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Abstract: This paper presents the development of a heuristic-based algorithm for a Home Electric
Energy Management System (HEEMS). The novelty of the proposal resides in the fact that solutions
of the Pareto front, minimizing both the energy consumption and cost, are obtained by a Genetic
Algorithm (GA) considering the renewable energy availability as well as the user activity level (AL)
inside the house. The extensive solutions search characteristic of the GAs is seized to avoid the
calculation of the full set of Pareto front solutions, i.e., from a reduced set of non-dominated solutions
in the Pareto sense, an optimal solution with the best fitness is obtained, reducing considerably the
computational time. The HEEMS considers models of the air conditioner, clothes dryer, dishwasher,
electric stove, pool pump, and washing machine. Models of the wind turbine and solar PV modules
are also included. The wind turbine model is written in terms of the generated active power
exclusively dependent on the incoming wind profiles. The solar PV modules model accounts for
environmental factors such as ambient temperature changes and irradiance profiles. The effect of
the energy storage unit on the energy consumption and costs is evaluated adapting a model of the
device considering its charge and discharge ramp rates. The proposed algorithm is implemented in
the Matlab® platform and its validation is performed by comparing its results to those obtained by a
freeware tool developed for the energy management of smart residential loads. Also, the evaluation
of the performance of the proposed HEEMS is carried out by comparing its results to those obtained
when the multi-objective optimization problem is solved considering weights assigned to each
objective function. Results showed that considerable savings are obtained at reduced computational
times. Furthermore, with the calculation of only one solution, the end-user interaction is reduced
making the HEEMS even more manageable than previously proposed approaches.

Keywords: demand side management; home energy management system; optimal load dispatch;
Pareto front; smart grids (SGs)

1. Introduction

During the last decade, the development of smart grids (SGs) has increased exponentially
empowered by the benefits of renewable energy resources [1]. Control and optimization strategies,
together with communication systems integrated to the conventional electrical distribution systems,
represent the cornerstone for the adoption of the SG concept [2]. One of the new desired functionalities
and requirements of SG is the implementation of demand-side management programs such as
Demand Response (DR), which basically consist of the incorporation of distribution system automation
techniques for load control, allowing the reduction of energy consumption during critical operating
times. This benefits not only the final user, by reducing its energy costs, but also the Local Distribution
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Companies (LDCs), by reducing the peak load, reshaping load profiles, and increasing system
sustainability [3]. Furthermore, an additional indirect benefit of DR programs is the deferral of
investments in both the transmission and distribution systems expansion and the construction of new
generating plants.

DR allows end users to actively participate in the electricity markets by offering their load
reductions in response to signals sent by the LDCs requesting load management. Traditionally, these
requests were focused on the industrial and commercial sectors because of the magnitude of their loads;
nevertheless, owing to the full deployment of the advanced metering infrastructure in some countries,
residential users have emerged as new DR service providers and the LCDs are now searching for new
tools, programs, or incentives to increase their responsiveness. The main challenge at this point is
to develop “smart” control devices, deployed at the residential end-user premises, with embedded
software capable of receiving, interpreting, and analyzing different types of input signals with the
purpose of performing appropriate control actions over a set of predefined controllable loads, requiring
little or no human intervention. These devices, commonly termed to as energy management systems or
Home Energy Management Systems (HEMS), must be able to produce win-win scenarios for both the
end users and the LDCs in terms of cost, comfort, and system reliability. However, there are important
factors that must be considered: (1) electricity prices are not the only drivers affecting DR participation
rates, e.g., residential customers do not want to spend time acquiring the necessary expertise to analyze
consumption patterns and control decisions to micromanage household devices to save money [4];
(2) the HEMS are time-restricted for producing the necessary operational decisions; (3) the on-site
renewable energy availability; (4) the users preferences and their activity inside the house; etc.

In this context, several approaches have proposed the development of a variety of such devices
embedding a diversity of control strategies for load management. A useful and comprehensive review
of the modeling approaches and the complexity of previously proposed HEMS is presented in [5].
Emphasis is given to the most important factors that influence HEMS operations and outcomes such
as tariff structure offered by the LCDs, controllable devices, uncertainties, multi-objective nature and
the associated solution methods, on-site renewable energy generation (PV/Wind), and battery/energy
storage devices. Similarly, the significance of embedding renewables into HEMS is exposed in [6]
when analyzing the trends of the development of renewable residential resources and the satisfactory
results that have been reported, motivating the continuous research in this field. For instance, a model
for cost minimization considering the price to sell local generation energy, models of appliances, and a
thermal model of the house is presented in [7]. Results reported highlight the advantages of the on-site
generation. The economics of providing peak shaving with DR using various storage technologies is
evaluated in [8]. Based on the favorable results in all cases, it is shown how end users will significantly
benefit when installing storage devices to shave load peaks under a Time-of-Use (TOU) tariff scenario.

It is noted in [5] that most of the optimization problems associated with HEMS have been solved
using traditional optimization algorithms such as linear programming, non-linear programming,
and dynamic programming. However, their drawbacks when dealing with ON/OFF decisions (integer
variables) have generated a demand for other types of algorithms such as heuristic optimization
approaches [5,9]. Examples of approaches applying these types of optimization approaches are given
in [10,11], where two HEMS reducing the energy costs and peak demand are proposed. The former
proposes an algorithm where the household appliances are modeled by their energy consumption level
only; the latter proposes a binary backtracking search algorithm for the optimal dispatch of the heating,
ventilation, and air conditioning system (HVAC), water heater, refrigerator, smart outlets, and washing
machine. However, no results about solution times are reported in these proposals, which is an
important factor to be considered since heuristic algorithms may take too long to converge to a solution
or even may diverge. Furthermore, based on the multi-objective nature of the optimization problems
associated with the HEMS, there could exist several solutions satisfying the objective functions and
the final user should select the best one based on its preferences and needs, even though end users
may not want to spend time selecting the appropriate solution over a vast set of solutions. For this
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reason, some approaches have proposed to reduce the set of solutions by obtaining the Pareto front
of solutions associated with the multi-objective optimization problem making the controller easier
to manage. For instance, Pareto front algorithms to optimally schedule the energy consumption are
developed in [12,13]. However, the first algorithm is designed for energy management entities with
high computing capabilities because of the high computational times reported, and the second does
not consider explicit models of the renewable energy generation units, making not possible to evaluate
the energy availability in the household.

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is applied in [14,15] to generate
more economic usage profiles for controllable appliances. A drawback of the former is that it cannot be
applied to household appliances with fixed operating times, limiting its applicability, whereas the latter
does not consider renewable energy generation and uses simplistic models of the household appliances.
The NSGA-II algorithm is also used in [16], where a set of microgrids sent their corresponding load
curve to an operating center for flattening purposes, then, dynamic appliance scheduling was carried
out by sequentially solving two optimization problems: one for the non-flexible loads and one for the
flexible loads; a Pareto front is generated based on the minimization of a load flattening function and
the delay to supply the household appliances; a PV generation is also considered using a simplified
model of negative load power. Just recently, fuzzy logic combined with optimization techniques and
supervisory control strategies have been applied for cost, energy consumption, and peak-to-average
ratio reduction [17,18]. However, they do not account for the renewable energy generation. Also,
preliminary results of the parallelization of a control algorithm is presented in [19]. Finally, it is
emphasized in [20] that the HEMS incorporation with transactive energy controls would improve the
performance and efficiency of these systems, a topic which is currently being addressed by several
researchers around the world.

From this review, it can be noticed that few approaches consider the determination of a Pareto
front of solutions of the multi-objective problem associated with the HEMS. Even more important, none
of them determine the Pareto front considering the renewable energy availability, the user preferences,
and its activity inside the house, which has a direct impact on the energy consumption, to optimally
dispatch the set of household appliances. Furthermore, the resulting Pareto set may contain a variety
of solutions that still require the selection of the end user. For these reasons, the scope of this proposal
is the development of a heuristic-based algorithm for the optimal management of the electric energy.
The novelty of the proposed algorithm called Home Electric Energy Management System (HEEMS)
resides in the fact that solutions of the Pareto front, minimizing the energy consumption and cost, are
obtained by a Genetic Algorithm (GA) considering both the renewable energy availability (including
batteries as energy storage device) and an index proposed in [21] for the user activity level (AL) inside
the house, representing an advantage over previously proposed approaches. The extensive solutions
search characteristic of the GAs is exploited to select an optimal solution with the best fitness from
a set of non-dominated solutions in the sense of Pareto, i.e., at each iteration of the GA, Pareto front
solutions are obtained and a solution with the best fitness is added to a reduced set of solutions; once
iterations have finished, a new Pareto test and fitness evaluation is performed to the reduced set of
solutions to obtain the best solution, reducing to one the number of solutions available to the user, and
as consequence the computational time, which are two of the main goals of the proposal. Moreover,
the proposed approach takes advantage of the good results reported in [21,22] to adapt the models of
the household appliances, PV/wind energy generation and energy storage units (batteries).

It is important to mention that this work is limited to the electric energy management considering
a set of the most common household devices and two types of renewable energy generation units.
However, and as will be pointed out in the next sections, other types of devices can be considered
without affecting the performance of the algorithm. Even though the energy availability is considered
when dispatching the electric loads, the sale of surplus energy is not considered. Finally, an overall cost
analysis including a variety of factors such as optimal sizing of the system´s components, components’
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lifespan and cost, manufacturers, and deployment and maintenance costs is not the objective of this
proposal. Instead, evaluations of savings are considered on a daily basis.

The rest of the paper is organized as follows: Section 2 presents the optimization model, models of
the main household devices, and renewable energy generation and storage units, which constitute the
operational constraints. Additionally, the end-user AL is also described in that section. The GA used
to solve the multi-objective optimization problem is presented in Section 3. Results of the experimental
test are discussed in Section 4. Finally, the main conclusions and contributions of this research are
highlighted in Section 5.

2. Optimization Model

The nomenclature used to formulate the proposed optimization model, such as indices, sets,
subscripts, and variables are defined in Table 1, whereas the set of parameters is defined in Table 2.

Table 1. Indices, sets, subscripts, and variables used in the proposed optimization model.

Indices Name Subscripts Name

i Index of devices pp Pool pump
k Number of iterations pv Solar PV panel
t Time interval index st Energy storage unit

Sets wm Washing machine
A Set of devices wt Wind turbine
T Scheduling horizon Variables

Ti
Set of periods in which device i may
operate f 1

Energy consumption objective
function

Subscripts f 2 Energy cost objective function
ac HVAC cooling mode Pi(t) Power of device i ∈ A = pv, st, wt [kW]
cd Clothes dryer Q New individual resulting from GA

char Charging mode Schar/dis(t)
Charge/discharge modes of device st
at interval t

dis Discharging mode Sϕ Fittest set of solutions
dw Dishwasher Si(t) ON/OFF state of device i at interval t

es Electric stove θin(t) Temperature inside the house at
interval t [◦C]

ht HVAC heating mode

Table 2. Parameters used in the proposed optimization model.

Parameters

Area Area of PV modules [m2] Pdcons(t)
Active power load surplus at interval t
[kW]

a, b, c
Parameters of the quadratic equation
defining the output power of the wind
turbine

Pdg(t) Aggregated renewable power generation
surplus at interval t [kW]

AL(t) Activity level index at interval t Pg(t) Power generated by renewables (Ppv(t) +
Pwt(t)) at interval t [kW]

αac/ht
Cooling/Warming effect of an ON state of
the HVAC on the corresponding variable Pi(t)

Power of device i ∈ A 6= pv, st, wt at time
interval t [kW]

βac/ht

Cooling/Warming effect of an OFF state
of the HVAC on the corresponding
variable

Pmax/min Maximum/minimum real power [kW]

c(t) Electricity price at interval t Pmut Mutation probability
δ Self-discharge factor of battery Prat Rated power [kW]

di
Device i ∈ A 6= pv, st, wt, ac, ht operative
cycle Prc Active power charge rate

ϕ(t) Solar irradiation [kW/m2] Prd Active power discharge rate
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Table 2. Cont.

Parameters

η Energy conversion efficiency ρac/ht
Effect of inside and outside temperature
difference on the inside temperature

ηc Rectifier efficiency ti,end Latest operation time of device i

ηd Inverter efficiency θmax
in

Upper limit of the temperature inside the
house

N Number of individuals in the population θmin
in

Lower limit of the temperature inside the
house

Npv Number of PV modules ti,start Earliest operation time of device i
P GA population θamb(t) Ambient temperature at interval t [◦C]
P′ New GA population v(t) Wind speed velocity [m/s]

Pc(t) Active power in charging mode at time
interval t [kW] Vci Cut-in wind speed [m/s]

Pcons(t)
Power consumed by the household loads
at interval t [kW] Vco Cut-out wind speed [m/s]

Pcross Cross probability Vr Rated wind speed [m/s]

Pd(t) Active power in the discharge mode at
interval t [kW]

The optimization model proposed in this paper minimizes both the energy consumption and
costs by optimally scheduling the household appliances, considering the energy availability generated
by the on-site renewable resources, subject to devices’ operational constraints. The general form of the
multi-objective optimization model may be written as follows:

min [ f1, f2]

s.t. Device i operational constraints ∀i ∈ A
, (1)

where f 1 and f 2 stand for the energy consumption and costs functions, respectively, and are defined by:

f1 = ∑
t∈T


∑
i ∈ A

A /∈ {wt, pv, st}

Si(t)Pi(t)

︸ ︷︷ ︸
loads

− ∑
A∈{wt,pv,st}

Si(t)Pi(t)︸ ︷︷ ︸
renewables and storage units


, (2)

f2 = ∑
t∈T

c(t)


∑
i ∈ A

A /∈ {wt, pv, st}

Si(t)Pi(t)

︸ ︷︷ ︸
loads

− ∑
A∈{wt,pv,st}

Si(t)Pi(t)︸ ︷︷ ︸
renewables and storage units


, (3)

This model is solved by a GA with the purpose to obtain solutions of the Pareto front and then
select the one with the best fitness, as explained in the next section. The traditional scheduling horizon
T considered in optimization models for load management in the residential sector is used in this work
and is set to 24 h [5].
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2.1. Devices’ Operational Constraints

The load scheduling must consider the devices’ operational constraints and user preferences.
Furthermore, when considering on-site renewable generation units, the generated power should be
optimally managed to exploit their benefits and to reduce energy waste. The operative constraints
of devices whose operating mode is defined by operative windows such as cd, dw, es, pp, and wm are
formulated as:

Si(t) =

{
0 or 1 if t ∈ Ti
0 if t /∈ Ti

∀i ∈ A 6= pv, st, wt, (4)

ti,start ≤ Ti ≤ ti,end ∀i ∈ A 6= pv, st, wt, ac, ht, (5)

t+di

∑
k=t

Si(k) =di
∀i ∈ A 6= pv, st, wt, ac, ht

∀t ∈ Ti
, (6)

Equation (4) specifies the ON/OFF decisions of device i according to the time during which it
may operate, Equation (5) defines the scheduling window where the user considers the device’s task
should be finished, and Equation (6) enforces the operative cycle di is met as defined by the user. It is
worth noting that ti,start, ti,end, and di are specified by the user according to its needs, e.g., a user may
desire to have its clothes clean at 6:00 a.m. when put the load at 12:00 a.m. selecting one washing
cycle of one hour, for this case ti,start = 0, ti,end = 6, and di =1 over a time horizon of 24 h. In this way,
the optimization model will try to optimally move the operating cycle di of one hour of duration over
a 6 hours window to minimize energy costs. Note that for these appliances, the energy consumption
will not change since they are requested to operate for fixed time periods, opposite to the case of the
HVAC system where the operation intervals will depend on thermal interactions of the air masses
inside the house.

2.1.1. Heating, Ventilation, and Air Conditioning System

One of the devices consuming the major energy within a house is the HVAC system. For this
reason, proper management of its demand will produce important energy and cost savings. However,
an important factor that must be considered for the successful management of the device is the end-user
comfort. In this paper, the HVAC model proposed in [21] is used since considers factors such as indoor
and outdoor temperatures, thermal characteristics of the house, as well as the end-user AL represented
by an index. The model is defined as:

Si(t) =

{
1 if θin(t− 1) > θmax

in i = ac
0 if θin(t− 1) < θmin

in
, (7)

Si(t) =

{
1 if θin(t− 1) < θmin

in i = ht
0 if θin(t− 1) > θmax

in
, (8)

θmin
in (t) ≤ θin(t) ≤ θmax

in (t) ∀t ∈ Ti, i ∈ {ac, ht}, (9)

Sac(t) + Sht(t) ≤ 1 ∀t ∈ Ti, (10)

θin(t) = θin(t− 1) + ∆t[βac AL(t)− αacSi(t) + ρac(θamb(t)− θin(t))] ∀t ∈ T, i = ac, (11)

θin(t) = θin(t− 1) + ∆t[βht AL(t) + αhtSi(t) + ρht(θamb(t)− θin(t))] ∀t ∈ T, i = ht, (12)

Equation (4) ensures the HVAC system is in operation for the time interval defined by the user,
although in this paper is considered an operation interval of 24 h, this equation allows the user to
operate the device according to its preferences; Equations (7)–(9) turn the device ON/OFF when the
temperature is outside/inside the predefined limits; equation (10) is defined to ensure that the air
conditioner and furnace do not operate simultaneously; Equations (11) and (12) drive the indoor
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temperature. αac/ht represents the thermal effect of an ON state of the HVAC system on the indoor
temperature, βac/ht accounts for the effect of the AL on the indoor temperature increase, and ρac/ht
represents the net effect of heat transfer between the outdoor and indoor temperatures differences.
Calculation of these parameters is described in [23]. Details about the AL calculation are given in
the next subsection. It is worth noting that to consider other devices with thermal energy storage
capacity such as fridge, water heater, and hot tub water heater, the same set of constraints defined by
Equations (7)–(12) can be used since these devices should maintain their respective temperatures within
user-specified ranges, i.e. Equations (7)–(11) are used for the case of the fridge and Equations (7)–(10)
and (12) are used for the case of the water heater and the hot tub water heater. The only difference
between these models is in their parameter settings such as average hot water usage, temperature
settings, operational time, and associated coefficients that may have different values [21,24].

Equations (11) and (12) are used to calculate parameters αac/ht, βac/ht, and ρac/ht as follows: given
as inputs measurements of the inside temperature (θin,meas), the status of the i-th device (Si(t)), ambient
temperature, and the AL, the following least square absolute error minimization problem is solved:

min (θin,meas − θin,calc)

s.t. θin,calc(t) = θin,calc(t− 1)+

+ ∆t[βi AL(t)− αiSi(t) + ρi(θamb(t)− θin,meas(t))]
∀t ∈ T

i = ac, ht

, (13)

As a result, the associated parameters are adjusted minimizing deviations between calculated
and measured values of the inside temperature.

2.1.2. Wind Turbine

A simplified wind turbine model proposed in [22] is adopted in the present work. The model
focuses on the operative behavior of the wind turbine in terms of the generated active power exclusively
dependent on the incoming wind profiles. The model is written as:

Pwt(t) =


0 if v(t) < Vci or v(t) > Vco(

a + bv(t) + cv(t)2
)

Prat if Vci ≤ v(t) < Vr

Prat if Vr ≤ v(t) ≤ Vco.

, (14)

Three operative conditions are defined in Equation (14): the first condition suppresses the power
output of the wind turbine when the wind speed is above or below of the cut out and cut in wind
speeds, respectively; the second condition defines the output power as a quadratic equation describing
the behavior of the wind turbine when the wind speed is into operative values, values of a, b and c are
calculated as shown in [25]; the third condition set the maximum power contribution of the device
when the wind speed is between rated and maximum values.

2.1.3. Solar PV Panel

A model of the solar PV panel proposed in [26] is implemented in this proposal. It accounts for
environmental factors such as ambient temperature changes and irradiance profiles. The model is
written as:

Ppv(t) = η · Area · Npv · φ(t) · [1− 0.005(θamb(t) + 25)], (15)

The model considers losses due to the temperature of the panel taking 25 ◦C as a base temperature.

2.1.4. Energy Storage Unit

The inclusion of storage units arises from the need to take full advantage of the renewable
energy resources installed in the house allowing more energy independence. To properly model the
operative behavior of this device, two scenarios need to be considered: the first scenario is when the
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house load level is lower than the energy produced by renewables such that the energy is not fully
exploited and is supplied to the electric distribution system; the second scenario is the opposite case,
the surplus demand needs to be fed with energy coming from the distribution system. In the former
case, if energy storage units are available, the surplus energy generated by renewables is stored to
be used when necessary; in the latter case, instead of drawing energy from the grid, energy storage
units are used to feed the surplus load. A model for the energy storage unit considering not only
these scenarios but also its self-discharge characteristic and efficiencies of the inverter and rectifier is
proposed in [22]. This model has been adapted in terms of active power to be properly considered
in the objective functions defined by Equations (2) and (3). Furthermore, constraints regarding the
charge and discharge states have been included to account for the energy availability produced by the
renewable generation units. The model, written by all t ∈ T, is described by the following equations:

Schar(t) =

{
1 if Pg(t) > Pcons(t)

0 if Pg(t) < Pcons(t)
, (16)

Sdis(t) =

{
1 if Pg(t) < Pcons(t)

0 if Pg(t) > Pcons(t)
, (17)

Pmin ≤ Pst(t) ≤ Pmax, (18)

Schar(t) + Sdis(t) ≤ 1, (19)

Pc(t) = min
(

Prc, Pdg(t)
)

, (20)

Pd(t) = min(Prd, Pdcons(t)), (21)

Pst(t + 1) = Pst(t)(1− δ) + ηcPc(t)Schar(t)−
Pd(t)

ηd
Sdis(t), (22)

Equations (16) and (17) set the charge/discharge modes when the power consumed by the
household loads is lower/higher than the power generated by the renewable generation units; Equation
(18) maintains the power of the unit between prespecified limits; Equation (19) guarantees the charge
and discharge modes are not simultaneously activated; Equations (20) and (21) account for the unit
capacity to charge and discharge; finally, Equation (22) represents the active power of the unit at
interval t + 1. It is important to mention that the multi-objective nature of GAs allows the inclusion
of new objective functions and constraints without modifying the algorithm structure. For instance,
cost functions associated with the lifespan of the household devices and system components could
be considered as objective functions, as well as new operative constraints that could result from a
refinement of the household devices operation.

2.2. End-User Activity Level

Since the household occupancy and activity inside a house depend on the hour of the day, the day
of the week, and the season of the year, they have a major impact on the energy consumption. For this
reason, it is necessary to have a measure of such an activity in order to be included to some of the
appliance models to reflect the human activity in the devices’ operation patterns. To consider the
effect of household occupancy on energy consumption patterns, an index termed to as AL proposed
in [21,24] is used. This index is a normalized value of the ratio between the energy consumed at
each interval and the total energy consumption of the day. It uses historical measurements of energy
consumption patterns provided by smart meters installed in each house. The good results showed
have motivated authors to use this index to account for the human activity inside a house. Details of
its calculation are provided in [21,24].

An electricity consumption and occupancy data set available at [27] was used to obtain the AL
values used in the simulations presented in this work. The open-source data set for load monitoring
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and occupancy detection research was collected in six Swiss pilot houses over a period of eight months,
containing measurements of the main electrical parameters and occupancy inside each house at time
intervals of 1 s. An example of the AL calculated of one of the houses for the hottest day of summer of
2012 is presented in Figure 1. Temperature profiles were obtained from [28].
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Figure 1. Activity level (AL) of a Swiss house for the hottest day of summer 2012.

In this figure, the AL is normalized w.r.t. the total energy consumption of the day, which
is assumed to be 100%. The AL is included in the model of the HVAC as described in the
previous subsection.

3. Multi-Objective Genetic Algorithm

GAs, well-known techniques for solving a wide type of optimization problems, are search
algorithms imitating the biological processes of reproduction and natural selection [29]. Have shown
wide applicability to successfully solve mixed-integer linear and nonlinear optimization problems.
In general terms, a GA takes an initial population containing a number of individuals, each representing
a possible solution to the optimization problem, encoded by a particular genotype or chromosome;
each individual is evaluated by a fitness function to determine its performance or phenotype. On the
basis of this evaluation, the population is subjected to a selection mechanism, which takes a group
of individuals to be the origin of a new population where, just as in nature, natural selection is
the determining factor of which individuals are the aptest to evolve. A key part of GAs is the
implementation of two basic operators: sexual recombination or crossing and mutation. The crossing
operator consists of taking a pair of individuals to form a new one, where its chromosome will contain
parts of each selected parent chromosomes. The mutation operator establishes a probability for the
modification of a chromosome, allowing the introduction of new solutions to the population under
study. The introduction of these operators allows the generation of a new population that can partially
or completely replace the previous generation, depending on certain policies of elitism. It is worth
noting that in the context of this work, each chromosome is composed of individual structures called
genes, where each gen is a binary string representing the activation status (ON/OFF decisions) of all
devices at time t. Hence, a chromosome will have as many genes as time intervals considered in the
scheduling horizon. Generally, the stopping criteria established for GAs is based on the maximum
number of iterations under the premise that, after several cycles of evolution, the population must
contain the fittest individuals.

In this work, the extensive solutions search characteristic of the GAs is seized to first obtain an
optimal solution in the Pareto and fitness senses at each iteration; then from the resulting set, a new
Pareto dominance test is performed and the non-dominated solution with the best fitness is selected.
Therefore, the modification of the GA presented in this work shows that it is possible to obtain a simple
optimal solution which is optimal in the Pareto sense with the best fitness between the non-dominated
set. The modification of the GA proposed is described as follows: as a first step, at each iteration of the
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GA, individuals of the new population are evaluated to determine whether are optimal in the Pareto
sense; when solutions are found that may compose the Pareto set, their fitnesses are evaluated and
only the fittest solution is selected, recalling that even though two solutions are optimal in the Pareto
sense, they have different fitnesses. In the second step, a similar procedure is performed as in the final
part of the first step: the resulting set of “best” solutions is evaluated again to determine optimality in
the Pareto sense and the non-dominated solution with the best fitness is selected. With this proposed
modification, the obtention of several Pareto set solutions is avoided, improving considerably the
performance of the algorithm. A basic outline of both the GA and the Pareto and fitness selection
algorithm implemented in this proposal are presented in Algorithm 1 and 2, respectively. It is worth
noting that at the end of the first step of Algorithm 1, a set Sϕ of solutions is obtained.

Algorithm 1. GA basic outline.

// First step
1: P← InitPopulation
2: EvalFitness(P)
3: Sφ ← FittestSolution(P)
4: for k = 1 to num_iter do

P′ ← 0
5: for i = N/2 do
6: Q← ParentSelection(P)
7: if rand[0,1) ≤ Pcross then
8: Q← Crossover(Q)
9: end if
10: if rand[0,1) ≤ Pmut then
11: Q←Mutation(Q)
12: end if
13: P′ ← AddNewSolution(Q)
14: end for

SelectSolution(P′)
15: P← ReplacePopulation(P′)

k = k + 1
17: end for
// Second step
18: P′ ← Sϕ

19: SelectSolution(P′)

Algorithm 2. SelectSolution function: Pareto and fitness selection algorithm.

1: for i = 1 to Size(P′) do
2: for j = 1 to Size(P′) do
3: if (P′(i).objectives < P′(j).objectives) then
4: P′(i).NonDominated = true
5: else
6: P′(i).NonDominated = false
7: end if
8: end for
9: end for
10: EvalFitness(P′(i).NonDominated = true)
11: Sϕ ← FittestSolution(P′(i).NonDominated = true)

The crossing operator used in the present work is the so-called “tournament selection” [30],
where a group of individuals is randomly selected and then a dispute for the position of father and
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mother is performed to select the fittest for crossing. Pcross defines the relation between the number of
children produced in each generation and the size of the population. A high value of cross probability
allows greater and better exploration of the space of solutions. On the other hand, Pmut controls the
percentage in which the introduction of new solutions in the population is allowed; if it is very low,
many solutions that could have been produced are never tested; if it is very high, there would be a lot
of random disturbance, and the children will begin to lose their kinship causing the algorithm lose
its ability to learn from the search history. The percentage ranges of Pcross and Pmut recommended
by [31] are [75%, 95%] and [5%, 10%], respectively. Finally, it is worth noting that a repairing function
is considered in this proposal. The repair functions can be used to bring back to the solution space
invalid solutions that are generated due to the randomness of the heuristic problems with restrictions.
A simple way to reintroduce an invalid gene into the feasible space of solutions consists of analyzing
the genotype in search of bits outside the operational restrictions, applying a force operator to return
the bits generated outside these limits within the allowed limits.

Thus, Algorithms 1 and 2 describe the procedure followed by the proposed GA to obtain the
optimal solution in the Pareto sense with the best fitness, and are basically used to represent the steps
the solutions follow to adjust their chromosomes by crossing and mutation to minimize the objective
functions. As each individual is a solution of the optimization problem, the candidate solution is given
as input to the objective functions to obtain values representing its fitness. In this evaluation, all input
parameters are used by the corresponding objective functions and constraints. Hence, the output of
the GA is a simple individual whose chromosome will contain the optimal ON/OFF decisions of all
devices for the considered scheduling horizon.

4. Results

In order to numerically evaluate the performance of the proposed HEEMS under different
scenarios, three types of tests are performed: the first test considers no solutions of the Pareto front are
obtained and the behavior of the HVAC for a day of summer and winter seasons is compared to the
results obtained with a freeware tool developed for the energy management of smart residential loads
so-called Smart Residential Load Simulator (SRLS) [32]; the second test also considers no solutions
of the Pareto set are obtained and the energy consumption and costs are evaluated when renewable
energy generation is available in the household. The effect of the energy storage unit is highlighted
comparing results to the case when the device is not available; finally, the third test considers a solution
of the Pareto front with the best fitness is obtained and results are compared to those obtained when
the multi-objective problem is solved considering a commonly used approach such as the weighting
approach to define the importance of the different objective functions [7,21]. Practical parameters
of the different devices considered in simulations are found in Tables 3–7, whereas parameters of
the GA are presented in Table 8. To demonstrate how the proposal is able to consider variations in
electricity prices as well as variations in the time intervals where prices apply, two different TOU
tariffs of two different seasons arbitrarily selected are used in simulations. The optimization model
was implemented in the Matlab® platform installed in an Intel® i7-7700 desktop computer at 3.60 GHz
and 16 Mb of RAM.

Table 3. Appliances considered in the present work.

Appliance Power (kW)

cd 2.5
dw 2.17
es 2.3

ac/ht 1.53/2.4
pp 2
wm 0.2
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Table 4. HVAC parameters.

αht/ac βht/ac ρht/ac Tmax–Tmin

0.67/0.33 0.044 0.0075 4 ◦C

Table 5. Wind turbine parameters.

Vci (m/s) Vr (m/s) Vco (m/s) Prat (kW)

3.5 12 23 1

Table 6. Solar PV panel parameters.

η (%) A (m2) Npv Prat (kW)

15 1.64 13 3.12

Table 7. Energy storage unit parameters.

Prc (kW) Prd (kW) Pmin/Pmax (kW) ηc, ηd (%) δ (%/h)

0.2 0.2 0.8/2 95 0.2

Table 8. GA parameters.

Parameter Value

Iterations (num_iter) 100
Population (N) 46

Pcross 95%
Pmut 5%

Selection type Tournament
Crossing type Uniform
Mutation type Complete gene

4.1. HVAC Behavior Comparison

The first test considers the proposed HEEMS when no solutions of the Pareto front are obtained.
Its results are compared to those obtained by the SRLS tool. The objective of the SRLS is to offer a tool
capable of simulating the use of different household appliances commonly present in the majority of
houses, allowing the end user knowing an estimate of its level of energy consumption and the daily
electricity bill to be paid. Simulations are carried out for the HVAC system considering a day of the
summer and winter seasons, i.e., tests are performed considering the cooling and heating modes of
operation. The TOU tariff considered in simulations is presented in Table 9 and obtained from [33].
Results of the SRLS and the HEEMS are presented in Figures 2 and 3, and Tables 10 and 11. In these
figures, GAsetpoint stands for the setpoint resulting of the HEEMS.

Table 9. TOU tariff and time intervals for summer.

TOU
Summer Winter

Cost ($/kWh) Interval Cost ($/kWh) Interval

off-peak 0.0650 00:00–07:00
19:00–24:00 0.0620 00:00–07:00

19:00–24:00

mid-peak 0.1000 07:00–11:00
17:00–19:00 0.0920 11:00–17:00

on-peak 0.1170 11:00–17:00 0.1080 07:00–11:00
17:00–19:00

(1 May 2012–31 Oct 2012) and winter (1 Nov 2011–30 Apr 2012) seasons.
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Table 10. Energy consumption and costs comparison between the SRLS and the HEEMS for a day of
the summer season.

TOU
Energy Consumption (kWh) Cost ($)

Savings (%)
SRLS HEEMS SRLS HEEMS

off-peak 3.8380 2.8050 0.2494 0.1823 26.9045
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Figure 3. HVAC behavior comparison between the solution of the SRLS and a solution of the HEEMS
for a day of the winter season: (a) SRLS solution; (b) HEEMS solution.

Table 11. Energy consumption and costs comparison between the SRLS and the HEEMS for a day of
the winter season.

TOU
Energy Consumption (kWh) Cost ($)

Savings (%)
SRLS HEEMS SRLS HEEMS

off-peak 15.2000 9.6000 0.9424 0.5952 36.8421
mid-peak 3.0000 2.0000 0.2760 0.1840 33.3333
on-peak 4.2000 0.0000 0.4536 0.0000 100.0

Total 22.4000 11.6000 1.6720 0.7792 53.3971
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Results presented in Figure 2 and Table 10 show how the HEEMS reduces the activity of the
cooling mode of the HVAC, avoiding its operation at intervals where the energy price is higher, i.e.,
the resulting setpoint of the GA is raised such that the indoor temperature tends to reach the upper
limit during intervals of high energy prices. For intervals with lower electricity prices, the device is
activated driving the temperature to the lower limit. Opposite to this, the ON/OFF control resulting
from the SRLS maintains the temperature within bounds despite electricity prices such that the device
is in operation even at intervals of high electricity prices. As a result, the HEEMS achieves savings
up to 80%. Similar results are obtained for the winter season. Figure 3 and Table 11 show how the
HEEMS avoids the heating operation of the HVAC at intervals of high energy prices. The device is
turned ON only when the electricity prices and the outside temperature are low, maintaining the
indoor temperature between specified limits. The SRLS drives the HVAC continuously in operation
increasing the overall cost. From these results, it is concluded the HEEMS produces appropriate
solutions avoiding the end-user discomfort; this is achieved by modifying the HVAC setpoint allowing
the indoor temperature to have more variations inside bounds.

4.2. Energy Consumption and Costs Evaluation Considering Renewable Energy Generation and Energy
Storage Units

The second test also considers no solutions of the Pareto set are obtained. An evaluation of the
energy consumption and costs obtained by the proposed HEEMS is performed when renewable energy
generation is available in the household. Two cases are simulated: the first case considers the optimal
load scheduling when no energy storage unit is available, and the second case considers the effect of
this unit. The TOU tariff considered in simulations is presented in Table 12 [33]. Devices operational
cycles are defined according to Table 13. Results of simulations are shown in Figures 4 and 5, and
Tables 14 and 15.

Table 12. TOU tariff and time intervals for summer.

TOU
Summer Winter

Cost ($/kWh) Interval Cost ($/kWh) Interval

off-peak 0.0770 00:00–07:00
19:00–24:00 0.0650 00:00–07:00

19:00–24:00

mid-peak 0.1130 07:00–11:00
17:00–19:00 0.0950 11:00–17:00

on-peak 0.1570 11:00–17:00 0.1320 07:00–11:00
17:00–19:00

(1-May-2017–31-Oct-2017) and winter (1-Nov-2017–30-Apr-2018) seasons.

Table 13. Devices operational cycles.

Device ti,start-ti,end di ti,start-ti,end di ti,start-ti,end di

cd 15:00–24:00 60
dw 12:00–15:00 60 21:00–23:30 60
es 07:00–09:00 30 14:00–16:00 90 20:30–22:30 30
pp 03:00–08:00 60 09:00–15:00 60 19:00–23:00 60

wm 08:00–15:00 90

The dashed red line shown in Figure 4 corresponds to the load profile obtained by the HEEMS
when no energy storage unit is available. It is observed that the load dispatch avoids on-peak time
intervals, however, there are intervals where energy must be drawn from the power system not taking
advantage of the renewable energy available. The black line of Figure 4 corresponds to the case when
an energy storage unit is considered. It can be noticed how the energy drawn from the power system
has been reduced. The effect of the storage unit is evident since stores energy at times when the energy
has low prices and when there is renewable energy availability and delivers energy when there is load
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surplus. Both cases show how the total renewable energy is not fully used. However, the numerical
results presented in Table 14 show a significant reduction in the energy costs up to 80% and renewable
energy utilization up to 50%. It is worth noting that there is a small amount of energy consumption
on the on-peak time interval, this is due to the fact the es device is set by the user to operate between
14:00–16:00 h with an operating cycle of 90 min, such that the HEEMS has no option but schedule the
device despite the high electricity price.
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Table 14. Energy consumption and costs for a summer day considering renewable generation and
energy storage unit.

TOU
Load

Demand
(kWh)

Cost ($)
Renewable
Generation

(kWh)

Resulting
Surplus

Consumption
(kWh)

Renewable
Energy

Utilization
(%)

Optimized
Cost ($)

Savings
(%)

Off-peak 18.9580 1.4597 18.0870 6.1695 70.7054 0.4750 67.4555
Mid-peak 8.9272 1.0088 14.7150 3.3061 38.1997 0.3735 62.9758
On-peak 11.8180 1.8554 21.0490 0 56.1451 0 100

Total 39.7030 4.3239 53.8510 9.4756 56.1315 0.8486 80.3741

A similar behavior for the winter day is shown in Figure 5. The change in the TOU intervals is
properly considered by the HEEMS. However, as in the previous case, it can be noticed how there is
load dispatched at intervals of high energy cost. Again, this is owing to the fact that the es operational
window is defined by the user overlapping the first interval of high prices, such that the HEEMS has
no choice but dispatching this load. In the second high-price interval the cd is dispatched, this may be
no optimal from the operational point of view, but the HEEMS has adjusted all its variables to reduce
the overall cost. As explained in the next subsection, better solutions are achieved when solutions of
the Pareto front are obtained. Results presented in Table 15 highlight the availability of the energy
storage unit since saving up to 85% are obtained. This is a consequence of the better renewable energy
utilization reaching values of 63%.
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Table 15. Energy consumption and costs for a winter day considering renewable generation and energy
storage unit.

TOU
Load

Demand
(kWh)

Cost ($)
Renewable
Generation

(kWh)

Resulting
Surplus

Consumption
(kWh)

Renewable
Energy

Utilization
(%)

Optimized
cost ($)

Savings
(%)

Off-peak 18.4710 1.2006 18.1280 6.9981 63.2882 0.4548 62.1189
Mid-peak 12.3230 1.1706 22.4290 0.0321 54.7991 0.0030 99.7437
On-peak 10.1460 1.3392 11.7900 0.7299 79.8651 0.0963 92.8091

Total 40.9500 3.7104 52.3470 7.7601 63.4036 0.5541 85.0663

4.3. Energy Consumption and Costs Evaluation Considering Solutions of the Pareto Front

The third test evaluates the energy consumption and costs considering the calculation of solutions
of the Pareto front as explained in Section 3. To highlight the HEEMS performance, the Pareto front
solution with the best fitness is compared to the solution when the multi-objective optimization
problem is solved assigning weights to each objective function as proposed in [24]. The resulting
objective function may be written as:

F = ω1 f1 + ω2 f2,

where weights are calculated by running the model with the individual objective functions, i.e., using
f 1 and f 2 as an individual objective function, which results in objective function values of X kWh, and
$Y, respectively. Thus, the weights can be defined as follows:

ω1 = Y/X, ω2 = 1,

Solutions of the Pareto front are shown in Figure 6. It is observed that the red points correspond to
solutions of the Pareto front, i.e., are the non-dominated set resulting from the first step of Algorithm
1. Between these solutions, the solution with the best fitness is selected and corresponds to values of
energy consumption of 5.3861 kWh with a cost of $0.3484. From the comparison results presented
in Table 16, it is shown how the selected solution improves the outcomes of the HEEMS, achieving
savings up to 25% when compared to the solutions when weights are used to solve the multi-objective
problem. Furthermore, it is shown in Figure 7 how the HEEMS better utilizes the energy availability
scheduling the majority of loads inside the shaded area representing renewable energy generation.
Finally, it is important to mention that the time the HEEMS took to obtain the solution was 16.3 s,
a very short computational time compared to previously proposed approaches, which confirms the
applicability of the proposal.
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Table 16. Comparison between the HEEMS solution and a multi-objective solution based on weights.

Multi-Objective (Weights) HEEMS

Tariff

Renewable
Energy

Utilization
(%)

Resulting
Surplus

Consumption
(kWh)

Cost ($)

Renewable
Energy

Utilization
(%)

Resulting
Surplus

Consumption
(kWh)

Cost ($) Savings
(%)

Off-peak 54.74 5.2867 0.3436 57.07 5.0070 0.3104 9.6623
Mid-peak 38.44 0.9886 0.0939 48.64 0.1861 0.0171 81.7891
On-peak 51.07 0.2393 0.0315 51.31 0.1929 0.0208 33.9682

Total 52.21 6.5145 0.4691 55.10 5.3861 0.3484 25.7301
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4.4. Scope and Limitations of the Proposal

The scope of the proposed HEEMS is tho develop an algorithm for the optimal scheduling of
residential loads taking into account factors such as electricity proces, ambient temperature, end-user
preferences, and the influence of the human activity on the temperature inside a house. The main goal
is to reduce computational times and human interaction such that the algorithm.

5. Conclusions

A heuristic algorithm for a HEEMS has been proposed in this paper. The proposed optimization
model minimizes the energy consumption and costs subject to household devices’ operational
constraints considering the renewable energy availability. For that purpose, the on-site energy
generation and storage were considered adapting models of the wind turbine, solar PV panels, and
energy storage unit. The impact of the human activity inside a house on the energy consumption was
also considered including a previously proposed AL index to the model of the HVAC device; this index
was calculated using an open-source data set of electricity consumption and occupancy. The resulting
multi-objective optimization problem was solved with a proposed modified GA. The modified GA
calculates solutions of the Pareto front with the best fitness at each iteration in order to obtain a reduced
set of solutions; at the end of the GA iterations, a new Pareto dominance test is performed to the
reduced set of solutions and the solution with the best fitness is selected, this reduces the human
interaction as compared to previously proposed approaches, representing a contribution of the present
work. From the results presented, it was shown how the HEEMS is able to optimally schedule the
household devices considering the TOU electricity tariff with very low computational times. For the
case of the HVAC device, it was presented in details how the HEEMS optimally manages the device´s
setpoint to drive the indoor temperature between bounds reducing the energy consumption and
costs while maintaining the end-user comfort. Finally, it was shown how the HEEMS improves
the results obtained as compared to the approach of weighting when solving the multi-objective
optimization problem.
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