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Abstract: The numerical study of nanofluid stagnation point flow coupled with heat and mass
transfer on a moving sheet with bi-directional slip velocities is emphasized. A magnetic field is
considered normal to the moving sheet. Buongiorno’s model is utilized to assimilate the mixed effects
of thermophoresis and Brownian motion due to the nanoparticles. Zero nanoparticles’ flux condition
at the surface is employed, which indicates that the nanoparticles’ fraction are passively controlled.
This condition makes the model more practical for certain engineering applications. The continuity,
momentum, energy and concentration equations are transformed into a set of nonlinear ordinary
(similarity) differential equations. Using bvp4c code in MATLAB software, the similarity solutions are
graphically demonstrated for considerable parameters such as thermophoresis, Brownian motion and
slips on the velocity, nanoparticles volume fraction and temperature profiles. The rate of heat transfer
is reduced with the intensification of the anisotropic slip (difference of two-directional slip velocities)
and the thermophoresis parameter, while the opposite result is obtained for the mass transfer rate.
The study also revealed the existence of non-unique solutions on all the profiles, but, surprisingly,
dual solutions exist boundlessly for any positive value of the control parameters. A stability analysis
is implemented to assert the reliability and acceptability of the first solution as the physical solution.

Keywords: nanofluid; stagnation sheet; three-dimensional flow; slip condition; stability analysis

1. Introduction

Nanofluids are a special class of fluids that have been the subject of developing research in
the recent years. The dispersion of single nanoparticles like metals, oxides, carbon nanotubes or
carbides in a fluid can create a modern class of fluids known as nanofluid. Water, oil and ethylene
glycol are the common base fluid used in the formation of nanofluid. The invention of nanofluids
that have good thermophysical properties can improve heat transfer performance for enormous
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futuristic applications such as in nuclear cooling systems, solar water heating, biomedical applications,
lubrication, thermal storage, refrigeration, coolant in automobile radiator, and many others [1–13].
Choi et al. [14] initiated an experiment on nanotube-in-oil suspensions and measured that the
thermal conductivity is inevitably greater than the theoretical predictions. An analytical model by
Buongiorno [15] highlighted the importance of thermophoresis and Brownian motion that can induce
a relative velocity between the nanoparticles and base fluid. Nield and Kuznetsov [16] implemented
Buongiorno’s model on the Cheng–Minkowycz problem for flow in a porous medium filled with
nanofluid. A brief study of nanofluid and its thermal conductivity has also been examined by
Buongiorno et al. [17]. Kuznetsov and Nield [18] revised their model [16] by introducing a new
boundary condition that could manipulate the nanoparticles’ volume fraction at the surface. Based on
the report, it is assumed that the nanoparticles’ volume fraction is passively controlled at the boundary
which could make the new model more realistic and physically applicable as compared to the existing
model. Muhammad et al. [19] also imposed coupled effects of convective heat and zero nanoparticles
flux on conditions for Darcy–Forchheimer flow of Maxwell nanofluid. In addition, research works on
the zero nanoparticles flux condition were also considered by Rehman et al. [20], Rahman et al. [21],
Uddin et al. [22], ur Rahman et al. [23] and Jusoh et al. [24]. Furthermore, studies on the boundary layer
problem utilizing Buongiorno’s model of nanofluid were also conducted by these researchers [25–31].

Magnetohydrodynamics (MHD), also acknowledged as hydromagnetics and magneto-fluid
dynamics, is the study on the behaviour of electrically conducting fluids including liquid metals,
plasmas, electrolytes and salt water. The magnetic fields can generate currents or Lorentz force in a
moving fluid, which give resistance to the fluid flow and, simultaneously, changes the magnetic field.
Magnetohydrodynamics are effectively applied in many devices such as generators, power pumps, heat
exchangers and electrostatic filters. The imposition of the magnetic field is also practical in maintaining
the boundary layer flow. Rashidi et al. [32] introduced a new analytical method (DTM–Padé) to solve
the boundary-layer equations of an MHD micropolar fluid near an isothermal-stretching sheet and
concluded that the DTM–Padé is applicable for solving magnetohydrodynamic (MHD) boundary-layer
equations. Rashidi et al. [33] concluded that the magnetic nanofluid flow over a porous rotating disk
was beneficial in rotating MHD energy generators for new space systems. Sheikholeslami et al. [34]
investigated the problem of an eccentric semi-annulus saturated with nanofluid under the influence
of a magnetic field. Hayat et al. [35] studied the combined effects of magnetic field, velocity slip and
nonlinear thermal radiation on the three-dimensional nanofluid flow. Kandasamy et al. [36] considered
the convective condition for an MHD mixed convection flow in a nanofluid while Bhatti et al. [37]
analyzed the MHD Wlliamson nanofluid over a porous shrinking sheet. An external magnetic field
was imposed, while the induced magnetic field was neglected due to the negligible magnetic Reynolds
number. Bhatti et al. [38] examined the coupled effects of MHD and partial slip on the blood flow using
a Ree–Eyring fluid model. Makulati et al. [39] utilized the Tiwari and Das model of water-alumina
nanofluid to study the impact of a magnetic field in inclined C-shaped enclosures. Hussain et al. [40]
found that an upsurge of magnetic field, Hall current, rotation and chemical reaction had an impact on
the fluid flow over an accelerated moving plate.

Stagnation point flows are fluid flows that approach the surface of a solid object and then separate
into different streams. Stagnation region which meets the maximum pressure, heat transfer and mass
deposition are essential in the industrial and technological field. Early classical works on stagnation
flow that excluded the slip velocity effect were examined by Hiemenz [41] for the two-dimensional
problem, Homann [42] for the axisymmetric case and Howarth [43] for the flow near the stagnation
region. According to Wang [44], anisotropy is reflected in the difference of bi-directional (direction)
slip velocities. Previously, Wang had considered the problem of two-dimensional stagnation flow
with symmetric axes on dissimilar surfaces; stationary plate with isotropic slip [45] and moving
plate [46], respectively. The results indicated that the enhancement of slip parameter will change
the surface resistance and velocity profile. Hussain et al. [47] studied the slip flow and heat transfer
of nanofluids embedded in a Darcy-type porous medium. From the analysis, the increment in the
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permeability of the porous medium and the velocity slip parameter increased the heat transfer rate,
whereas it decreased the momentum and thermal boundary layer thicknesses. Khan et al. [48] also
pointed up the significance of wall velocity slip for a reliable design and operation of microfluidic
devicesmade of hydrophobic devices. The emerging numbers of industrial and technological
applications make the study of anisotropic slip that relies upon the flow direction, which is influential
for these types of surfaces: hydrophobic [49–54] and porous [55,56]. Rashad [57] investigated the
coupled effects of anisotropic slip and convective condition in an unsteady nanofluid saturated
with porous medium. Hafidzuddin et al. [58] discussed the anisotropic slip on stagnation flow
due to a permeable moving surface, which resulted in dual solutions attained with the presence
of a suction parameter. Numerous studies involving three-dimensional stagnation nanofluid flow
towards a moving anisotropic slip surface are conducted by Raees et al. [59], Uddin et al. [60] and
Balushi et al. [61]. Very recently, Sadiq [62] concluded that the intensity of magnetic field and velocity
slip cause an increase in the nanofluid velocity while the boundary layer thickness decreases near the
stagnation point region.

Motivated by the literature mentioned earlier, the current work accentuates the anisotropic
slip effect on the numerical solution of stagnation point flow with nanoparticles due to a moving
surface. Buongiorno’s model of nanofluid with an assumption of zero normal flux condition at
the wall is implemented. A set of transformations is applied on the governing model to simplify
them into nonlinear ordinary differential equations (ODEs). The bvp4c function in MATLAB
software (R2017b, MathWorks, Natick, MA, USA) is utilized to perform the numerical computations.
The numerical results are demonstrated in the graph forms of velocity, nanoparticles concentration
and temperature including the skin friction coefficient, heat and mass transfer rate within the specific
range of related parameters. The authors also concern about the emergence of non-unique solutions
and the way of stability analysis is conducted to prove the physical solution. The pioneer works on
formulation of stability analysis were conducted by Merkin [63], Weidman et al. [64], Harris et al.
[65] and Roşca and Pop [66]. A brief of explanation on stability analysis was also discussed by the
following literature [67–74]. To the best of the authors’ knowledge, the results are new and have not
been published.

2. Mathematical Formulation

Consider a steady, three-dimensional stagnation point flow of a nanofluid towards a moving
sheet with the presence of anisotropic slip as illustrated in Figure 1. Ux and Vy are the moving plate
velocities along the x- and y-directions while the z-axis is the axis of stagnation flow. A magnetic field
of consistent strength B0 is applied normal to the plate. The surface is kept with fixed temperature,

Tw while variable nanoparticles fraction, DB
∂C
∂z

+
DT
T∞

∂T
∂z

is adapted at z = 0. This condition is applied

to achieve practically applicable results [18–24]. The ambient nanofluid concentration and temperature
are denoted as C∞ and T∞.
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Figure 1. The coordinate system of the physical model.
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The following assumptions for the physical model are also contemplated in the present work:

• The nanoparticles and the base fluid is maintained in a thermal equilibrium state.
• The Buongiorno’s model of nanofluid is used to mix the combined effects of Brownian motion

and thermophoresis.
• The insignificant value of the magnetic Reynolds number is assumed so that the induced magnetic

field is zero.
• The Hall current effect is also omitted due to the absence of any externally applied electric field.

Under all these assumptions, the flow equations are:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= Ue (x)
dUe (x)

dx
+ ν∇2u− σMB0

2

ρ
(u−Ue (x)) , (2)

u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= Ve (y)
dVe (y)

dy
+ ν∇2v− σMB0

2

ρ
(v−Ve (y)) , (3)

u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= ν∇2w, (4)

u ∂T
∂x + v ∂T

∂y + w ∂T
∂z = α∇2T + τ1DB

[
∂T
∂x

∂C
∂x + ∂T

∂y
∂C
∂y + ∂T

∂z
∂C
∂z

]
+ τ1

DT
T∞

[(
∂T
∂x

)2
+
(

∂T
∂y

)2
+
(

∂T
∂z

)2
]

, (5)

u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

= DB∇2C +
DT
T∞
∇2T, (6)

subject to the initial and boundary conditions

u (x, y, 0) = λUx + µS1
∂u
∂z

∣∣∣∣
(x,y,0)

, v (x, y, 0) = λVy + µS2
∂v
∂z

∣∣∣∣
(x,y,0)

, w (x, y, 0) = 0,

T (x, y, 0) = Tw,
[

DB
∂C
∂z

+
DT
T∞

∂T
∂z

]
(x,y,0)

= 0,

 , (7)

u (x, y, z)→ Ue (x) = bx, v (x, y, z)→ Ve (y) = by, T (x, y, z)→ T∞,

C (x, y, z)→ C∞ as z→ ∞,

}
, (8)

where (u, v, w) are the respective velocities in (x, y, z) directions, T is the fluid temperature, C is the
nanoparticles volume fraction, ν is the kinematic viscosity, µ is the dynamic viscosity, σM is the electrical
conductivity of the fluid, ρ is the fluid density, τ1 is the ratio of heat capacity of the nanoparticles
to the base fluid, α is the thermal diffusivity, DB is the Brownian diffusion coefficient, DT is the
thermophoretic diffusion coefficient, S1 is the slip coefficient in x-direction, S2 is the slip coefficient in
y-direction, b is the strength of the stagnation flow, and λ is the moving parameter such that λ > 0 and
λ < 0 refer to the moving plate, which is out and towards the origin, respectively [58,75].

The following similarity transformations which satisfy Equation (1) are employed to convert the
PDEs in Equations (2)–(6) aligned with the conditions (see Equations (7) and (8)) into a set of ODEs:

u = bx f ′(η) + Uxh(η), v = byg′(η) + Vyk(η), w = −
√

bν [ f (η) + g(η)] ,

T = (Tw − T∞) θ(η) + T∞, C = (Cw − C∞) φ(η) + C∞, η =
√

b
ν z,

}
(9)

where η is the similarity variable. Hence, the transformed nonlinear ODEs in conjunction with the
conditions are:

f ′′′ =
(

f ′
)2 − ( f + g) f ′′ + M

(
f ′ − 1

)
− 1, (10)
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g′′′ =
(

g′
)2 − ( f + g)g′′ + M

(
g′ − 1

)
− 1, (11)

h′′ = h f ′ − ( f + g) h′ + Mh, (12)

k′′ = kg′ − ( f + g) k′ + Mk, (13)

θ′′ = −Pr
[
( f + g)θ′ + Nbθ′φ′ + Nt(θ′)2

]
, (14)

φ′′ = −Le Pr( f + g)φ′ − Nt
Nb

θ′′, (15)

f (0) = g(0) = 0, γ1 f ′′(0) = f ′(0), γ2g′′(0) = g′(0), λ + γ1h′(0) = h(0), λ + γ2k′(0) = k(0),

θ(0) = 1, Nbφ′(0) + Ntθ′(0) = 0,

}
(16)

f ′(η)→ 1, g′(η)→ 1, h(η)→ 0, k(η)→ 0, θ(η)→ 0, φ(η)→ 0 as η → ∞,
}

(17)

where primes denote differentiation with respect to similarity variable η, M =
σMB0

2

ρb
is the magnetic

field parameter, Nt =
τ1DT(Tw − T∞)

νT∞
is the thermophoresis parameter, Nb =

τ1DB(Cw − C∞)

ν
is

the Brownian motion parameter, Pr =
ν

α
is the Prandtl number, Le =

α

DB
is the Lewis number,

γ1 = µS1

√
b
ν

and γ2 = µS2

√
b
ν

are the slip parameters in the bi-directional x- and y-axis,

proportionately. The physical interests in the study are the dimensionless skin friction coefficient,
local Nusselt number (heat transfer rate) and local Sherwood number (mass transfer rate) which is
denoted by

C f Re1/2
x = f ′′(0),

Nux

Re1/2
x

= −θ′(0),
Shx

Re1/2
x

= −φ′(0), (18)

accordingly.

3. Stability Analysis

The implementation of stability analysis is essential to affirm mathematically the stability and
reliability of the dual solutions. The first non-unique solution which is asymptotically satisfying the
boundary conditions will be denoted as the first or upper branch solution. For stability purposes,
a time-dependent problem needs to be considered based on study in previous literature [67–73].
The unsteady form of Equations (2)–(6) is

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= Ue (x)
dUe (x)

dx
+ ν∇2u− σMB0

2

ρ
(u−Ue (x)) , (19)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= Ve (y)
dVe (y)

dy
+ ν∇2v− σMB0

2

ρ
(v−Ve (y)) , (20)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= ν∇2w, (21)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

= α∇2T + τ1DB

[
∂T
∂x

∂C
∂x

+
∂T
∂y

∂C
∂y

+
∂T
∂z

∂C
∂z

]
+ τ1

DT
T∞

[(
∂T
∂x

)2
+

(
∂T
∂y

)2
+

(
∂T
∂z

)2
]

,
(22)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

= DB∇2C +
DT
T∞
∇2T. (23)
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New transformations are applied to the unsteady problem (see Equations (19)–(23)) where τ is
the non-dimensional time variable:

u = bx
∂ f (η, τ)

∂η
+ Uxh(η, τ), v = by

∂g(η, τ)

∂η
+ Vyk(η, τ), w = −

√
bν [ f (η, τ) + g(η, τ)] ,

T = (Tw − T∞) θ(η, τ) + T∞, C = (Cw − C∞) φ(η, τ) + C∞, η =

√
b
ν

z, τ = bt.

 (24)

Using Equation (24), the following equations can be attained:

∂3 f
∂η3 + ( f + g)

∂2 f
∂η2 −

(
∂ f
∂η

)2
−M

(
∂ f
∂η
− 1
)
+ 1− ∂2 f

∂η∂τ
= 0, (25)

∂3g
∂η3 + ( f + g)

∂2g
∂η2 −

(
∂g
∂η

)2
−M

(
∂g
∂η
− 1
)
+ 1− ∂2g

∂η∂τ
= 0, (26)

∂2h
∂η2 + ( f + g)

∂h
∂η
− h

∂ f
∂η
−Mh− ∂h

∂τ
= 0, (27)

∂2k
∂η2 + ( f + g)

∂k
∂η
− k

∂g
∂η
−Mk− ∂k

∂τ
= 0, (28)

∂2θ

∂η2 + Pr

[
( f + g)

∂θ

∂η
+ Nb

∂θ

∂η

∂φ

∂η
+ Nt(

∂θ

∂η
)

2
− ∂θ

∂τ

]
= 0, (29)

∂2φ

∂η2 + Le Pr
[
( f + g)

∂φ

∂η
− ∂φ

∂τ

]
+

Nt
Nb

∂2θ

∂η2 = 0, (30)

with the transformed conditions

f (0, τ) = g(0, τ) = 0,
[

γ1
∂2 f
∂η2 −

∂ f
∂η

]
(0,τ)

= 0,
[

γ2
∂2g
∂η2 −

∂g
∂η

]
(0,τ)

= 0,

λ + γ1
∂h
∂η

∣∣∣∣
(0,τ)

= h(0, τ), λ + γ2
∂k
∂η

∣∣∣∣
(0,τ)

= k(0, τ), θ(0, τ) = 1,
[

Nb
∂φ

∂η
+ Nt

∂θ

∂η

]
(0,τ)

= 0,

 (31)

∂ f
∂η

∣∣∣∣
(η,τ)
→ 1,

∂g
∂η

∣∣∣∣
(η,τ)
→ 1, h(η, τ)→ 0, k(η, τ)→ 0, θ(η, τ)→ 0, φ(η, τ)→ 0 as η → ∞.

}
(32)

For the stability process, steady flow solutions f (η) = f0(η), g(η) = g0(η), h(η) = h0(η),
k(η) = k0(η), θ(η) = θ0(η) and φ(η) = φ0(η) which have satisfied Equations (10)–(17) are examined
by the following expressions:

f (η, τ) = f0(η) + e−στ F(η)

g(η, τ) = g0(η) + e−στG(η)

h(η, τ) = h0(η) + e−στ H(η)

k(η, τ) = k0(η) + e−στK(η)

θ(η, τ) = θ0(η) + e−στ P(η)

φ(η, τ) = φ0(η) + e−στ R(η)


, (33)

where σ is an eigenvalue, F(η), G(η), H(η), K(η), P(η) and R(η) are small relative to f0(η), g0(η),
h0(η), k0(η), θ0(η) and φ0(η), correspondingly [66]. The linearized eigenvalue problem will be attained
by replacing Equation (33) into Equations (25)–(32):

F′′′ + ( f0 + g0) F′′ + (F + G) f ′′0 − (2 f ′0 − σ + M)F′ = 0, (34)

G′′′ + ( f0 + g0) G′′ + (F + G) g′′0 − (2g′0 − σ + M)G′ = 0, (35)
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H′′ + ( f0 + g0) H′ + (F + G) h′0 − h0F′ − ( f ′0 − σ + M)H = 0, (36)

K′′ + ( f0 + g0)K′ + (F + G) k′0 − k0G′ − (g′0 − σ + M)K = 0, (37)

P′′ + Pr
[
( f0 + g0) P′ + (F + G) θ′0 + Nb

(
φ′0P′ + θ′0R′

)
+ Nt

(
2θ′0P′

)
+ σP

]
= 0, (38)

R′′ + Le Pr
[
( f0 + g0) R′ + (F + G) φ′0 + σR

]
+

Nt
Nb

P′′ = 0, (39)

along with the conditions

F(0) = G(0) = 0, γ1F′′(0) = F′(0), γ2G′′(0) = G′(0),

γ1H′(0) = H(0), γ2K′(0) = K(0), P(0) = 0, NbR′(0) + NtP′(0) = 0

}
, (40)

F′(η)→ 0, G′(η)→ 0, H(η)→ 0, K(η)→ 0, P(η)→ 0, R(η)→ 0 as η → ∞.
}

(41)

The stability of the solutions f0(η), g0(η), h0(η), k0(η), θ0(η) and φ0(η) depends on the smallest
eigenvalue, σ1 by solving the governing linearized eigenvalue model in Equations (34)–(41). Relaxation
of a boundary condition is necessary to attain a possible range of eigenvalues [65]. Hence, in the present
paper, the boundary condition F′(η)→ 0 as η → ∞ (see Equation (41)) is relaxed and replaced with
the normalizing boundary condition F′′(0) = 1.

4. Results and Discussion

The similarity solutions for the transformed ODEs in Equations (10)–(15) aligned with the
conditions (see Equations (16) and (17)) are found with the aid of bvp4c function in MATLAB software.
The bvp4c function implements a finite difference scheme known as 3-stage Lobatto IIIa [74,76–78].
There are four separate codes in bvp4c function; code a for solving steady flow equations, code b
for continuation of code a, code c and d for stability analysis of dual solutions. In the bvp4c code a,
η∞ = 10 is used for the numerical calculations, but it is found that η∞ = 5 is sufficient enough to fulfill
the boundary conditions based on all the profiles demonstrated in the present study. For the method
validation, few values in the case of Newtonian fluid with the absence of magnetic parameter and heat
transfer have been compared to the results by Wang [44] and Balushi et al. [61]. The present numerical
values are in positive agreement with others as tabulated in Table 1.

Table 1. A comparison data with previous published results for λ = 1, γ1 = 5 and various γ2.

Present Wang [44] Balushi et al. [61]

γ2 = 5 γ2 = 2.5 γ2 = 5 γ2 = 2.5 γ2 = 5 γ2 = 2.5

f ′(0) 0.896418 0.895885 0.8964 0.8959 0.896418 0.895885

g′(0) 0.896418 0.809985 0.8964 0.8100 0.896418 0.809985

h(0) 0.122554 0.123428 0.123 0.123 0.122554 0.123428

k(0) 0.122554 0.221884 0.123 0.222 0.122554 0.221884

Figures 2–17 exhibit that dual solutions are possible in the present study. The first and second
solutions are depicted by the straight and dashed lines, respectively. Generally, the solution which
converges first is assumed as the first or physical solution, and in this case, the stability analysis as
discussed in the previous section will affirm which solution is physically realizable. Figures 2–7 display
the nanofluid velocities on x- and y-directions, temperature and concentration profiles in limiting
numbers of γ2 when Le = Pr = 1, Nb = Nt = 0.2, M = 0.5, λ = −1, 1 and γ1 = 5. Both of the velocities
as revealed in Figures 2 and 3 increase because the shear stress decrease with the enlargement of the
slip parameter and this is supported by the result in Figure 11. Figures 4 and 5 demonstrate the slip
velocity profiles h(η) and k(η) in both directions, respectively. There are opposite and symmetrically
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effect for both profiles at λ = ±1. The changes in λ only influence the slip velocity profiles since the
moving parameter only remains in the initial condition at h(0) and k(0) (see Equation (16)). Boundary
layer thickness for both solutions diminishes with an increment of γ2 as manifested in Figures 4 and 5.

The nanofluid temperature as illustrated in Figure 6 declines with the expanding values of
γ2 while the opposite result is obtained for the nanoparticles’ volume fraction profile in Figure 7.
Meanwhile, Figures 8–10 present the influence of the Nb and Nt on both nanoparticles volume
fraction (concentration) and temperature profiles. The nanofluid concentration diminishes as
Nb increases while expands as Nt increases and these outcomes are in conjunction with the
previous results by Balushi et al. [61]. An inflation of Nt seems to boost the thermal boundary
layer thickness and temperature, whereas the presence of Nb give zero impact on the nanofluid
temperature. The appearance of the nanoparticles in the base fluid will generate thermophoresis
parameter. As Nt increases, the higher thermal conductivity in nanofluid will enhance both
temperature and concentration.

Variations of g′′(0), k′(0), −θ′(0) and −φ′(0) against the slip parameter, γ1 for selected values
of γ2, Nb and Nt are visualized in Figures 11–17, respectively. Unlike the other studies which conduct
stability analysis for non-unique solutions, no critical value or turning point is found in this analysis.
Critical value is defined as a value that separates the first (physical) and second solutions. Both
upper and lower branches existing boundlessly for each value of γ1 and for the graph visualization,
0 ≤ γ1 ≤ 30 have been selected. There is no significant effect of γ2 on f ′′(0) and h′(0), hence the graph
is not highlighted. This is supported by the velocity and slip velocity profile that have been shown
previously in Figures 2 and 4. Variations of −θ′(0) and −φ′(0) as can be seen in Figures 13 and 14 only
show minimal changes as γ2 increase but since the value of Nb and Nt is same, −θ′(0) = −(−φ′(0))
for all values of γ1 and γ2. An increasing values of the Brownian motion parameter Nb escalate the
mass transfer rate whereas the thermophoresis parameter Nt reduces both heat and mass transfer rate
as displayed in Figures 15–17.

Since dual solutions are obtained in the study, a stability analysis has been conducted by solving
Equations (34)–(39) with the conditions (see Equations (40) and (41)) using Matlab bvp4c code c and
d. Generally, negative σ1 indicates an initial upsurge of disturbances, which signifies that the flow is
unstable while there are opposite flow characteristics for positive σ1. The smallest eigenvalue, σ1 for
some values of γ1, is tabulated in Table 2. It shows that the first and second solutions have positive
and negative eigenvalues, respectively, which validate the stability and reliability of the first solution.
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Figure 2. Nanofluid velocity along the x-direction for diverse values of γ2 with λ = −1, 1.
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-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25 30

First Solution

Second Solution

(
)

0
g


1

1  ,1Pr

  ,2.0  ,2.0  ,5.0  1,e

−==

====



NtNbML

2 5,  10,  15 =

Figure 11. Variations of g′′(0) towards γ1 for selected values of γ2.



Energies 2019, 12, 1268 12 of 19

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

0.23

0 5 10 15 20 25 30

First Solution

Second Solution
(
)

0
k


1

1  ,1Pr

  ,2.0  ,2.0  ,5.0  1,e

−==

====



NtNbML

2 5,  10,  15 =

Figure 12. Variations of k′(0) towards γ1 for selected values of γ2.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

First Solution

Second Solution

(
)

0



−

1  ,1Pr

  ,2.0  ,2.0  ,5.0  1,e

−==

====



NtNbML

2 5,  10,  15 =

2 5,  10,  15 =

1

Figure 13. Variations of −θ′(0) towards γ1 for selected values of γ2.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 5 10 15 20 25 30

First Solution

Second Solution

1

(
)

0



−

1  ,1Pr

  ,2.0  ,2.0  ,5.0  1,e

−==

====



NtNbML

2 5,  10,  15 =

2 5,  10,  15 =

Figure 14. Variations of −φ′(0) towards γ1 for selected values of γ2.



Energies 2019, 12, 1268 13 of 19

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 5 10 15 20 25 30

First Solution

Second Solution

(
)

0



−

1

1.0  0.5,  ,2.0=Nb

21,  0.5,  0.2,  Pr 1,  5Le M Nt = = = = =

Figure 15. Variations of −φ′(0) towards γ1 for selected values of Nb.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

First Solution

Second Solution

5  1,

  ,1Pr  ,2.0  ,5.0  1,e

2 =−=

====



NbML

(
)

0



−

1

1.0  0.5,  ,2.0=Nt

1.0  0.5,  ,2.0=Nt

Figure 16. Variations of −θ′(0) towards γ1 for selected values of Nt.

-5.5

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

0 5 10 15 20 25 30

First Solution

Second Solution

(
)

0



−

1

5  1,

  ,1Pr  ,2.0  ,5.0  1,e

2 =−=

====



NbML

1.0  0.5,  ,2.0=Nt

1.0  0.5,  ,2.0=Nt

Figure 17. Variations of −φ′(0) towards γ1 for selected values of Nt.



Energies 2019, 12, 1268 14 of 19

Table 2. σ1 for diverse γ1 when γ2 = 5, Le = 1, Nb = Nt = 0.2, M = 0.5, Pr = 1 and λ = −1.

γ1
σ1 σ1

(First Solution) (Second Solution)

3 0.2051 −0.7977

5 0.3720 −0.8347

10 0.4375 −0.8626

13 0.4590 −0.8692

15 0.4690 −0.8721

5. Conclusions

A numerical investigation on three-dimensional MHD stagnation point flow due to a moving
plate with the presence of anisotropic slip has been accomplished. Buongiorno’s model of nanofluid is
selected to integrate the thermophoresis and Brownian motion parameters. A set of transformations
was used to reduce the governing model into a set of nonlinear differential equations. The similarity
equations are then transformed into the bvp4c algorithm to perform the numerical computation.
The numerical results are illustrated graphically on the specific physical parameters such as
thermophoresis parameter Nt, slip parameters γ1, γ2 and Brownian motion parameter Nb to study the
flow, heat and mass transfer characteristics of the nanofluid. Non-unique solutions exist boundlessly
for all positive values of related parameters in the present study. The implementation of stability
analysis using bvp4c code proves the reliability of the first solution. The thickness of boundary layer
for the non-physical solution is larger compared to the physical solution. The rate of heat transfer is
reduced with the augmentation of the anisotropic slip (difference of slip velocities), while the opposite
result is obtained for the mass transfer rate. The rising values of Nb reduce the boundary layer
thickness for nanoparticle concentration and increase the Sherwood number while an adverse trend is
observed for the higher values of Nt.
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Abbreviations

The following abbreviations are used in this manuscript:

B0 magnitude of the magnetic field strength
C nanoparticle concentration
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
Le Lewis number
M magnetic parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
Pr Prandtl number
Rex local Reynolds number
S1, S2 slip coefficient in x- and y-directions, respectively
T nanofluid temperature
Tw wall temperature
T∞ free stream temperature
Ue free stream velocity along the x- axis m/s
Ux moving plate velocity along the x- axis m/s
Ve free stream velocity along the y- axis m/s
Vy moving plate velocity along the y- axis m/s
b strength of the stagnation flow
f , g dimensionless stream function along x- and y-directions, respectively
h, k slip velocity along x- and y-directions, respectively
t time s
u, v, w velocities along the x-, y-, z- directions, respectively
α thermal diffusivity of the fluid
γ1, γ2 slip parameters in the x- and y- axis, respectively
θ dimensionless temperature
λ moving parameter
µ dynamic viscocity
ν kinematic viscocity m2/s
ρ density of base fluid kg/m3

σ unknown eigenvalue
σM electrical conductivity of the fluid s3A2/(kgm3)

τ dimensionless time variable
τ1 ratio of the heat capacity of the nanoparticles to the base fluid
φ dimensionless nanoparticle volume fraction/concentration
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