. This allowed the time of data transfer to be measured. The timer started
measurement when the data was sent, and stopped when confirmation was received. Each operation
had a blocking status, so no other operation was performed until the confirmation signal was received
or connection timed out. The achieved results are presented in Figures 15 and 16. It can be easily
observed that transmission time depends only on packet size. The 6 byte packet was transmitted
at a maximum of 1251 ms, while a 103 byte packet was transmitted at a maximum of 6231 ms.
No transmission time vs. distance dependency was observed. According to results presented in
Figure 16, the data transmission time with respect to packet size dependency can be approximated
by Equation (6):

y = 52.438 · x + 834.8 (6)

where y—transmission time in milliseconds (ms); x—packet size in bytes (B).

Figure 15. Results of LoRa transmission time measurements realized on real 110 kV OTL as a function
of packet size and distance between nodes.

Figure 16. Results of LoRa transmission time measurements realized on real 110 kV OTL as a function
of packet size and constant distance between nodes.
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4. Modeling and Performance Analysis of the Vision System with LoRa Communication

One of the primary advantages of simulation is that it is able to provide practical feedback when
designing real world systems. This allows one to determine the performance and efficiency of the
system before it is actually constructed. For this reason, by using the simulation tool, the operation and
overall performance of a multi-node system that will cover a typical transmission line was analyzed.
Considering such a complex environment as the HV OTLs, it is reasonable to first simulate the system
before actually building it. Modeling and simulation provide an important method of analysis whereby
results can be easily verified, communicated, understood, and valuable by giving clear insights into
such complex systems. Moreover, a simulation model can capture many more details than an analytical
model, providing increased accuracy and more precise forecasting. Considering a transmission line,
which consists of a significant number of poles and spans, simulation of possible monitoring solutions
additionally helps save time and costs. For the purpose of determination, the vision system operation
time consisting of image processing and LoRa communication, authors have used Quality of Protection
Modeling Language (QoP-ML) [53,54] and AQoPA for modeling [55]. A model of the considered vision
system for whole transmission line monitoring, developed in QoP-ML, is presented and described
below. Simulation results achieved using AQoPA are also analyzed and discussed. In the presented
vision system, the critical parameter is the time needed to determine the whole line ampacity, achieved
by the following steps: (1) take photos of all OTLs’ spans, (2) estimate sags and temperatures, and
(3) transmit values to SCADA, as shown in Figure 3. The usefulness of the presented vision system
strongly depends on particular data processing and transmission times, in which the vision system
will be able to deliver data to the operator’s SCADA system. The total time needed to determine actual
line rating strongly depends on image processing hardware with the implemented algorithm and the
communication architecture [18,19,25].

4.1. The Model

In this section, all the elements prepared for creating the model of the vision system for monitoring
the transmission line in QoP-ML, and the analysis results gathered using the AQoPA tool, are presented.

Analyzing the performance of the considered transmission line monitoring system, four hosts have
been modeled: (1) a sensor device responsible for measurements, (2) the processing and transferring of
the data to a sink device, (3) the sink device, which acts as a transmitter, sending calculated values
to the third host, and (4) the headquarters or SCADA (Figure 4) in the QoP-ML model, referred to
as a base station. While there is no manager in the real life deployment of the considered system, its
abstraction in QoP-ML needs the manager to handle proper packet flows. The manager stores lists of
sinks and sensors and knows which sensor is assigned to which sink. Its main role is to send control
messages to sink nodes, in order to give them instructions regarding which sensors they should collect
data from or what the best time for performing data transmission to the substation is. Sink nodes
receive a list of its sensors from the manager, generate some parameters, send them to assigned motes,
and wait for the collected data. After the data is collected, sensors send it to their relay node. When
the relay node receives a message from each of the four sensors and the manager, it immediately starts
routing to the substation. Communication ends when the base station receives packets from all the
sinks that connect directly. The full model of the presented vision system, developed in QoP-ML, can
be downloaded from the [56].

In Appendix A.2, Listing A1 [18], all hosts taking part in the simulation are defined. The detailed
operations performed by each of them were removed for readability and will be described in greater
detail separately.

The BaseStation host model is presented in Appendix A.2, Listing A2. The role of the headquarters
host (SCADA) is simple: in an infinite loop (Listing A2, Line 5), it waits for the data from sinks scattered
over transmission line (Listing A2, Line 7), and saves it for further processing (Listing A2, Line 9).
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Next, there is the Sensor host, responsible for image processing with sag/temperature estimation
and data collection. The very first instruction of the Sensor host is the image processing (Appendix A.2,
Listing A3, Line 3). When this operation is finished, the Sensor waits for parameters sent by the
sink (Appendix A.2 Listing A3, Line 7), in which there is an identifier (ID) of the device that acts as
the relay node for this specific sensor. Further, the sensor gathers the data obtained after the image
processing (Appendix A.2, Listing A3, Line 11) and sends the data to its sink (Appendix A.2, Listing A3,
Lines 17–18).

The main role of the Sink device is to gather the data obtained by its sensors: when all motes finish
image processing and data gathering, they send the obtained data to the SCADA system by means of
LTE. As can be seen in Appendix A.2, Listing A4, the sink consists of three processes, namely Main,
WaitForData, and Communication, where each of them is in charge of different operations. The Main
process (Appendix A.2, Listing A4, Lines 5–21) waits for data from the Manager, in order to receive the
list of sensors, from which the sink needs to gather the data. After receiving the list of sensors, the
sink generates parameters and sends them to sensor devices. The actual data gathering takes place
in the WaitForData process (Appendix A.2, Listing A4, Lines 24–39), in which the sink node waits for
data gathered by sensors. The Sink saves the data and adds it to the list of the collected packets. The
Communication process is responsible for the actual data transmission toward the base station. Its role
is to receive the initial data from the manager or another sink within its cluster. The sink adds the
data to the list of the gathered packets containing image processing information and performs the
routing algorithm, in order to find the path to headquarters. The Communication process ends when
packets from all sinks reach the base station. Last but not least, the Manager represents a host that is
not available (and not needed) in real-life deployment. As brought up earlier, its role is to work only
as a helper host, which manages packet flows in our simulation. For this reason, its code is omitted.

In order to demonstrate the described behavior of the hosts taking part in model, one of the
QoP-ML’s features that allow one to specify operations performed by hosts (called functions) was used.
All actions taken by each of the hosts were able to be defined as measurements—image processing
with sag/temperature estimation and data transmission.

Lines 3–7 presented in Appendix A.2, Listing A5, contain a declaration of functions, that are
used by the Manager host to handle the division of sensors to proper sinks. Functions representing
types of messages traversing the transmission line are defined in Lines 9–17 in Appendix A.2,
Listing A5. Remaining functions (Appendix A.2, Listing A5, Lines 19–22) refer to data collection
and are fairly self-explanatory.

Regarding the data transmission, three communication channels were modeled (one of them being
the main communication channel, and two remaining needed by the model itself for communication
synchronization) as presented in Appendix A.2, Listing A6. The modeled communication channel has
physical characteristics defined by the LoRa digital wireless data communication technology standard.
The mentioned standard was chosen because it enables very-long-range transmissions with low power
consumption, which is the crucial feature when it comes to sensor devices.

The simulation begins at sensor nodes, where image processing takes place. Calculated values
are sent to sink devices (also known as gateways) using the LoRa communication standard. Further,
every gateway across the transmission line transfers gathered data to the operator’s SCADA system
using the GSM/LTE network.

4.2. Scenarios

Analyzing monitoring of an overhead transmission line in QoP-ML, we proposed to consider a
scenario that consists of 80 sensors, 10 sinks, and a single SCADA station. As can be seen, utilized
hosts use metrics defined for TelosB motes (which in fact means they have its physical characteristics),
while the sink node utilizes metrics for a MicaZ device (Appendix A.2, Listing A7, Lines 5–8). Further,
the actual number of devices taking part in simulation is given (in curly brackets), and finally hosts
are started (Appendix A.2, Listing A7, Lines 10–27). During the startup process, one can choose
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which processes and subprocesses defined in a model should also be launched. For instance, looking
at the Sink host defined earlier in our model, it can be seen that it has three processes and three
subprocesses, and all of them are being started. When devices are set up and ready, communication
details are defined. This can be done inside the Communication structure, where one can specify a
medium’s physical characteristics (Appendix A.2, Listing A7, Lines 32–35) and the topology of the
considered environment (Appendix A.2, Listing A7, Lines 36–62). With respect to the time taken for
data transmission, we utilized the (6) formula. In our simulation, we assumed the packet size to be
equal to 6 bytes, and used the resulting value to define the time needed by sensors sending the data to
their sinks (Appendix A.2, Listing A7, Line 62).

4.2.1. Results and Analysis

Table 6 consists of the results gathered after the simulation of the transmission line scenario
prepared in QoP-ML. In this scenario, there are 80 poles and 10 sinks. Devices are grouped such that
8 poles send data to their sink, which further transmits it to SCADA system. There are 10 groups, each
of them consisting of 1 sink and 8 sensors. (Sensors 1-8 and Sink 1 are the first group, Sensors 9–16 and
Snk 2 are the second, and so on.)

Table 6. Transmission times (in seconds) for the SCADA system from 80 poles.

Communication Time (s) Communication Time (s) Communicationf Time (s) Communication Time (s)

node1 -> Sink 47.37 node2 -> Sink 46.22 node3 -> Sink 42.74 node4 -> Sink 41.59
node5 -> Sink 38.11 node6 -> Sink 36.96 node7 -> Sink 34.64 node8 -> Sink 32.31
node9 -> Sink 47.37 node10 -> Sink 46.22 node11 -> Sink 42.74 node12 -> Sink 41.59
node13 -> Sink 38.11 node14 -> Sink 36.96 node15 -> Sink 34.64 node16 -> Sink 32.31
node17 -> Sink 47.37 node18 -> Sink 46.20 node19 -> Sink 42.74 node20 -> Sink 41.58
node21 -> Sink 38.11 node22 -> Sink 36.96 node23 -> Sink 34.64 node24 -> Sink 32.31
node25 -> Sink 48.52 node26 -> Sink 46.19 node27 -> Sink 42.71 node28 -> Sink 41.56
node29 -> Sink 38.08 node30 -> Sink 36.94 node31 -> Sink 33.46 node32 -> Sink 32.31
node33 -> Sink 47.34 node34 -> Sink 46.19 node35 -> Sink 42.71 node36 -> Sink 41.56
node37 -> Sink 38.08 node38 -> Sink 36.94 node39 -> Sink 33.46 node40 -> Sink 32.31
node41 -> Sink 47.34 node42 -> Sink 46.19 node43 -> Sink 42.71 node44 -> Sink 41.56
node45 -> Sink 38.08 node46 -> Sink 36.94 node47 -> Sink 33.46 node48 -> Sink 32.31
node49 -> Sink 47.34 node50 -> Sink 46.19 node51 -> Sink 42.71 node52 -> Sink 41.56
node53 -> Sink 38.08 node54 -> Sink 36.94 node55 -> Sink 33.46 node56 -> Sink 32.31
node57 -> Sink 48.50 node58 -> Sink 46.17 node59 -> Sink 42.71 node60 -> Sink 41.56
node61 -> Sink 38.08 node62 -> Sink 36.94 node63 -> Sink 33.46 node64 -> Sink 32.31
node65 -> Sink 48.49 node66 -> Sink 45.03 node67 -> Sink 43.88 node68 -> Sink 41.55
node69 -> Sink 38.08 node70 -> Sink 36.94 node71 -> Sink 33.46 node72 -> Sink 32.31
node73 -> Sink 48.47 node74 -> Sink 45.01 node75 -> Sink 43.86 node76 -> Sink 41.53
node77 -> Sink 38.08 node78 -> Sink 36.92 node79 -> Sink 33.46 node80 -> Sink 32.31

As can be seen in Table 6, the transmission time between sensor and their sink is different for each
mote within a group. It results from the fact that data transmitted from sensors is being queued at the
sink’s side, while every sensor performs image processing at the same time and sends gathered data
immediately to its sink. The time in which the SCADA system is given full information from all of the
80 poles is the maximum time from 8 groups, which is equal to 48.47 s.

5. Conclusions

There are many DLR systems that allow for the calculation of the actual OTL’s ampacity. The
main drawback of most currently used methods is the necessity of sensor installation directly on
OTLs’ wires, which implies a switching off the line from operation. In this paper, the concept of a
contactless vision system for monitoring OTL’s wire sag and temperature with LoRa communication
(used for data transmission) is presented. The single span sensor node equipped with a camera
and LoRa communication was built. The algorithm for OTL’s wire sag and temperature estimation
was developed, implemented, and tested in a 50 m long test span with an ACSR Hawk 26/7 wire.
The presented technique estimation accuracy for a wider range of sags and temperatures using high
currents has been scheduled as the next research step. The final stage will be the installation of
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the presented vision system on an in-service high voltage OTL. The LoRa communication has been
tested under in-service 110 kV OTL, proving (1) the correctness of LoRa settings assumed, (2) the
operational range, and (3) the transmission time. The overall performance of the proposed vision
system monitoring 80 km OTL was evaluated using developed models in QoP-ML and analyzed
with the AQoPA tool. The system performance results proved that the longest data transmission time
was less than 48.5 s, while the standard OTL’s wire time constant is assumed to be within 5–15 min
(300–900 s). The simple comparison of times shows that the overall vision system performance is
from almost 6.2 to 18.55 times higher than the standard wire time constant, which proves the system’
applicability and usability. In the proposed topology, 80 poles OTL can be fully monitored in less
than 50 s. The total time, which is needed to determine the actual line rating can be shortened using
more efficient processor boards or smart-cameras with built-in image processing algorithms on FPGAs.
The presented system can be also expanded with further algorithms, e.g., for ice detection, which
would improve its future functionality. The usage of FLIR cameras, smart cameras, and encryption for
data transmission security, as well as an investigation of a system’s lifetime and reliability with LoRa
communication, will be topics of future work.
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Appendix A

Appendix A.1. Single Span Image Processing and Sag Estimation

Figure A1. Image processing with sag estimation algorithm performance running on Raspberry Pi 3 B+.

Figure A2. Histogram of algorithm performance running on Raspberry Pi 3 B+.
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Appendix A.2. QoP-ML Listings

Listing A1. QoP-ML’s hosts taking part in simulation.

1hosts
2{
3host BaseStation(rr)(*) { ... }
4host Sensor(rr)(*) { ... }
5host Sink(rr)(*) { ... }
6host Manager(fifo )(*) { ... }
7}

Listing A2. The headquarters host implemented in QoP-ML.

1host BaseStation(rr)(*)
2{
3process Main (*)
4{
5while(true)
6{
7in(ch_WSN: DATA_MSG: |*, id(), sink_data_msg ()|);
8bsDATA = DATA_MSG [3];
9save_collected_data(bsDATA )[ UPDATED ];
10}
11}
12}

Listing A3. The sensor host implemented in QoP-ML.

1host Sensor(rr)(*)
2{
3# img = process_image ();
4
5process Main (*)
6{
7in(ch_WSN: PARAMS_MSG: |*, id(), params_msg ()|);
8PARAMS = PARAMS_MSG [3];
9SINK_ID = PARAMS_MSG [0];
10
11GATHERED_DATA = collected_data ()[ UPDATED ];
12save_collected_data(GATHERED_DATA )[ UPDATED ];
13
14COLLECTED_NOTIFICATION_MSG = (id(), broadcast(), data_collected_msg ());
15out(ch_MGNT: COLLECTED_NOTIFICATION_MSG );
16
17DATA_MSG = (id(), SINK_ID , data_msg(), GATHERED_DATA );
18out(ch_WSN: DATA_MSG );
19}
20}
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Listing A4. The sink host implemented in QoP-ML.

1host Sink(rr)(*)
2{
3# COLLECTED_DATA = empty_list ();
4
5process Main (*)
6{
7in(ch_MGNT: NODES_MSG: |*, id(), nodes_msg ()|);
8NODES_LIST = NODES_MSG [3];
9
10TMP_NODES_LIST = NODES_LIST;
11
12while (is_list_empty(TMP_NODES_LIST) != true) {
13
14PARAMS = generate_params ();
15
16NODE_ID = get_from_list(TMP_NODES_LIST );
17TMP_NODES_LIST = pop_list(TMP_NODES_LIST );
18
19PARAMS_MSG = (id(), NODE_ID , params_msg (), PARAMS );
20out(ch_WSN: PARAMS_MSG );
21}
22}
23
24process WaitForData (*) {
25
26in(ch_MGNT: NODES_MSG2: |*, id(), nodes_msg ()|);
27TMP_NODES_LIST2 = NODES_MSG2 [3];
28
29while (is_list_empty(TMP_NODES_LIST2) != true) {
30
31in(ch_WSN: DATA_MSG_FROM_SENSORS: |*, id(), data_msg ()|);
32DATA_FROM_SENSORS = DATA_MSG_FROM_SENSORS [3];
33
34save_collected_data(DATA_FROM_SENSORS )[ UPDATED ];
35COLLECTED_DATA = add_to_list(COLLECTED_DATA , DATA_FROM_SENSORS );
36
37TMP_NODES_LIST2 = pop_list(TMP_NODES_LIST2 );
38}
39}
40
41process HopByHopComm (*)
42{
43in(ch_WSN: SINK_DATA_MSG: |*, id(), sink_data_msg ()|);
44DATA_FROM_SINK = SINK_DATA_MSG [3];
45COLLECTED_DATA2 = add_to_list(COLLECTED_DATA , DATA_FROM_SINK );
46
47NEXT_HOP_ID = routing_next(wsn , id(BaseStation .0));
48DATA_MSG = (id(), NEXT_HOP_ID , sink_data_msg (), COLLECTED_DATA2 );
49out(ch_WSN: DATA_MSG );
50}
51
52}
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Listing A5. QoP-ML’s functions prepared for a transmission grid model.

1functions
2{
3fun empty_list ();
4fun add_to_list(list , element );
5fun get_from_list(list);
6fun pop_list(list);
7fun is_list_empty(list);
8
9fun nodes_msg ();
10fun sinks_msg ();
11fun params_msg ();
12fun start_sensing_msg ();
13fun start_collecting_msg ();
14fun data_collected_msg ();
15fun data_req_msg ();
16fun data_msg ();
17fun empty ();
18
19fun process_image ();
20fun generate_params(node_id );
21fun collected_data ();
22fun save_collected_data(data);
23}

Listing A6. QoP-ML’s communication channels prepared for a transmission grid model.

1channels
2{
3channel ch_WSN (*)[ wsn];
4channel ch_MGNT (*)[ mgnt];
5channel ch_TIMER (*)[ timer];
6}

Listing A7. Transmission line scenario.

1versions
2{
3version TransmissionLine
4{
5set host Sink(MicaZ);
6set host Sensor(TelosB );
7set host BaseStation(TelosB );
8set host Manager(TelosB );
9
10run host Sink (*){10} {
11run Main()
12run WaitForData ()
13run Communication ()
14}
15
16run host Sensor (*){80} {
17run Main()
18}
19
20run host Manager (*) {
21run PrepareMessages (*)
22run Main()
23}
24
25run host BaseStation (*) {
26run Main()
27}
28
29communication {
30medium[wsn] {
31default_q = 1;
32default_time = wsn_time [ms];
33default_listening_current = 1.14 mA;
34default_sending_current = 22.8 mA;
35default_receiving_current = 22.8 mA;
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Listing A7. Cont.

36topology {
37
38Manager -> Sink [0:9] : time = 0 ms;
39
40Sink [0] <-> Sensor [0:7] : time = 1149.428 ms;
41Sink [1] <-> Sensor [8:15] : time = 1149.428 ms;
42Sink [2] <-> Sensor [16:23] : time = 1149.428 ms;
43Sink [3] <-> Sensor [24:31] : time = 1149.428 ms;
44Sink [4] <-> Sensor [32:39] : time = 1149.428 ms;
45Sink [5] <-> Sensor [40:47] : time = 1149.428 ms;
46Sink [6] <-> Sensor [48:55] : time = 1149.428 ms;
47Sink [7] <-> Sensor [56:63] : time = 1149.428 ms;
48Sink [8] <-> Sensor [64:71] : time = 1149.428 ms;
49Sink [9] <-> Sensor [72:79] : time = 1149.428 ms;
50
51Sink [0] -> BaseStation [0];
52Sink [1] -> BaseStation [0];
53Sink [2] -> BaseStation [0];
54Sink [3] -> BaseStation [0];
55Sink [4] -> BaseStation [0];
56Sink [5] -> BaseStation [0];
57Sink [6] -> BaseStation [0];
58Sink [7] -> BaseStation [0];
59Sink [8] -> BaseStation [0];
60Sink [9] -> BaseStation [0];
61}
62} %
63
64medium[mgnt] {
65default_q = 1;
66default_time = 0ms;
67default_listening_current = 0mA;
68default_sending_current = 0 mA;
69default_receiving_current = 0 mA;
70
71topology {
72Manager -> Sink [0:9]: time = 0 ms;
73Manager <-> Sensor [0:79];
74Sink [0] <-> Sensor [0:7];
75Sink [1] <-> Sensor [8:15];
76Sink [2] <-> Sensor [16:23];
77Sink [3] <-> Sensor [24:31];
78Sink [4] <-> Sensor [32:39];
79Sink [5] <-> Sensor [40:47];
80Sink [6] <-> Sensor [48:55];
81Sink [7] <-> Sensor [56:63];
82Sink [8] <-> Sensor [64:71];
83Sink [9] <-> Sensor [72:79];
84}
85}
86}
87}
88}
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