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Abstract: This paper proposes a digital sliding-mode controller for a DC-DC boost converter under
constant power-loading conditions. The controller has been designed in two steps: the first step
is to reach the sliding-mode regime while ensuring inrush current limiting; and the second one
is to move the system to the desired operating point. By imposing sliding-mode regime, the
equivalent control and the discrete-time large-signal dynamic model of this system are derived.
The analysis shows that unlike with a resistive load, the boost converter under a fixed-frequency
digital sliding-mode current control with external voltage loop open and loaded by a constant power
load, is unstable. Furthermore, as with a resistive load, the system presents a right-half plane zero in
the control-to-output transfer function. After that, an outer controller is designed in the z-domain
for system stabilization and output voltage regulation. The results show that the system exhibits
good performance in startup in terms of inrush current limiting and in transient response due to
load and input voltage disturbances. Numerical simulations from a detailed switched model are
in good agreement with the theoretical predictions. An experimental prototype is implemented to
verify the mathematical analysis and the numerical simulation, which results in a perfect agreement
in small-signal and steady-state behavior but also in a small discrepancy in the current limitation
due a small propagation delay. Some efficient solutions have been proposed to mitigate the inrush
current in the experimental results.

Keywords: DC-DC converters; boost converter; constant power load (CPL); fixed switching frequency;
sliding-mode control; inrush current mitigation

1. Introduction

Many power systems call for a DC-DC multiconverter approach to provide various power and
voltage forms [1-3]. Cascade connection of DC-DC converters arises in many industrial applications
such as in modern electric vehicles (EV) [4,5], sea and undersea vehicles [6], and DC microgrids [7-10].
When the downstream converter in a two-stage cascade connection is tightly controlled to maintain an
output voltage fixed on the load, it behaves as a constant power load (CPL) [1,11]. Other loads such as
motor drives or electronic loads with tightly regulated controllers behave also as a CPL [11].

Figure 1 shows typical configurations of cascade connection of switching converter where CPL
behavior may appear. CPLs exhibit a negative impedance behavior leading to a high risk of instability
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in this type of interconnection [1,11,12]. The control design of upstream DC-DC converters supplying
constant power to the downstream converter becomes challenging due to the nonlinearity of the CPL.

Upstream converter [Downstream converter CPL Upstream converter |Downstream converter CPL
-] DC-DC ] 1T
DC-DC or 3:\9 DC-DC DC-DC
— DC-AC — I -
Control Control

(a) (b)

Figure 1. Power supply systems using a multiconverter approach where the CPL behavior may appear.
(a) an Upstream converter loaded by a downstream converter regulating a DC-DC or DC-AC motor
drive; (b) an upstream converter supplying a tightly regulated downstream converter.

Several methods have been proposed to cope with the mentioned CPL instability. Passive damping
added to one of the filter elements in the cascade connection of a voltage source, an LC filter, and a
CPL is used in [13] to stabilize the system without requiring the modification of the source or the load
control. An active damping method based on the insertion of a virtual resistor to compensate for the
negative incremental impedance of the CPL is successfully employed in [14]. Feedback linearization
is reported in [15] in the context of a medium voltage DC bus for power distribution on ships to
compensate the nonlinearity introduced by the CPL. Active compensation has been also explored
in the case of a source converter of boost type by using current-control mode to introduce damping
into the system dynamics [16]. Also, the existence of a stable behavior in the cascade connection has
been proved for elementary hard-switching converters acting as source converters and operating in
open-loop and in discontinuous conduction mode [17]. In [18], a robust control approach has been
considered for the elementary power electronics switching converters with a CPL. In [19] robust
controller based on linear programming is proposed to regulate the output of buck converters loaded
by another buck converter acting as a CPL. A comprehensive review of the compensation techniques
for switching converters with CPL can be found in [20]. In the solutions based on linear controllers, the
starting point is an unstable transfer function relating either the control-to-output voltage or the control
to inductor current. The transfer function is unstable because it is derived by simple substitution of the
resistive load corresponding to a conventional supplying case by the negative incremental resistance
of the CPL. This substitution results in a negative value of the damping factor or, equivalently, in the
existence of right half plane poles. The open-loop unstable transfer function of the power converter
with CPL describes the dynamic behavior in the vicinity of the steady-state operating point. However,
there is no steady-state in open-loop due to the unstable nature of the converter. For that reason, the
steady-state values of the state variables required in the transfer function are the ones imposed by the
closed-loop behavior of the system provided that an appropriate controller stabilizes the converter.
However, in some cases, the hypothesis of stable closed-loop steady state is not achieved despite
introducing some control loops. For example, the introduction of an analog inner current loop for the
average value regulation of the inductor current stabilizes a boost converter with CPL but it fails in a
buck converter with the same type of load as demonstrated in [3].

Conventional linear control methods when applied to switching converters with CPL have limited
stability region in the vicinity of the open-loop operating point which does not even exist in most cases
of switching converters with loaded by CPL. Sliding-mode control (SMC) is a large-signal time-domain
analytical technique for controlling the dynamic behavior of switching systems [21,22] that has been
applied in the power electronics field in the early 1980s [23]. The first step in designing a SMC is to
select a switching manifold in the spate space to which the system trajectories must be conducted. For
this, the error between a suitable output signal and its desired reference is forced to be zero by an
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appropriate switching action. It could seem that any linear controller, properly designed, satisfies this
control target naturally and that there is no need for a nonlinear SMC. However, SMC techniques result
in reduced-order dynamics of the controlled system on the switching manifold in such a way that
the error is zero not only in steady state as with linear controllers but also during transient provided
that sliding-mode conditions are satisfied. In earlier works in this field, the typical choice for the
controlling function ¢ is a linear combination of the error of the variable to be controlled and its
r—th time derivative [23,24]. The order r of the derivation must be selected in such a way that the
relative degree between the function ¢ and the discontinuous square wave signal u is equal to 1 for
the sliding-mode conditions to be fulfilled [25]. In switching converters, it turns out to be that there is
always an inductor current fulfilling this condition when it is used to construct the switching function
o without using the derivative of the error signal. SMC technique has therefore been later evolved to
the use of an inductor current to be the variable to be controlled either for current limiting [22,26] or for
different control purposes such as current balancing in parallel connected interleaved converters [27],
impedance matching in PV systems [28,29], power factor correction in AC-DC rectifiers [30] among
others. This type of control, when applied to switching converters, normally leads to unacceptable
high switching frequencies due to chattering phenomenon. This has been solved by using hysteresis
comparators resulting in a switching function ¢ to have a triangular shape with a variable switching
frequency that can be adjusted by tuning the hysteresis width, but it will still be dependent on the
operating point of the converter. This has motivated many studies aiming at solving this problem and
getting limited and constant switching frequencies. In [25] it was shown that the modulation technique
in switching converter under SMC is not necessarily of a variable frequency type such that using a
hysteretic comparator and that their dynamics when they are under fixed-frequency strategies such
as peak and valley current-mode control, can still be interpreted using SMC theory demonstrating
that peak and valley current-mode control in switching converters are a kind of SMC regardless of
the modulator used. Most of the existing works on using SMC in switching converters consider a
linear resistive load. However, there are many cases in which the load is nonlinear. Some recent works
consider loads containing nonlinear CPL. For instance, in [31], the authors use a variable frequency
continuous-time SMC approach to regulate a boost converter feeding a CPL connected in parallel
with a resistive load. An SMC-based fixed frequency pulse width modulation (PWM) approach is
applied in [32] to boost converter supplying a pure CPL. In that work, the control law is derived by
using a nonlinear switching surface. With the aim to improve the output voltage regulation, a linear
term proportional to the voltage error was included in the same switching condition used in [10].
The control function used in that work contains a sign function inducing undesirable multiple pulsing
or chattering due to an additional discontinuity in the system equations apart from the one induced
naturally by the comparator. Moreover, a consistent performance evaluation in the whole operating
range including the system response during startup and under parameter changes was not presented.

Most of the controllers used for switching converters were of analog nature although the
final implementation is performed using digital platforms. Analog controllers are currently being
substituted by digital controllers since the speed of computer hardware has increased exponentially in
many industrial application fields. This increase in the processing speed has made it possible to sample
and process control signals at very high frequencies. Digital control offers many advantages over
analog control that explains the wide popularity in recent literature. However, most of existing digital
controllers are based on emulation of analog controllers. Digital SMC (DSMC) is a direct approach
offering the advantages of analog SMC combined with a fixed switching frequency operation.

The application of DSMC to the switching converters regulation has been always conditioned by
the high switching frequency of the converters and the quasi-sliding effects caused by the sampling
frequency [33,34] constraining the application to slow system variables [35] or to reduced switching
frequency cases some of them eventually requiring a sophisticated digital hardware environment [32].
However, the application of predictive strategies has allowed the use of DSMC in the regulation of fast
system variables as the inductor current operating at high switching frequencies [36]. Fixed frequency
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DSMC technique has only very recently appeared in the power electronics field. The application
of DSMC theory [37] has used first the discrete-time representation of the converters dynamics
and subsequently has been used as a natural technique to analyze and to digitally implement
SMC-based controllers with fixed-frequency PWM, which were validated in classical two-loop control
strategies such as in [38,39] and in the synthesis of a discrete-time loss-free resistors for AC-DC PFC
applications [40].

Fixed-frequency digital control of DC-DC converters with CPL has not been addressed as far as
the authors are aware. Direct application of the results in [38], is not possible because the discrete-time
model cannot be obtained in closed form without approximations. Here, a direct digital control design
is provided by first deriving an approximate discrete-time model which is demonstrated to faithfully
predict the dynamics of the exact switched system. A digital control design based on DSMC theory is
proposed. For the verification of the proposed approach, the discrete-time sliding-mode controller of a
boost converters loaded by a CPL is implemented using a digital signal processor (DSP).

The rest of this paper is organized as follows: In Section 2, the destabilizing negative impedance
effect of the CPL are revisited. In Section 3, a discrete-time model of the boost converter loaded
by a CPL, suitable for digital controller design, is derived. The digital control law that is based on
current-mode control with constant current reference using discrete-time sliding-mode approach
is derived in Section 4 demonstrating that the resulting system is unstable. Then, a two-loop
control strategy is adopted in Section 5 where an outer voltage loop is added. Stability analysis
of the closed-loop system is presented in Section 6. Thereafter, Section 7 presents simulation results
illustrating the performance of the proposed control approach and illustrating the importance of
working under sliding-mode regime for inrush current limitation. Experimental results are given in
Section 8. The paper is summarized in the last section where concluding remarks are drawn.

2. The Destabilizing Effect Associated with the Negative Impedance Due to the CPL Behavior

CPLs do not exist in nature but their behavior arises in switching converters feeding either other
downstream converters or motor drives. A block diagram of a CPL is shown in Figure 2a and its
voltage-current characteristic is shown in Figure 2b. Often, the CPL model considered is a static
nonlinear current sink whose power is constant. This is because an increase in the CPL voltage results
in a decrease in its current and the hence the product of both variables is kept constant [1,9,11,12].
The equation describing the current through a CPL in terms of the voltage across it is given by the
following expression [14]:

P
= —. 1
lo % 1)
=1L
+ 2P
Vo
Y
Vo [
o A P
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Figure 2. Instantaneous constant power load consisting of a nonlinear current sink. (a) Schematic
circuit diagram of a CPL; (b) voltage-current characteristic showing a negative conductance/resistance.
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In linear terms, the local resistance of the CPL can be obtained by linearizing the previous equation
in the vicinity of an operating point (V,, P/V,) established by the load converter or the motor drive
system. Close to this operating point, a CPL can be described by the following linearized model [14]

vo — Vo

P
[, — . 2
Wy TR, @)

where R, = (%)’1. Therefore, the model of the CPL in the vicinity of the operating point can be
represented by a straight line that is tangent to the nonlinear hyperbolic curve at the operating point
with a negative slope equal to R; ! in the voltage-current space. The equation for this line is given
by (2). This model represents a current source I, in parallel with the negative resistance R, and these
are given by the following equations:

Ve

Ro = p’ I,

2P

=5 3)

As a result, although the local resistance at a certain point is positive, the corresponding incremental
resistance R, is negative and this is known to produce instabilities to the system to which the CPL is
connected [1,7,11]. As an example, consider the first-order nonlinear network depicted in Figure 3
which could represent an approximate circuit model for a boost converter under current-mode control
and loaded by a CPL. The current at the input port is imposed to be the current limit Ij;, and this port
can be considered as a constant power source (CPS) whose power is totally delivered to the nonlinear
network. This power source models how this ideal power transfer takes place from the input port to
the output port.

From KCL, the equation describing the dynamic behavior of the network of Figure 3 can be
written in the following form:

ar v,
where 6P = P, — P, P being the power of the CPL and Py = V,I; the power delivered from the input
voltage generator.

c®o _ 0P @)
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Figure 3. An electrical network loaded by a CPL.

For this particular system, the response can be derived mathematically without linearization.

Indeed, by making the change of variable x(t) = v2(t), the previous equation can be expressed

as follows: p 5P
x

whose time-domain solution is given by the following expression:

x(t) = x(0) +2—+t, (6)
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or equivalently in terms of the original state variable v,,

vo(t) = 1/ v3(0) +2(%Pt (7)

Three different cases arise depending on 6P. These are:

e  JP > 0, the response is unbounded, and therefore the system is unstable.

e 0P =0, the response is bounded but present an infinite number of equilibria depending on the
initial condition v, (0). Indeed, in this case, one has v,(t) = v,(0) Vt.

e 0P <0, the response collapses at a certain time instant ¢, given by

C
te = —555%(0) ®)

At this time instant, the voltage v, across the CPL becomes zero and its current becomes infinite.
Fort > t., no real solution exists for the network equation. Figure 4 shows the responses corresponding
to the previous three different cases.

300

5p > 0
250 1

op=0

200

150 1 %TO 1

vo(t) (V)
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Figure 4. Response of the nonlinear electrical network of Figure 3. C = 20.8 uF. v,[0] = vy = 200 V. The
current [j;, has been varied in the set {4,5,6} A to consider the cases 6P = =200 W < 0 (I, = 4 A),
0P =0 (Ijjy, =5 A)and 6P =200 W > 0 (Ij, = 6 A). The collapse time in the case of 6P = —200 W
< 01is t; = 2.1 ms in perfect agreement with (8).

3. Discrete-Time Modeling of a Boost Converter Loaded by a CPL
3.1. System Description

The results presented in this section and the sections coming later correspond to the boost
converter depicted in Figure 5. However, the same approach can be applied to other converter
topologies. The aim of the digital controller is to provide the suitable duty cycle for ensuring output
voltage regulation and inducing sliding-mode regime in discrete-time. For that, the variables needed
for the synthesis of the controller, are first converted into digital signals using analog-digital converters
(ADC) at the rate of the sampling frequency and then processed by the controller. Selecting a proper
sampling rate is important. Multi-sampling is a recently used approach in switching converters
resulting in a sampling frequency larger than the switching frequency. This possibly will lead to
unnecessarily overloading the digital processor. On the other hand, there are also some approaches
using a sampling frequency shorter than the switching frequency. With this approach the controller
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will possibly miss dynamics of the power stage downgrading the performance of the closed-loop
system. In switching converters applications, the duty cycle is updated once per switching period, for
acceptable performance, it is quite appropriate to select the sampling frequency equal to the switching
frequency which lead to a good compromise between accuracy and computing efficiency.

Direct path from the source to the load due to D,

>4

CPL

Digital
Controller

Figure 5. Schematic circuit diagram of a boost converter with CPL.

The regulation of the output voltage v, is required since disturbances in the output power p and
the input voltage v, can take place. What is more, with CPL, closing the output voltage loop is also
necessary for stabilizing the system since with voltage loop open it is unstable as will be shown later.
The regulation can be accomplished by an outer voltage loop making the current reference i,o¢[n] to
be the output of this loop. Figure 6 shows a double-loop control scheme, which is used for output
voltage regulation while performing current limiting. The voltage controller consists of two stages.
Namely, a digital PI block to process the error ¢[n] := Vyef — v,[1] and a limiter to avoid that the current
reference overpasses an admissible level. The current controller is based on a DSMC strategy to be
described below. This controller together with the digital PWM (DPWM) directly provides the duty
cycle of the driving signal u of the converter MOSFET. The auxiliary diode D, in the power stage
of Figure 5 is usually not present in the conventional DC-DC boost converter topology. It has been
added to create a unidirectional path from the source to the load hence guaranteeing the condition
U, = Vg at the starting time and this helps to minimize the effect of the inrush current in the inductor
as will be detailed later. It is worth noting that this condition is also required for the model of the load
converter as a CPL to be valid. Indeed, the ideal static behavior of a CPL corresponds to the actual
power absorbed by a converter acting as a load in a cascade connection with the source converter.
However, while the tightly regulated load converter can be considered locally as a CPL for the source
converter, this model is not valid for all the operating range of the interconnected system. In fact,
the voltage drop across an ideal current sink (the CPL) is not defined unless there is some voltage
applied to it. In [7], a small voltage limit is used as a threshold value for the load voltage to decide if
an ideal static CPL behavior or an open circuit behavior must be used when performing numerical
simulations. In cascaded converters, this voltage is the output of the source converter which cannot be
tightly regulated in the case of a boost converter unless it is larger than the input voltage of the same
converter. The requirement of output voltage at least equal to the input voltage in this converter can
be easily met in the presence of the auxiliary diode D, in the boost converter power stage as shown in
Figure 5. This diode guarantees that v, > v, Vt in a normal operation of the boost converter.
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Figure 6. Control scheme with a two-loop voltage regulation.

3.2. Discrete-Time Mathematical Modeling

The development of a digital controller using DSMC concepts is performed in a discrete-time
state-space formulation. Hence, for DSMC design, a discrete-time model of the power stage is first
needed. Due to the presence of the nonlinear CPL, such a model cannot be exactly obtained in closed
form. This is because, in contrast to switching converters with linear loads, the differential equations
of the system for each switch position are nonlinear and cannot be solved in closed form. To overcome
this handicap, we deal with the problem approximately by discretizing the averaged model which can
be written as follows

diL _ %o gy %
a ~ Tt ©)
doo _ _ P it g (10)

dt ~ Co, C

where d is the duty cycle, all parameters and variables appearing in (9)—-(10) can be identified in
Figure 5. The key issue in the discrete model is the nonlinear differential Equation (10) associated
with the dynamics of the capacitor in parallel with the CPL. The discrete-time model corresponding
to this equation cannot be obtained in closed form. Different approaches can be used for obtaining
an approximate discrete-time model. These are the Euler forward, Euler backward, and the Tustin
(trapezoidal) methods [41]. For sufficiently small switching/sampling period, all these approximations
yield similar results. For the sake of simplicity, let us choose the Euler forward approach for
obtaining the discrete-time model. A discrete-time model can be obtained by approximating the
continuous-time derivatives by their equivalent rate of change, hence assuming in the averaged
model (9)-(10) that di /dt =~ (ip[n + 1] —ip[n])/T and that dv,/dt = (v,[n + 1] — v,[n]) /T, where T
is the switching /sampling period. The previous forward Euler approximation leads to the following
discrete-time model of the system:

il +1) = igln) + L (o5 — volnl) + Loolaldln] (0
ool +1] = voln] ~ Girlnldln] + w(izln] - vffn]) (12)

Notice that with a constant duty cycle value d[n] = D (open-loop operation), the coordinates of
the equilibrium point are V, = Vg/ (1-D)and I, =P/ Vg, where P and V; are the nominal values
of the power p and the input voltage vg. It should be noticed that the steady-state inductor current,
in contrast to the case of resistive load, inductor current coordinate of the equilibrium point does not
depend on the operating duty cycle and is only imposed by the power P of the CPL and the input
voltage V. Moreover, the equilibrium point is unstable for all values of D € (0,1).

When sampling the state variables at the beginning of the switching cycle, depending on the
modulation strategy, the samples in (11)—(12) can correspond to the peak values (leading-edge
modulation), the valley values (trailing-edge modulation) or the average values (double-edge
modulation). Here, a double-edge modulation will be used and the samples at the starting of each
switching period will coincide with the averages.
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3.3. Open-Loop Model Validation

We will show below that the approximate discrete-time model (11)—(12) is enough accurate for
control design. The results from this model are compared with those from the circuit-level switched
model implemented in PSIM®© software. Figure 7 shows the samples of the capacitor voltage and
the inductor current obtained from (11)—(12) and the waveforms of the same variables obtained
from the switched model. As can be observed, there is a good agreement between the results and
therefore (11)-(12) can be faithfully used for digital control purposes. Please note that the dynamics
of the inductor current is accurately predicted, and that the approximation only induces a relatively
small loss of accuracy in predicting the samples of the output capacitor voltage. The small deviation
can be perfectly compensated by the controller imposing the closed-loop poles at a desired position.

150

100

50

ir(t), izln] (A)

I I
0 0.05 0.1 0.15
Switched model @  Discrete-time model

0 0.05 0.1 0.15
Time (ps)

Figure 7. Comparison between the evolution of the state variables from the approximate discrete-time
model and from the switched model implemented in PSIM®© software. Ve =200V, T =10ps, L =326
uHand d[n] = D = 0.5.

4. Digital Sliding-Mode Inner Loop Control Design
4.1. Large-Signal Model with Voltage Loop Open

Let x = (if, v,)T be the vector of the state variables of the power stage circuit. With the aim
to control the samples of the inductor current iy [1] to their desired reference i ¢[n], the following
discrete-time sliding surface is used

% = {x|o[n] := ireg[n] —ir[n] = O} (13)

When the voltage loop is open, the current reference i,o¢[n] is given in a fixed pattern i.e., without
any feedback loop. Although this is a not a normal operation of the converter, the situation arises
during startup while limiting the inrush current and the current reference remains constant at a certain
constant limit Ij;,, during this phase.

4.2. Equivalent Control

In a fixed-frequency DSMC of switching converters, the control variable d[n] during a certain
switching period is selected in such a way that the controlled variable is imposed to catch its reference
one period later. Therefore, the duty cycle d[n] is obtained by imposing the discrete-time sliding-mode
condition o[n 4+ 1] = 0 in (13) and solving for d[n]. In doing so, the following expression for the duty
cycle (equivalent control) is obtained

L(iref[l’l -+ 1] —ir [Tl]) n Do [i’l] —Ug [Yl]

deln] = T, [n] v, (1]

(14)
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The value of the duty cycle is constrained within the interval (0,1) and the effective expression of
the duty cycle becomes
d[n] = sat(d.[n]) (15)

where sat( - ) stands for the saturation function defined by:

(14 |x] = Jx = 1)) (16)

N —

sat(x) =

The saturation will not take place whenever 0 < d.[n] < 1 requiring the following condition to

be satisfied:
Toyl] T(ooln] - vgln)

L L

At the initial time (n = 0) without the presence of the diode D,, the previous constraints have no
solutions and the system may have serious problems to startup. With initial conditions iy (0) = 0 and
v,[0] = v¢[0] (presence of diode D,), the previous condition becomes

iref[I’l + 1] — <ip [1’1] < iref[I’l + 1] + (17)

, Tv,[0]
iret[1] < —— (18)
If the previous constraint is not fulfilled, the system can startup easily, but the duty cycle will be

saturated during a few switching cycles.

4.3. Comparison with State-of-Art Digital Predictive Control

Before continuing our study on the DSMC of the boost converter loaded by a CPL, we will
present a short comparison with the Digital Predictive Control (DPC) published in [42]. To make
the comparison clear and easy to follow, let us consider that the current reference i, the output
voltage v, and the input voltage reference vq are constant (v,[n] = V, and vg[n] = V, Vn € N). Please
note that these are the same operating conditions used in [42] when deriving the control law. The
fixed-frequency DSMC will be later applied separately using the full-order model of a boost converter
loaded by a CPL. When applied to the DC-DC boost converter, the duty cycle in the case of DPC is
given by the following expression:

L(iref — Z.L [” — 1})

dn|=2D —d[n—1] + TV

(19)

Under the same conditions, from (14), the expression for the duty cycle (equivalent control in (14))
for the case of the DSMC becomes

L(iref - iL [1’1])

dln] =D+ v,

(20)
where in both cases D = (V, — V)/V, is the steady-state value of the duty cycle d[n]. There is a
fundamental difference between the two control laws. While it can be observed that the duty cycle
d[n] synthesized by the fixed-frequency DSMC approach is generated according to a static control
law in which, at a certain switching cycle, its value is given directly in terms of the samples of the
state variables and parameters at the same cycle, it is not the case of (19) which describes a dynamic
control law for synthesizing the duty cycle d[n], hence increasing the total order of the system by
one. The equivalent control law based on the DSMC is static and does not change the order of the
system. In the DSMC case, the current reference i, will be caught in one cycle by the inductor current
ir [n] assuming the output voltage constant while with the DPC two switching cycles are needed for
the reference to be reached by the inductor current under the same operating conditions. Indeed,
by linearizing the closed-loop system corresponding to DSMC and DPC, both approaches correspond
to a dead-beat response. Notice that in linear digital control theory, the dead-beat control consists of
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finding the control law that when applied to a system, it brings the output to the steady state in several
sampling cycles equal to the order of the system. To achieve this target, the control law places all the
poles of the closed-loop transfer function at the origin of the z-plane.

Let I; and D be the nominal steady-state values of iy [1] and d[n] respectively. Let iy [n] = iy [n] — I,
d[n] = d[n] — D. The linearized model of the closed-loop boost converter under the DSMC is given by:

irln+1]=0 (21)

This is a 1-dimensional system with a pole at 0 and the current reference will be reached in one
switching period. The linearized model of the closed-loop boost converter under the DPC is given by:

iln+1] = ig[n]+ ZVOJ[”] (22)
din+1 = —dn) - T@O L] 23)

The Jacobian matrix corresponding to the previous model can be expressed as follows

1 TV,
e 24)
TV,

The eigenvalues of ], are the closed-loop poles of the boost converter under the DPC and are
both located at 0. Therefore, with this control, the current reference will be reached in two switching
periods. The numerical simulations depicted in Figure 8 shows the inductor current responses of the
system under the DPC and the DSMC in front of positive and negative step changes in the current
reference i..f between 5 A to 10 A. For ease of comparison, only the dynamics of the inductor current is
conserved while the output voltage was fixed to V, = 380 V with L =326 uH and fs; = 100 kHz and
Vg = 200 V. These responses confirm the previous theoretical remarks about the dead-beat nature of the
responses of the two control strategies.

DSMC —— DPC

————— Reference

i, frer (A)

60 80 100 120 140 160 180 200 220
Time (ps)

Figure 8. Comparison between the inductor current response corresponding to the predictive control
and the DSMC. Under the DSMC, the inductor current reaches its reference in one switching/ sampling
cycle. Under the predictive control, the inductor current reaches its reference in two switching/
sampling cycles.

4.4. DSMC Design

To guarantee convergence of the trajectories of the system to the sliding surface %, the following
reaching conditions must hold
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cn+1] <0if Acn] >0 (25)
oln+1] >0if Ac[n] <0 (26)
where Ac[n] := o[n + 1] — o[n] is the increment in function variable ¢[n] during one switching cycle
which can be obtained as follows
. . T
Ac[n] = irefln +1] = irefn] + 7 ((1 = d[n])vo[n] — vg[n]) (27)
Accordingly, (25)-(26) become as follows
ogli] — (L~ dn))ooln] _ gl 1) — gli] _ vl o)

L - T - L

The above inequalities mean that the reference current rate change must be bounded between the
negative and the positive slopes of the inductor current during the charging and the discharging time
intervals, respectively. In steady-state operation, these conditions are easily met. However, they can be
violated during startup or during transient due to abrupt changes. The loss of sliding-mode operation
could lead performance degradation manifested by either large overshoots or slow response.

When iyef[1n + 1] = iref[n] (either constant or T-periodic), (28) becomes 0 < vy < v,. In this
case, starting from zero initial conditions and without the presence of the auxiliary diode D, (See
Figure 5), sliding condition will not be fulfilled at startup. With the presence of the auxiliary diode
D;, the condition v, = v, is guaranteed from the beginning, the system starts in sliding-mode and
immediately the system trajectory is constrained in the discrete sliding-mode domain defined by the
constraint iyo¢[n] — ir [n] = 0. The worse cases take place when the duty cycle is saturated. For d[n] = 0,
Ac[n] = T (vo[n] — vg[n]) > 0 (if vo[n] > vg[n]) and o[n + 1] < 0. Ford[n] =1, Ac[n] = —Fov,[n] <0
and o[n + 1] > 0, which ensures the convergence to the switching surface. It will be shown later that
at startup, the current reference could be saturated, the voltage loop becomes open and the resulting
system is unstable making the voltage v, to increase above vy hence guaranteeing the sliding-mode
condition. When the output voltage reaches the vicinity of its desired value, saturation disappears
and the PI regulator starts regulating the output voltage to its desired value according to the imposed
performance by the outer loop controller design.

4.5. Control-Oriented Full-Order Discrete-Time Small-Signal Model

As stated before, in linear terms, the current loop presents a dead-beat response under the
fixed-frequency DSMC and the DPC. However, the interaction with other state variables can only be
revealed by considering the full-order model of the system. The focus on this paper is on the DSMC.
Similar procedures can be followed for studying the DPC.

By substituting the expression of the equivalent control (14) in (12) and imposing the discrete-time
sliding-mode constraint iy [n] = i¢[n] imposed by (13), one obtains the following equation describing
the output capacitor voltage v, in the discrete-time domain

Vo[ + 1] = fo(vo[n], iref[n], iree [ + 1], vg[n], p[n]) (29)
where the function f; is given by the following expression

L(iref[n] — iref[n +1]) + Tog[n] . pln]

Co,[n] Co,[n] (30)

fv(vo [Vl], iref[n]r iref[n + 1]/ Ug[”]r P[”]) = Do [i’l} + iref[n]

The equilibrium point of the discrete-time dynamical system described by (29)—(30) can be
obtained by imposing v,[n + 1] = v,[n] and iye¢[n + 1] = ire¢[n] in the same equations. Imposing these
constraints implies that v, [n] takes an infinite value unless the current reference i,.¢[n] is chosen to
be exactly equal to p[n]/ve[n]. Indeed, this is the only inductor current value that correspond to a
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balance between the input power delivered by the voltage source and the output power imposed by
the CPL. Therefore, during startup and while the system is under inrush current limiting phase, it is
feeding a CPL with a constant current different from the one that balances input and output powers
in the system and this explains the output voltage divergence in a similar way to the first case of the
nonlinear network of Section 2. It is worth noting that for inrush current limitation during startup, the
converter will unavoidably work under this condition. The output voltage will collapse if the current
reference is smaller than P/V,. This fact appears in a clear contrast with the case of resistive load for
which the voltage reaches a finite value in steady state when the system is under pure current-mode
control [38]. The case studied here is similar to the analog control based on the average inductor
current regulation in a buck converter loaded by a CPL, which is still unstable after the introduction of
the current control loop [3]. In both cases, the introduction of an outer voltage loop will contribute to
the global stabilization of the system apart from ensuring output voltage regulation. It should also be
noted that when an outer loop is added to stabilize the output voltage while establishing the current
reference, this current will be imposed to be I,of = P/ V, in steady state regardless the desired reference
value Vi of the output voltage v,.

Let V, and I be the nominal steady-state values of v,[n] and i,¢[n] respectively. Let 9[n] =
Vo] — Vo, pln] = p[n] — P, dg[n] = vg[n] — Vg, iref[11] = iret[n] — Lt the small deviations of the output
voltage v,[n], the input voltage v,[n], the current reference i.¢[n] and the power p[n] with respect
to their steady-state values Vi, Vg, If and P respectively. Therefore, the small-signal model of the
system under current-mode control can be written as follows:

dfv doln] + dfv of;

5 v oy ..
airef [Yl] fref [n] * airef[n + ”

sl + el oD

do[n+1] = Iref[n + 1] +

N avo[n]v "

The different partial derivatives appearing in (31) are

afv T afv TVg - LIref
= 14+ ——(P— LV, =
don] — e P e G T ol
afv _ — Lt afv — Tlet an - _ l
diree[n + 1] Coon]”  dvg[n]  Cuo[n]” 9dp|n] Co,

With abuse of notation, let 9,(z), 9¢(z), p(z) and i, be the z-transforms of v,[n], v¢[n], p[n] and
iref TeSpectively.

Taking the z— transform of (31), the i .¢-to-v,, the Ug-t0-v, and the p-to-v, small-signal transfer
functions of the digital sliding current-mode-controlled boost converter with voltage loop open and
supplying a constant power can be expressed as follows

00(2) Z— 2z
Hi(z) = = = —R; , (32)
l ref(z) 'z - Zp
Z}o(z) IrefT 1
H.(z) = = , 33
s() (2)  CVoz—z, (33)
g T 1
Hyz) = 28 34
p(@) P(z) CVoz—2zp (34)
where R;, z¢ and zj, are given by
LI TV, T
R — ref -1 8 -1 I —PpP
i cv,’ Zc + IrefL’ Zp + CVOZ( rerg ) (35)

The previous transfer functions represent the discrete-time small-signal model of the boost
converter under an inner current control loop based on a DSMC strategy and can be used to design an
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outer digital voltage control loop in the z—domain. Please note that the zero z. of the i;.¢-to-v, transfer
function H;(z) in (32) is outside the unit circle, which explains the well-known non-minimum phase
characteristics of the control-to-output voltage transfer function in a boost converter. Also note that
during the startup, the current reference i,.¢ will be limited by an upper bound Ij;,,, which must be
selected larger than the desired steady-state P/ Vg, hence, the pole z;, of the previous transfer functions
is outside the unit circle, which corresponds to an unstable system. Therefore, any designed controller
must stabilize the system while regulating the output voltage and exhibiting desired performance in
terms of disturbance rejection and transient response.

5. Digital Control for Output Voltage Regulation

To ensure an output voltage regulation, an outer and slower control loop in cascade with the inner
DSMC current loop must be added. This loop is designed in the z—domain based on the i -to-v,
transfer function H;(z) in (32) representing the small-signal model around a desired operating point.
This second control loop will regulate the output voltage to a desired value V.. The steady-state
current reference If will be equal to P/ V, regardless the value of V;.¢ as mentioned before. To stabilize
the system, a two-loop control strategy will be used, hence the outer voltage loop provides the reference
for the inner current loop. Let e[n] = Vit — vo[n] be the output voltage error. The current reference is
updated from the output of a digital PI compensator as follows

irln] = Kyeln] +qln] (36)

where g[n] = K; Y }_,¢e[k] is the discrete-time accumulative sum of the error voltage weighted by
the integral gain K; being K, the proportional gain. In order to avoid high inrush current in startup,
the current reference must be limited and the final expression for the current reference becomes

i) = ir[n] if  i[n] < Lim (37)
e Ilim if iy [T’Z] > Ilim

Different approaches can be often used for integral control emulation. For sufficiently small
switching /sampling period and all the approaches yield a controller which produces a closed-loop
behavior similar to the one provided by a continuous-time controller. For the sake of simplicity,
let us choose the Euler forward approach for emulating the integrator. This approximation yields the
following recurrence equation for the discrete-time integral variable:

gn+1] = {[n] + Kieln] (38)

where K; is the integral gain. To avoid windup phenomenon, the integral variable {[n] is also limited
to an upper bound Zj;;,, and the expression of the variable g[n] becomes as follows
if < Zj
q[n] _ {g[ﬂ] 1 g[”] lim (39)
Ziim i {[n] = Zjim

The presence of an advanced sample of the current reference i,[nn + 1] in the expression of the
control law (14) makes it challenging to obtain this law when the reference is to be provided by a
feedback loop. A possible solution is to use a predictive approach to get the value of the reference
current from (36) one switching period ahead of time using (12). While this would work theoretically
and in simulation, it would require increased computational resources in an experimental digital
platform such as a DSP. A much simpler solution is to redefine the discrete-time sliding-mode surface
as follows:

U[Tl] = lyef [Yl - 1] —iL [Tl] (40)
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and the resulting expression of the duty cycle becomes

1l = sa L(iref[l’l] — iL [Tl]) 0o [l’l] — Z)g [1’1]
bl = t< Tv, (1] T o] >

The first term in the expression of d[n] in (41) is non null only in the reaching phase. Once the
sliding-mode regime is reached, this term becomes zero and only the second term forces the system to

(41)

evolve toward the equilibrium point if the stability of the closed-loop system is ensured.

Figure 9 shows a block diagram of the large-signal model of the system with a two-loop control
based on DSMC. The presence of a discrete-time integrator in the external voltage loop will impose
that in steady state V, := v,[00] = V. Furthermore, in steady-state one will have Q := g[oo] = if [00]
and [} :=ip[oo] = V% Therefore, the coordinates of the equilibrium point are

P P
—— Vo=V, Q=1I = — 2Y)
IL Vgl 0 refs L Vg ( )

where 1, V, and Q stand for the steady-state values of the state variables i}, v, and g respectively.

Vi Wi wind X T il
Cn]y | g Zim _i_ TC» .
TC, ] Timiter din]
........ ] Eq. (41)}—»
[ 17
Vo[n] iz[n)l vy[n]
Eq. (10) Eq. (9)

Figure 9. Block diagram of the large-signal model of the system with a double control loop based on
the proposed DSMC.

6. Design of the Output Voltage Feedback Loop Using the Root-Locus Technique

The block diagram corresponding to (31) is depicted in Figure 10. The small-signal model can
be used to design the feedback compensator to obtain a stable closed-loop system with a regulated
output voltage.

Dref

Figure 10. Block diagram of the z—domain small-signal model.

The focus in this section is on the design of the output voltage regulator. The time response
characteristics are related to closed-loop pole locations. Hence, a design based on root-locus approach
will be used. The aim is to design a controller such that the dominant closed-loop poles have a desired
damping ratio ¢ and a settling time t;. According to (36) and (38), the transfer function for the outer
digital PI voltage controller can be expressed as follows
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K; Z — Zpj
Ho(z) =Ky + —7 =K Z_i"

(43)

where zp; = 1 — K;/Kj is the zero introduced by the digital PI compensator. The loop gain of the
system is

(2 — zpi) (2 — zc)
z(z—1)(z — zp)

Please note that because of the one cycle delay present in the current reference in (40), a pole at
the origin is added to the loop gain.

Although (44) can be used to obtain numerically the suitable parameter values for the desired pole
position, it is always more useful to have an explicit mathematical expression. For many applications,
the feedback gain K is a design parameter that should be adjusted accordingly to the values of
other parameters to get a system response with the desired performance. The purpose in this section
is to perform an analytical study by carrying out a realistic approximation. Unfortunately, there
is no universal procedure to approximate the loop gain. To simplify the design, the integral gain
K; = Kp(1 — zp;) can be appropriately selected so that the zero of the PI controller is placed slightly
smaller than 1. This means that the term K;/K, must be selected much smaller than 1 and the loop
gain can be approximated by

£(z) = Hi(z)Ho(2) = ~KyR; (a4)

Z—2Z
~ —KyRi———
E(Z) 14 IZ(Z*ZP)’

The approximate closed-loop characteristic polynomial equation can be expressed as follows

(45)

1+ L(z) =0=2*— (KpR; +zp)z + KpRizc = 0 (46)

The closed-loop poles can be selected at the break-away point zp,, on the real axis to correspond
to a damping factor { = 1 and a settling time t; = —4T/ In|zy,|. For finding the break-away points,
one must find the value of z = z, that maximizes or minimizes the gain K, [41] hence obtaining the
following approximate expression for the values of the break-away points and the corresponding
proportional gain of the PI controller

/ (Zba — Zp)Zba
Zpa = ze £14/22 — 25z, K N 47
ba c c p4c p,ba Ri (Zba — Zc) ( )

The value of z;,, with positive sign is omitted because it corresponds to a break-in point outside
the unit circle leading to an unstable system.

7. Numerical Simulations and Model Validation
7.1. System Startup and Steady-State Operation

The initial value of the duty cycle can be obtained from the initial values of the state variables.
Usually, the obtained value at startup is saturated. With delay, the number of initial saturated cycles
increases since the inductor is continuously charged during a few cycles leading to an increase of the
inrush current.

7.1.1. Validation of the Closed-Loop Large-Signal Model and Guaranteeing the
Sliding-Mode Operation

Let us consider the nominal values of the power stage parameters, the desired output voltage
and the switching frequency depicted in Table 1. The steady state of the current reference is
Lef = P/Vy = 5 A. During the startup, the current reference i,s and the integral variable g were
limited to Ijj, = 10 A and Q = 10 A, respectively. The PI zero is selected at z. = 0.95. First, the root
locus of the closed-loop system is obtained and the result is depicted in Figure 11. Let us select the
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closed-loop poles at the break-away point z,, ~ 0.62 4 0j which corresponds to a proportional gain
K, ~ 0.82, damping coefficient { = 1.

The performance of the DSMC will be validated by means of numerical simulations from both
the derived large-signal discrete-time model and from a detailed switched model implemented in
PSIM© software.

Table 1. The used parameter values for the system.

L C P vg Vief fs
326 uH  208uF 1kW 200V 380V 100 kHz

Root Locus

Imaginary Axis
T

0
Real Axis

Figure 11. Root locus of the system. At the double pole position z,, =~ 0.62 -+ 0j marked by a square on
the real axis, the gain K, ~ 0.82 leading theoretically to damping coefficient = 1 and null overshoot.

Figure 12a shows the startup and the steady-state responses of the system from both models.
It can be observed that during startup the inductor current reference i, = Ij;, remains constant due to
the saturation hence limiting the inrush current. As soon as the capacitor voltage reaches the vicinity
of the voltage reference Vi, the PI controller comes to play and the current reference is no longer
constant but time varying, state-dependent and provided by the PI compensator according to (36).
The data from the discrete-time model are plotted together with the simulated data from the detailed
switched model implemented in PSIM® software. It can be observed that the responses from the two
models are very close. The voltage waveforms from the switched model and the discrete-time model
cannot be distinguished from each other. Hence, the above simulations show that the large-signal
model derived in this work can predict accurately the large-signal behavior of the system.

Remark 1. Since during startup the average inductor current value is the regulated variable and it is supposed
to reach the reference current in one cycle, the ripple of this variable can only exceed the limit Ly, by the switching
ripple Aiy given by

Aip = —- 82 (48)

At the initial time, v, = Vg due to the presence of the auxiliary diode D, and Aij, should be zero as can be
confirmed in Figure 12a. However, in a practical implementation of a digital controller, saturation of the duty
cycle during the initial cycles and propagation delays always exist and it is expected that the average inductor
current will still overpass the imposed current limit. The current ripple amplitude Aiy from (48), superposed
to the averaged current Iy is plotted in the bottom panel of Figure 12a together with the current waveforms
obtained from the switched model. The agreement is remarkable both in the startup, in steady state and in the
transient phase.
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It is worth noting that one cycle delay inherently existing in the used commercial device has been
eliminated by appropriately modifying the C code programming of the device. However, computation
delay is unavoidable. By adding a computation delay t; = 5.5 ps, the results depicted in Figure 12b are
obtained where it can be observed that a small inrush current still exists in the current startup response.
The value of the computation delay used is the one corresponding to the experimental prototype to be
described later. The propagation delay makes higher the number of cycles during which the duty cycle
is saturated making the sliding-mode condition not satisfied during these cycles which in turns lead to
higher inrush current at startup. As a remedy of this problem, one can force the initial values of the
duty cycle to lie within the interval (0,1) in a few cycles either by scaling down the value of the duty
cycle obtained from the control law (41) or by limiting the rate of change of the reference current from
zero to I}, in startup. The last solution will be adopted later in the section related to the experimental
validation of the results.

I I I I I I I
0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4

Time (ms) Time (ms)
(a) without delay (b) With 7y = 5.5 s.

Figure 12. Startup and steady-state response from numerical simulations using a detailed switched
model implemented in PSIM® and the discrete-time model.

By filtering out the high frequency component of the current reference at the abrupt change in
startup, the inrush current can be suppressed. However, the presence of a filter also slows down
the system response. Another way to limit the inrush current in the presence of computation delays
without degrading the system response is by limiting the rate of change of the current reference
during startup.

Remark 2. The system is unstable when the saturation is taking place and the system is current-mode control
with open voltage loop. During this phase, the output voltage tends to infinity although the average of the
inductor current is theoretically well regulated to the maximum allowed current Ly,,. During this phase, the
system operates like the nonlinear first-order network shown in Figure 3. In the case of the boost converter, this
type of instability only makes the output voltage to increase from the initial voltage V. This increase in the
output voltage is desired since under this operation the system is approaching its desired operating point.

7.1.2. The Importance of Operating in Sliding-Mode Regime for Inrush Current Limitation

To reveal the importance of different aspects in the controller, some cases are simulated below.

Figure 13 shows the startup of the system with the sliding-mode non-guaranteed at startup
with two different cases. In the first case (Figure 13a), the auxiliary diode D, is omitted and the
system starts with zero initial condition. Without time delay, the system exhibits severe problems
for starting-up. The inrush current in this case is very large even under current limitation. This is
because since the sliding-mode operation is not guaranteed, the inductor current does not tightly
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track the limited current reference Ij;,,. The mean reason is that since the output voltage is less than
the input voltage, the driving signal is switched ON and it remains ON as long as iy [1] < Ly, hence
charging the inductor current. When iy [n] = Ly, for the first time, the output voltage v,[n] is still
smaller than the input voltage and sliding-mode condition is not yet satisfied. The output voltage
increases, and the sliding-mode condition is satisfied as soon as the output voltage is equal to the
input voltage. However, when this occurs, the inductor current has already reached a high value
leading to an unacceptable inrush current. In the second case (Figure 13b), with the presence of the
auxiliary diode Dy, the sliding-mode condition (28) is guaranteed at startup but the non-saturated
reference generated by the outer voltage loop is very high and the inductor current well tracks it which
is undesirable. In the simulation instead of not using a limit for the current reference, a high value
(Iim = 20 A) is used.

400

r 400 £ _ _— =
300 F 1
S o 300 :
\: 200 - 1 \: 200 |
= =
100 1 100 -
0 0.5 1 1.5 2 25 3 35 4 0 05 1 1.5 2 25 3 35 4
50 : : : ‘ ; ; : 50
40+ 1 40 - :
< 30F 4 230 ,
220K 1 520 :
104 - , 10 —
0 0.5 1 L5 2 25 3 35 4 0 05 1 L5 2 25 3 35 4
Time (ms) Time (ms)
(@) without auxiliary diode. (b) With a big I, = 20 A.

Figure 13. Startup and steady-state response from numerical simulations using a detailed switched
model implemented in PSIM® revealing the importance of the auxiliary diode D, and the current
limitation in guaranteeing the sliding-mode operation and hence the inrush current limitation.

It is worth noting that the DSMC derived in this study is based on a full-order representation of the
system in the state space. In both DSMC and DPC, the control law is nonlinear since the output voltage
appears in the denominator of the expression of the duty cycle. A discussion on approximating the
samples of the output voltage by their constant steady-state values was presented in [42] concluding
that it is reasonable to use the constant output voltage instead of its instantaneous samples. However,
the startup and the transient response performance under this condition were not discussed and only
steady-state behavior was evaluated. It should be noted that when the samples of the output voltage
are substituted by their constant steady-state value, the controller becomes linear, and the computation
effort is reduced. However, this occurs at the expense of losing the sliding-mode operation which in
turns results on a high inrush current and unsatisfactory system performance during both startup and
under transient response. In an experimental circuit, the high inrush current would even destroy the
switching semi-conductor devices.

The expression of the duty cycle (equivalent control) contains the instantaneous values of the
state variables and none of them is substituted by its constant steady-state value. This is indispensable
for the system to work in sliding mode, which is crucial for inrush current limiting. This will change
the system behavior during startup since the sliding-mode operation will be lost.

Figure 14 shows the startup response of the system when the samples of the output voltage are
replaced by their steady-state value in (41) but using the instantaneous values of the output voltage in
the expression of i,¢ given by (37). As can be observed, the current reference is not well tracked during
the startup phase and the system exhibits an unacceptable inrush current hence demonstrating the
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importance of operating under sliding-mode regime which is guaranteed by using the instantaneous
values of the state variables not their steady-state values.

400 c = =—=
300/
ZZOO

100

0 05 1 15 2 25 3 35 4
Time (ms)
Figure 14. Startup and steady-state response from numerical simulations using a detailed switched
model implemented in PSIM®© when the samples of the output voltage are replaced by their steady-state
value in (41) but using the instantaneous values of the output voltage in the expression of i, given
by (37).

7.2. Small-Signal Response to Output Voltage Variation. Non-Minimum Phase Behavior

Figure 15 shows the response of the system to a £4 V step change in the reference voltage using a
switched model. It can be observed that the system exhibits a small undershoot in the output voltage
response immediately after the positive step change of voltage reference. The inductor current follows
the reference current tightly as dictated by the DSMC.

386
384 1
5382

B e e i e ity
&— Undershoot due to RHZ |

2 2.5 3 35 4

2 25 3 35 4

Time (ms)
Figure 15. Small-signal transient response in front of a =4 V step change between 378 V and 382 V in
the reference voltage from numerical simulations using a detailed switched model implemented in
PSIM®© and the discrete-time model showing a non-minimum phase behavior.

7.3. Small-Signal Response to Input Voltage Disturbance

Figure 16 shows the transient response in the presence of 38% step change in the input voltage
from the detailed switched model implemented in PSIM®© software. It can be observed that the
output voltage is tightly regulated to its desired value. The steady-state average inductor current is
Lt = P/ Vg as predicted by the theoretical analysis. The inductor current and capacitor voltage show
a fast recovery of the steady state after a disturbance takes place.
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< 380 Ve
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V, =200 V=1, =5 A

> 25 3 35 4 45 5 55 6
Time (ms)
Figure 16. Small-signal transient response in front of a 38% step change in the input voltage from 200 V
to 124 V using numerical simulations using a detailed switched model implemented in PSIM®© and the

discrete-time model.

7.4. Small-Signal Response to Power Disturbance

Figure 17 shows the transient response in the presence of 50% step change in the load power from
the detailed switched model. A zero steady-state error in the output voltage can also be observed
while the dynamic current reference i, is tracked by the inductor current i} as imposed by the inner
DSMC loop. The steady-state value of iy is Iof = P/Vy as predicted by the theoretical analysis.
As before, both inductor current and capacitor voltage show a fast recovery of the steady state. As can
be observed, in all the cases, both small-signal and large-signal behaviors show a similar behavior,
confirming the validity of the model developed in the previous sections. Hence the large-signal model
can be used for repeated simulations while the small-signal model can be used for control design and
performance specifications.

P=1kWV=1I =5A

> 25 3 35 4 45 5 55 6
Time (ms)
Figure 17. Small-signal transient response in front of 50% step change in the nominal power
from numerical simulations using a detailed switched model implemented in PSIM® and the

discrete-time model.

Remark 3. Theoretically, according to the small-signal design procedure followed, the system should present no
overshoot for a positive step change with the chosen values of parameters. However, a small overshoot can be
still appreciated in the system response of Figure 15. The discrepancy is mainly due to the computation delay
(t7 = 5.5 us) not taken into account in the analysis.
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8. Experimental Results

8.1. Experimental Setup

A boost converter under DSMC was implemented to verify the validity of the control design
approach proposed in the previous sections. A picture of the experimental benchmark and the
implemented experimental prototype is depicted in Figure 18. The measured large-signal and
small-signal response are compared with the theoretical predictions for the same set of parameter
values and under the same conditions. The developed DSMC algorithm was programmed in the
Digital Signal Processor (DSP) TMS320F28335 of TEXAS INSTRUMENTS. The samples of the state
variables are captured and adapted to the voltage values supported by the DSP, connecting to a
pin of the ADC module through an operational amplifier operating as a buffer to isolate the DSP.
The signals are sampled at the switching frequency rate. The duty cycle was calculated according
to (41) and processed in the PWM of the DSP which uses a symmetric triangular signal to generate the
driving signal with a time delay of about t; = 5.5 us. The CPL has been emulated by the electronic
load 9000 EL-DE ELEKTRO-AUTOMATIK which has been programmed in constant power mode.
The experimental waveforms shown below, have been measured by using the oscilloscope Tektronix
TDS 754C and the probes TEKTRONIX TCP202 for illustrating the current waveforms.

Probes  Boost converter

(a) Experimental setup (b) Experimental prototype and DSP
Figure 18. Picture of the benchmark and the implemented experimental prototype.

8.2. Results

Figure 19 shows the measured responses of the system during startup and in steady state. It can
be observed that the measured responses shown in Figure 19 and the simulated responses presented
in Figure 12 are very close. However, the inrush current exhibited in the experimental circuit is larger
than in the numerical simulation. This is mainly due to the saturation of the inductor and the decrease
of its inductance value at high current levels. To completely suppress the still remaining inrush current,
a slope limiter is introduced in the current reference at the startup to guarantee the sliding-mode
conditions given in (28). The effect of adding this slope limiter is shown Figure 20 where it can be
observed that inrush current is completely suppressed thanks to the operation under sliding-mode
regime. In all the cases, the output voltage regulation to 380 V in steady state is also well achieved.

Figure 21 depicts the measured response to a =4 V step change in the voltage reference. Note that
the measured inductor current ij tracks tightly and accurately the current reference i,¢. The output
voltage is regulated to its desired reference. A small undershoot of the output voltage immediately
after a positive step change can be observed.

The effect of a 50% step change on the power is shown in Figure 22. A good agreement can be
observed between the measured and the simulated responses.
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Figure 19. Startup and steady-state responses of the system from experimental measurements.
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It should be noted that in all the experimental tests, the system was started with zero initial
current. The initial voltage v,(0) = Vj is due to the presence of the auxiliary diode D,.

9. Conclusions

DC-DC converters loaded by a CPL appears in many modern and emerging electrical energy
conversion systems. This work has presented a digital sliding-mode approach for designing a two-loop
controller for inrush current limiting and output voltage regulation in a DC-DC boost converter
supplying a constant power load. The following features can be remarked

o  The boost converter loaded with CPL is unstable in open loop.

e  The boost converter loaded with CPL is unstable with digital sliding-mode current-mode control
in a clear-cut contrast with the same converter with resistive load. With an appropriate choice of
the outer voltage loop, the system can be stabilized to its desired operating point.

e  The operation under sliding-mode regime helps in the inrush current limitation at startup

e  The presence of propagation delay worsens the inrush current and the problem can be relieved by
forcing a non-saturated value of the duty cycle within the few initial switching cycles. This can be
accomplished either by scaling down the value of the duty cycle obtained by the control law or by
limiting the rate of change of the current reference at startup.

The designed controller is based on an inner current control loop guaranteeing sliding-mode
operation in discrete-time and an outer voltage control loop in the form of a digital PI compensator to
stabilize the system and regulate its output voltage. The proposed control combines the advantages
of analog controllers in terms of fast system response and the benefits of a digital implementation
such as programmability and noise immunity while offering the additional profit of operating at
constant switching frequency. The large-signal and the small-signal models of the system have been
derived using a general procedure that can be applied to other converter topologies. The model of
the system with voltage loop open has been expressed as a single nonlinear difference equation. The
small-signal transfer functions have also been derived showing that the system is non-minimum phase,
like for the case of resistive load, and that it is unstable with voltage loop open. A boost converter
under the proposed control has been implemented to verify the large-signal and the small-signal
models derived in the paper. The evaluation using numerical simulation from a detailed switched
model and experimental validation suggests that this two-fold controller can effectively enhance the
performance of a DC-DC boost converter with CPLs in a wide operating range and this has been
proven showing the inrush current limitation during startup and a better voltage response during
both startup and close to the steady-state operation. Problems related to delay effects and nonlinearity
of the CPL have been addressed. The mitigation of these problems has allowed to design a digital
sliding-mode approach for designing a two-loop controller with inrush current limiting capability.
The measurements, the numerical simulations and the theoretical predictions have shown a very good
agreement. The measurements, the numerical simulations and the theoretical predictions have shown
a very good agreement. By comparing with the state-of-the art digital controllers, it has been found
that the proposed digital sliding-mode controller exhibits better small- and large-signal responses.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC
CPL
CPS
DPC

Analog-to-digital converter
Constant power load
Constant power source
Digital predictive control

DPWM  Digital pulse width modulation
DSMC  Digital sliding mode control

EV
KCL

Electric vehicle
Kirchhof current law

PWM Pulse width modulation

SMC

Sliding mode control
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