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Abstract: This article is devoted to the development of the multiblock technique for numerical
simulation of vortex heat transfer enhancement (VHTE) by inclined oval-trench dimples. Special
attention is paid both to the analysis of numerical predictions of different-type boundary conditions
at the wall: T = const and q = const and to the comparison of the standard and modified shear stress
transport models. The article discusses the mechanism of change in the flow structure and secondary
flow augmentation due to an increase in a relative length of an oval-trench dimple (at its fixed spot
area, depth and orientation) where a long spiral vortex is formed.
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1. Introduction

The use of a structured surface with discrete artificial roughness is a popular method of vortex
heat transfer enhancement (VHTE) in energy equipment [1]. Tubes with periodic protrusions many
times enhance heat transfer in comparison to smooth tubes. However, hydraulic losses in this case
grow faster, thus, an increased total pressure drop is required. Replacing protrusions by grooves allows
hydraulic losses to be decreased cardinally.

Prior to the three-dimensional (3D) printing era, the type of discrete roughness was mainly
determined by technology. Cylindrical cavities made by mechanical extrusion [2–4] were the simplest
and well-studied technological forms. However, hydraulic losses in ducts with such cavities appeared
to be rather high.

Another simple form of a surface cavity is a semi-spherical dimple formed by a sphere that was
pressed into the wall. In the late 20th century, such cavities attracted the attention of researchers and
engineers [5–8], although at a later date segment-spherical dimples of a relative depth of less than
0.5 (in terms of spot diameter) [9,10] were quite often considered. It is interesting to note that the
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self-oscillatory flow regime was for the first time revealed in a semi-circular dimple, on the sides of
which vortex jets were alternatively formed [5].

One of the first researchers who drew attention to the vortex mechanism of heat transfer
intensification using spherical dimples were Kiknadze et al. [11] and Ligrani et al. [12].

In the 1990s, Afanasiev et al. [13] and Chyu et al. [14] have carried out a series of pioneering
experimental investigations of turbulent convective heat transfer at a dimpled plane wall in rectangular
channels. The most complete complex study of hydrodynamics and heat transfer on surfaces with
spherical recesses was conducted By Terekhov [10]. Results of this work were used as a basis for
studying flow characteristics in dimpled channels at the University of Rostock [15].

A large number of experimental works on hydrodynamics and heat transfer in dimpled channels
were performed at the beginning of the new millennium [16–21]. Later, these publications were
supplemented [22–24] using new experimental methods with the implication of gradient heat flux
sensors and pressure pulsation detectors. The studies on the visualization of vortex flows in the vicinity
of dimples such as [25,26] should also be mentioned here.

Recent interest in laminar heat transfer enhancement was initiated by the research of heat transfer
in microchannels [27]. The research in [28] analyzed the detailed maps of flow around single spherical
dimples. There has also been research that [29,30] contained the important results that were used for
verification and validation of numerous numerical predictions. Lastly, there has been research [31] that
analyzed the technique of making longer non-spherical dimples at the wall.

The analysis of the experimental works as presented here shows that most of them are devoted
to spherical dimples. As noted in [11,12], the jet-vortex nature of heat transfer enhancement by
such dimples is beyond doubt; however, the intensity to form swirled flows appears to be low and
the problem to select rational shapes of vortex generators with the highest thermal and hydraulic
performance still remains open. In [29], it was experimentally established that heat fluxes decay on the
leeward side of the spherical dimple in the zone of low-velocity separated flow in comparison to the
plane wall. Heat transfer coefficients are low inside the dimple.

The objective of the present study was to apply the specialized multiblock computational
technique (MCT) based on simple-topology different-scale structured grids with their partial
overlapping as being realized in the VP2/3 code in order to calculate convective heat transfer in
dimpled channels. The authors analyzed different interpretations of turbulent transfer, including the
consideration of the flow curvature influence on turbulent characteristics. We validated the numerical
predictions and verified the turbulence models when comparing predicted and experimental results.

This study analyzes the physical mechanisms of VHTE based on the control of large-scale spiral
vortices in single oval-trench dimples with fixed spot area and depth at an angle of inclination to the
main flow at a Reynolds number of 104. It is shown that increasing the dimple length changes the flow
structure in the dimple. The separation zone substantially decreases, backflow enhances, which leads
to an almost two-fold growth of heat transfer occurring in the separation zone and also results in an
increase in the secondary flow velocity comparable to the bulk velocity in the channel.

2. Problem Statement

In this work, we considered the convective heat transfer in the channel with a cross-sectional
aspect ratio of 2.5 × 0.33 (the dimensions are related to the dimple diameter). At the entrance to
the channel, we set the velocity profile of a fully developed turbulent flow. We are looking at an
incompressible fluid. On the walls, the conditions of non-slip are observed. The profiles of the
longitudinal, vertical and transverse components of the velocity u, v, w, as well as the turbulence
characteristics (energy k, specific scattering velocity ω, vortex viscosity µt) are found from the solution
of a special problem in the development of the flow in the computational domain of the selected
section of the channel under periodic boundary conditions under the selected Reynolds number 104.
As parameters are assigned to the normalization of the volumetric velocity U, a spot diameter d of
basic spherical and 10◦-truncated conical dimples, the density ρ and viscosity µ of the coolant-water
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(Pr = 7). The depressions of the average depth of 0.13 (according to the classification [32]) are located
at some distance (about 3) from the selected channel input. The center of the Cartesian coordinates x,
y, z are in the longitudinal middle plane of the channel at the point of projection of the center of the
dimple on the section coinciding with the wall of the lower plane (Figure 1). The rounding radius
of dimple edges is taken as equal to 0.025. While maintaining the area of the oval dimple spot equal
to the area of the spherical dimple, its width b varies from 0.731 to 0.346 in width from 1.68 to 6.78
(Figure 1 and Table 1).
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Figure 1. Channels with spherical (a), 10◦-truncated conical (b) and oval dimples of width b = 0.731
(c), 0.549 (d), 0.429 (e) and 0.346 (f).

Table 1. The cylindrical insert length, the width of the oval dimple and its length in terms of width.

L b χ

0.5 0.731 1.68

0.625 0.678 1.92

0.675 0.659 2.02

0.75 0.631 2.19

0.9 0.58 2.55

1 0.549 2.82

1.25 0.482 3.59

1.5 0.429 4.50

1.75 0.383 5.57

2 0.346 6.78

The channel ends at a distance L = 7 after the dimple (normalized by the diameter of the dimple spot).
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We solved the problems of heat transfer and hydrodynamics separately. The flow at the channel inlet
is isothermal at Tref = 293 K. The streamed bottom wall of the dimpled channel was heated and a supplied
constant heat flux q was re-calculated in dimensionless form by the equation (of order 3.4 × 10−5).

q =
q

λPrReTre f /D
(1)

Here, λ is the thermal conductivity of water. The side walls of the channel are adiabatic, while
the top wall is isothermal at Tref (taken as the normalization scale). The outflow conditions are
predetermined for T at the channel outlet.

Since the previous studies [32,33] considered heated isothermal walls, the testing part of this work
compares the boundary conditions T = const and q = const; the heated wall temperature was assigned
as equal to 1.036 in terms of Tref. We need to note that in [32,33], air was considered as a heat carrier
and the wall temperature was set to 373 ◦C.

3. Models, Methods, Computational Grids

In the section below, suggestions on turbulence model and computation methodology selection
are presented, multi-block mesh structure is described; also in addition, we pay attention to iteration
process convergence of the problem solution.

3.1. Turbulence Models

To solve the problem of convective heat transfer in a turbulent flow of incompressible fluid
in a channel with single dimple on the heated walls, a mathematical model based on a system of
Reynolds-averaged stable Navier-Stokes equations (RANS) and an energy equation similar to [32,33]
was used.

To close them, the standard Menter SST (Shear Stress Transport) model and the modified Menter
SST model were successfully used for typical wall flows, including those with separation [34,35]. The k-ω
model proposed by Menter is a generalization of two turbulence models: the Launder–Spalding k-ε
model for shear flow zones far from the wall and the Saffman–Wilcox k-ωmodel for the near-wall region.
In addition, designing the zonal shear stress transport model the ideas were taken from the Johnson–King
turbulence model. As earlier mentioned, in determining eddy viscosity, the Menter 1993 model [34] uses
the vorticity modulus Ω, and the Menter 2003 model [34], as the majority of semi-empirical models of
differential type, includes the strain tensor modulus S into the expression for eddy viscosity. It is important
to emphasize that the semi-empirical models are calibrated mainly in near-wall flows. As a result, there is
a need to correct them to high-intensity separated flows. As noted in [36], the Rodi–Leschziner approach
to correcting eddy viscosity within the framework of the high-Reynolds version of the Launder–Spalding
dissipative two-parameter turbulence model [37] widely used in the 1980–1990s [37] is that it is affected
by the correction function f c = 1/(1 + Cc × Rit). The constant Cc equal to 0.57 was determined analytically
when calculating turbulent annular and twin parallel jets [38] and a limitation was imposed on the product
f c × Cµ: 0.02 < f c × Cµ < 0.15 (in the standard k-εmodel [37], the semi-empirical constant Cµ = 0.09 in
the expression for eddy viscosity). Isaev generalized the Rodi–Leschziner approach (RLI approach) to
the Menter 2003 model. Kharchenko, Usachov and Isaev selected the constant Cc = 0.02 [36] from the
condition of the best agreement of numerical predictions and experimental data for numerous separated
flows. Recently Smirnov and Menter [39] have proposed one more correction of the Menter 2003 model
(SM correction) when they extended the Shur–Spalart correction in the Spalart–Allmares eddy viscosity
model [40] to the Menter two-parameter model.

Near-wall conditions for SST models are formulated so that the normal derivative to the wall
for turbulence energy is equal to zero and the specific dissipation rate of turbulence energy in the
near-wall cell is determined as in [41].
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3.2. Computational Methodology

It is beyond doubt that software based on solving the Reynolds-averaged Navier–Stokes equations
with the use of semi-empirical models became a powerful tool to predict flow parameters and
turbulence characteristics. The present study used the multiblock computational technique [42] realized
in the original research VP2/3 code (velocity-pressure, two-dimensional (2D)/3D). Computational
algorithms realized in this code are based both on the concept of splitting with respect to physical
processes and on the application of grid methods for solution of the governing equations [42,43].

The use of the concept of splitting allows a system of partial differential equations to be
divided into blocks containing momentum equations in natural variables (including Cartesian velocity
components for incompressible viscous liquid flows), which replace the continuity equation, as well
as the pressure correction equation (SIMPLEC (Semi-Implicit Method for Pressure Linked Equations
Consistent) [44,45]) and the equations for their closure (from the chosen turbulence model).

Thus, the system of steady equations in discrete form is solved block by block at each time step
during the global iteration process (about 10–20 iterations), when at each time step for one iteration
in the course of solution of the momentum equation, several (about 10–15 iterations) iterations are
performed in the pressure correction block and about four–six iterations in the turbulence and energy
blocks. The governing equations are preliminarily linearized [46].

In the calculation algorithm we used: (1) the pressure correction procedure SIMPLEC [44,47,48];
(2) the approximation of the convective terms in the explicit hand-side of the momentum equation
using Leonard’s one-dimensional quadratic upwind scheme [49] to reduce the influence of numerical
difference specific for a considered type of separated flows and using van Leer's scheme [50]; (3) the
representation of the convective terms in the implement hand-side of transport equations using the
upwind scheme with one-sided differences; (4) methods with preconditioners for solution of difference
equations [51].

In this paper, we used a Rhie–Chow’s generalized approach [48] to avoid difficulties in the
calculation of unsteady flows. The method for solution of algebraic equations is the BiCGSHAB
(biconjugate gradient stabilized method) preconditioner [51] with an AMG (Algebraic Multigrid)
preconditioner from Demidov’s library (amgl) [52] for pressure correction and the ILU0 preconditioner
for another variables.

MCTs realized in the VP2/3 code are outlined elsewhere [42,53]. Their essence is to introduce a set
of difference-scale, tier and structured overlapping grids to resolve the flow structure in the physical
problem of corresponding scale. The parameters for two rows of near-boundary cells of each of the
overlapping or overset grids are determined using linear interpolation [42,54] in the manner, as done
in [55]. Computation from grid to grid with the use of MCTs involving linear interpolation is a source
of errors; however, the test calculations [54] showed that the errors were acceptable.

3.3. Computational Grids

In this paper, we used multiblock overlapping structured grids of different scale (Figure 2).
We considered grid structures similar in topology to those used in [32,33,56]; however, these are more
condensed and have a greater number of cells. A rectangular channel is covered with a Cartesian grid
condensing to the walls and to the area around a dimple. The total number of cells in the channel is
700,000–1,500,000.

In the case of spherical and conical dimples, a detailed grid is Cartesian and in the case of oval
dimples, it is curvilinear, fitted to the streamlined bottom wall of the channel.

The area around spherical and conical grids is divided by a cylindrical grid adjusted to the dimple
surface (Figure 2a,b); an additional grid close to a rectangular one (‘patch’) is introduced to prevent
nodes from condensing in the near-axis zone. The minimum grid step near the edge is 0.002. In the
case of oval dimples, a special edge grid is introduced to describe high-gradient zones. The total
number of multiblock grid cells is about 1.5–3 mln cells.
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Figure 3a illustrates the multiblock computational grid in the axonometric projection for an
oval-trench dimple.Energies 2019, 12, x FOR PEER REVIEW 6 of 25 
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3.4. Data Processing

The integral characteristics of flow and heat transfer in the narrow channel with single dimples
were calculated in terms of the selected channel sections surrounding the dimple. As in [32,33],
hydraulic losses in the channel were determined between the assigned cross sections A-B shown in
Figure 3. Since we analyzed very long oval dimples, the size of the channel section (in comparison
to [32,33,57]) was somewhat increased to assess relative heat transfer and to take it equal to 3 × 2 in the
dimple center at a distance of 1 from the front boundary of the section (Figure 3b). In the present work,
the thermal and hydraulic performance of the oval dimple was for the first time determined in the
rectangular section surrounding the oval dimple at the 45◦ angle of orientation to the flow (Figure 3c).

We analyzed local dimensionless and relative characteristics of flow and heat transfer, including
static pressure, friction, temperature and Nusselt number, as a function of longitudinal and transverse
coordinates in the middle sections of the channel and the dimple at the bottom, heated and isothermal
top walls. We compared Cartesian velocity components, turbulence energy and eddy viscosity
normalized by the Reynolds number as profiles in the vertical coordinate in the dimple centers.

Temperature and Nusselt number fields are combined with the flow maps. We also considered
vortex structures that are formed in dimples and obtained by computer visualization of labeled
liquid particles.

3.5. Analysis of Convergence

Similarly [32,33] the SST model [36] with curvature correction within the RLI approach is chosen
as the basic model.

Figure 4 shows the plots of maximum errors versus iteration step: convergence trajectories,
transverse load and total Nusselt number determined within the dimple when the size of an additional
grid is assigned (Figure 3a). Figure 4 illustrates the convergence trajectories chosen for maximum
errors of the following variables u, p, T, k at each iteration step Nit: Erru, Errp, ErrT, Errk at linear and
logarithmic scales.

Calculation is over when the maximum error does not exceed 10−5. However, the experience
with calculating separated flows [58] shows that it is not enough to control how a solution is set only
in terms of errors and that it is necessary to observe the convergence in terms of integral characteristics.
In the current study, transverse load Rz and heat transfer Nus in the dimple region are chosen as
integral parameters.

The analysis of the convergence trajectories for conical and oval-trench dimples says that despite
a greater number of iterations sometimes because of the use of a more detailed grid in the case of an
oval dimple, the decrease in errors due to an increase in Nit is generally regressive in character and
close to a linear one (Figure 4a,b,e,f). In the case of the conical dimple, Rz needs much time to be set
and practically this takes place during the entire convergence process (about 3000 iterations).

This is mainly associated with the fact that a symmetrical vortex is formed in the dimple. At the
same time, in the case of the oval dimple, Rz was set during 1500–3000 iterations, whereas the entire
process occurred during more than 10,000 iterations. Approximately, the same situation was observed
when total heat is transported from the dimpled region, although in the case of the conical dimple
Nus was set slightly faster than Rz. In the case of the oval dimple, Nus was set to the 1000th iteration;
wherein Rz still significantly changes. As a whole, the convergence for integral characteristics in the
case of the oval dimple was set faster than in the case of the conical dimple.
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4. Testing, Verification, Validation

The test block contained several series of results. First, there is the verification of methodology and
turbulence model by comparison of numerical predictions with Terekhov’s experiments in area of heat
exchange in a spherical dimple on a thin channel wall. Second is a comparison of boundary conditions
by T = const and q = const on example of flow over a spherical dimple. Third is the validation of
computations in evaluation of influence of multi-block meshes on accuracy of solution of problem of
convective heat exchange close to a tiled oval-trench dimple on wall of a thin channel.

4.1. Comparison of the Numerical Predictions with V.I. Terekhov’s Experimental Data

Figure 5 presents some numerical and assessed calculations of flow and heat transfer in the
narrow channel with a spherical dimple of depth 0.13 at the thermally insulated channel wall with a
heated dimple as done in [10].Energies 2019, 12, x FOR PEER REVIEW 10 of 25 
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In Figure 5a, the methods for assessment of hydraulic losses ζ in the narrow plane-parallel
channel [32] are verified by comparing the obtained numerical predictions with the estimates according
to the data [59]. A satisfactory agreement is obtained between the results that attest to the acceptable
accuracy of the methods used.

The comparison of the calculated and measured distributions of the longitudinal distribution
of the pressure coefficient Cp in the middle section of the dimple (Figure 5b), the Reynolds number
dependences of heat transfer on the dimple spot and hydraulic losses (Figure 5c), as well as the
longitudinal and transverse relative Nusselt number distributions in the middle section of the dimple
(Figure 5d,e) shows as a whole their satisfactory agreement.

4.2. Predictions of Convective Heat Transfer in the Narrow Channel with a Spherical Dimple at T = const
and q = const

Figures 6 and 7 and Table 2 demonstrate some of the comparative analysis results for the influence
of boundary conditions at the heated bottom wall with a spherical dimple. As in [32,33], three sections
near a dimple are chosen for analysis and are numbered as in Table 3: 10—2.5 × 1.5 section with a
spherical dimple center at a distance of 1 from the front boundary of the section; 20—square section
surrounding the spherical dimple; 30—2 × 1.5 section in the dimple wake.

As follows from Table 2, the integral characteristics of the thermal and hydraulic performance of
the channel with a spherical dimple are practically independent of the type of boundary conditions for
heat transfer within the turbulent flow regime. However, the local distributions (Figures 6 and 7) are
significantly different in the near-edge zone and in the dimple center. Difference in maximum relative
local heat transfer values is of the order of 1.5; at T = const, the loads against the near-edge zone are
significantly higher than those at q = const.

Table 2. Thermal and hydraulic performance of three sections of the narrow channel with a spherical
dimple at different boundary conditions q = const and T = const.

Boundary Condition Type Nun10/Nunp110 ζ/ζpl10 Nun20/Nunpl20 ζ/ζpl20 Nun30/Nunpl30 ζ/ζpl30

q = const 1.098
(1.083) 1.072 1.138

(1.083) 1.16 1.085 1.010

T = const 1.094
(1.08) 1.071 1.17

(1.11) 1.16 1.064 1.008

Table 3. Predictions of thermal and hydraulic performance of two sections of the narrow channel with
the oval dimple of width b = 0.383 obtained by the modified SST models and different grids.

Model Nun1/Nunpl1 ζ1/ζpl1 (Nun1/Nunpl1)/(ζ1/ζpl1) Nun2/Nunpl2 ζ2/ζpl2 (Nun2/Nunpl2)/(ζ2/ζpl2)

SST-model
Standard [34]

1.242
(1.196) 1.079 1.151

(1.108)
1.953

(1.518) 1.150 1.698
(1.320)

SST-model
Modified [35]

1.231
(1.185) 1.069 1.152

(1.109)
1.933

(1.502) 1.134 1.705
(1.325)

SST-model [35] modified
within RLI approach

1.233
(1.187) 1.068 1.155

(1.111)
1.949

(1.515) 1.132 1.726
(1.338)

SST-model [35] modified
within SM approach

1.228
(1.183) 1.064 1.154

(1.112)
1.950

(1.516) 1.127 1.730
(1.345)

SST-model [35] modified
within RLI approach *

1.222
(1.177) 1.082 1.129

(1.088)
1.836

(1.427) 1.144 1.605
(1.247)

(* the grid contains 3 mln cells).
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4.3. Comparison of the Predictions Obtained by the Modified SST Models

In addition to the testing of the standard SST model [34] and the modified SST model [35] with
curvature correction within the RLI and SM approaches for steady and unsteady two-dimensional
separated flows [36,60–62]: circulation flow in square and circular cavities at the walls of plane-parallel
and return channels and flow around a semi-circular body at a zero angle of attack, we compared the
numerical predictions obtained using the modified SST models for three-dimensional steady separated
flows in the narrow channel with an oval-trench dimple of width b = 0.383. Figure 8 and Table 3 show
some of the obtained results.
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Figure 8. Distributions of longitudinal (a,b), vertical (c), transverse, (d) components of local flow
velocity, turbulence energy (e) and normalized vortex viscosity (f) in the center of the oval dimple
of width 0.383 obtained by the modified SST model: 1—SST model [34]; 2—SST model [35]; 3—SST
model [35] with RLI correction; 4—SST model [35] with SM correction; 5—plane-parallel channel.
b—longitudinal velocity component distribution (enlarged fragment).

We compared the local and integral characteristics of flow and heat transfer in the narrow channel
with an oval dimple. We predicted about 1.6 mln cells at the wall. Table 4 is also supplemented by the
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refined calculations obtained by the modified SST model [35] with curvature correction within the RLI
approach on the grid with 3 mln cells.

Table 4. VP2/3 code validation of the predictions of extreme flow, heat transfer and turbulence
parameters for the narrow channel with the oval dimple of width b = 0.383.

Type umin vmin vmax wmin wmax kmax νtmax Twmax

Grid A −0.473 −0.349 0.526 −0.847 0.331 0.0412 0.00141 1.083

Grid B −0.472 −0.337 0.508 −0.818 0.377 0.0405 0.00142 1.085

As shown by the two-dimensional tests, especially in the calculation of unsteady vortex flows,
the modified SST model [35] predicts artificial turbulent viscosity in the cores of large-scale vortices.
The reason for this is the strain rate tensor modulus introduced into the definition of eddy viscosity.
As a result, there is a need to modify the SST model [35] in order to eliminate this non-physical
viscosity. Here, two approaches were under consideration: direct viscosity correction in terms of the
inverse linear dependence on turbulent Richardson number, when the semi-empirical constant Cc =
0.02 is added (RLI approach), and correction functions introduced into the system of equations for the
modified SST model [35] (SM approach). We assumed that the correction within the RLI approach is
preferable according to the test results [36,60–62].

The comparison of the integral characteristics of Table 3, as well as of the distributions of the local
parameters at the streamlined surface and of the strip-integrated Nusselt numbers around and inside
the dimple showed rather a good proximity of the numerical predictions obtained by all modified SST
models. Some distinctions of the modified SST models [35] are not big but noticeable, especially in the
case of local high heat fluxes.

The qualitative differences in the numerical predictions of local flow parameters and turbulence
characteristics determined by different SST models manifested themselves in the vertical distributions
in the dimple center (Figure 9). The differences in the velocity component distributions obtained by the
modified SST model [35] are very noticeable, and the scatters of turbulence energy and Re-normalized
eddy viscosity are particularly large. The overestimation of k and Reνt is especially noticeable in
the spiral vortex core. This indicates that an error is present in the modified SST model [35] in the
calculation of high-intensity 3D separated flows.
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Figure 9. Relative Nusselt number distributions in the section of the narrow channel with the
oval dimple of width 0.383 calculated on different grids: (a)—initial variant (about 1.6 mln cells);
(b)—refinement (about 3 mln cells).
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4.4. Validation

We compared the calculation results for convective heat transfer in the narrow channel wall with
an oval dimple of width 0.383 on grids having 1.6 mln cells (Grid A) and about 3 mln cells (Grid B).
These data are cited in Tables 3 and 4 and shown in Figures 9 and 10. The modified SST model corrected
within the RLI approach [35] was used in the present study.Energies 2019, 12, x FOR PEER REVIEW 15 of 25 
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Figure 10. Distributions of relative local Nusselt numbers (a,b) and Nusselt numbers averaged over
transverse (c) and longitudinal (d) strips of the rectangular section with the oval dimple (c,d) in
longitudinal (a,c) and lateral (b,d) directions calculated on different grids: 1—initial variant (about
1.6 mln cells); 2—refinement (about 3 mln cells).

The comparisons of the numerical predictions of local and integral characteristics of flow and
heat transfer in the channel with an oval-trench dimple on grids with about 1.6 mln cells and about
3 mln cells demonstrate their proximity. This means that the accuracy of the data for a moderate-depth
grid is quite acceptable.

5. Results and Discussion

In the present study, main attention was paid both to the assessment of the influence of increase in
the oval dimple length on fluid dynamics and heat transfer in the narrow channel with a dimple of fixed
spot area and to the comparison of an oval dimple with spherical and conical dimples. The objective
of the study was to select an oval dimple that is the best in the thermal and hydraulic performance.
The work done was the embodiment of the concept of heat transfer enhancement by spiral vortices
formed in oval-trench dimples in order to enhance secondary flow in the channel. The study as
presented here clarifies and develops the research began in [63].

Figure 11 illustrates the temperature field variations at the heated wall of the narrow channel and
the streamlines. First of all, it is of interest to note that in solving the thermal problem, where a fully
developed isothermal flow at the channel inlet was assigned, heat transfer had time to stabilize
in the vicinity of the dimple. As the dimple width decreased, the regions with a temperature
close to characteristic and equal to 293 Кincreased. It can be seen that the flow structure near the
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dimple changes and the temperature field transformed. Very long decreased temperature regions
appeared behind the dimple in comparison to the temperature regions at the plane wall of the narrow
plane-parallel channel.

Energies 2019, 12, x FOR PEER REVIEW 16 of 25 

 

behind the dimple in comparison to the temperature regions at the plane wall of the narrow plane-
parallel channel. 

 

Figure 11. Temperature fields at the heated wall with oval dimples of width 1 (a), 0.731 (b), 0.549 (c), 
0.429 (d) and the streamlines. 

Figures 12–14 compare the temperature fields and dimple width variations for the sake of a careful 
analysis of the changes in the flow structure and their influence on heat transfer. It is noteworthy that 
when considering conical, spherical and oval dimples with cylindrical insert lengths of 0.5 and 0.625 
(Figure 12), the increased wall temperature regions were related to the stagnated flow regions 
(leeward region of a conical dimple) and to the places, where vortices wer generated, on the sides of 
the spherical dimple and in the leeward edge vicinity of oval dimples. 

All flow patterns demonstrated a separated flow within the entire space of dimples, although 
for the spherical dimple the flow was attached on the windward side rather far from the trailing edge. 
Varying the cylindrical insert length and the dimple width transformed the internal flow on the 
leeward side of the oval dimple. A line appeared that separated the separated backflow zone behind 
the leading edge from the flow issuing from the dimple. 

Figure 11. Temperature fields at the heated wall with oval dimples of width 1 (a), 0.731 (b), 0.549 (c),
0.429 (d) and the streamlines.

Figures 12–14 compare the temperature fields and dimple width variations for the sake of a careful
analysis of the changes in the flow structure and their influence on heat transfer. It is noteworthy
that when considering conical, spherical and oval dimples with cylindrical insert lengths of 0.5 and
0.625 (Figure 12), the increased wall temperature regions were related to the stagnated flow regions
(leeward region of a conical dimple) and to the places, where vortices wer generated, on the sides of
the spherical dimple and in the leeward edge vicinity of oval dimples.

All flow patterns demonstrated a separated flow within the entire space of dimples, although
for the spherical dimple the flow was attached on the windward side rather far from the trailing
edge. Varying the cylindrical insert length and the dimple width transformed the internal flow on the
leeward side of the oval dimple. A line appeared that separated the separated backflow zone behind
the leading edge from the flow issuing from the dimple.
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The oval dimple with the insert of length L = 0.675 (Figure 13a) is characteristic of two separating
streamlines formed on the leeward side. In the dimple with the insert of length L = 0.75 (Figure 13b),
a local vortex structure formed in the vicinity of the trailing edge and is accompanied by an increased
temperature region. In the dimple with the cylindrical insert of length L = 0.9, a spiral vortex finally
formed (Figure 13c). First, the separation zone was localized in the vicinity of the leading edge. Second,
the backflow zone started forming behind the trailing edge. The dimple with the cylindrical insert
of length L = 1 is one of the basic dimples analyzed; in fact, the flow around this dimple repeats flow
around the dimple with L = 0.9 (Figure 13d). The dimple with the insert of length L = 1.25 (Figure 14a)
revealed some flow instability. The flow in the vicinity of the trailing edge became separated in
character. The spiral vortex formed in the dimple was ready to leave it. The flow structure changed in
the dimple with the cylindrical insert of length L = 1.5 (Figure 14b).

It can be seen how the spiral vortex leaves the oval-trench dimple, not having reached the vicinity
of the trailing edge. It is interesting to note that in this zone, a sink with an increased temperature region
formed. Increasing the insert length L to 1.75 (Figure 14c) is accompanied by a further development
of a secondary vortex zone in the vicinity of the trailing edge. The increased temperature region has
rather large sizes. The largest oval dimple had a cylindrical insert of length L = 2 and a relative length
of 6.78 (in terms of dimple width). As a whole, it is interesting to note that temperature fields in the
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vicinity of long dimples (L = 1.5, 1.75, 2) were similar, if their geometric sizes are considered in terms of
dimple width. This is fairly indicative of the fact that a self-similar vortex is formed in the oval-trench
dimple. The relative friction distributions f/fpl(s) in the central section of the oval-trench dimple at
different cylindrical insert lengths L are shown in Figure 15a,b. The coordinate s is taken from the
leading edge of the dimple. In Figure 12, the group of oval dimples of moderate length (L = 0.5–0.625)
is characteristic of the formation of a large-scale separated flow zone covering almost the entire inner
surface of dimples. A minimum relative friction value is −0.5, and a sharp friction increase (of order 2)
is seen at the trailing edge of dimples.

Decreasing the width of the oval dimple, when its depth is increased and is kept constant, caused
the flow structure to change in the separation zone. Backflow on the spherical portion of the dimple
enhances while on the trench portion was slowed down. At L = 0.9 (dashed line), relative friction on
the trench portion becomes positive, i.e., the separation zone was localized on the entrance portion of
the oval-trench dimple, while (f/fpl)min decreased to −0.8.Energies 2019, 12, x FOR PEER REVIEW 18 of 25 
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Figure 14. Temperature fields at the heated wall with oval dimples of width 0.482 (a), 0.429 (b), 0.383 (c)
and 0.346 (d) and the streamlines.

As seen from Figure 15a,b, with a further increase in the dimple length, the separated flow
intensity considerably enhances. At L = 2, (f/fpl)min decreases to −1.5. Behind the separation zone,
the trench portion is characteristic of the flow acceleration zone with a local maximum relative friction
value equal to 0.3–0.4.

As the width of the oval dimple is decreased, the relative Nusselt number distribution changes
(Figure 16c,d). Similar to decreasing the minimum relative friction value in Figure 15a,b, the maximum
value of Nu/Nupl increased in the vicinity of the spherical portion of the oval dimple from 1.2 to 1.6
when L is varied from 0.5 to 0.9. With a further increase in the dimple length, the maximum value of
the Nusselt number (Nu/Nupl) in the separation zone reached 2.1 at L = 1.5–2.

In many ways, the behavior of the Nusselt number is defined by the wall temperature
(Figure 15e,f). Thus, the mentioned minimum value of heat loads at L = 1.75 corresponds to a
maximum value of Tw/Twpl equal to 1.055. The fact is that high wall temperatures in the oval dimple
with a moderate length of the cylindrical insert correlate with low heat transfer in separation zones.
At the same time, the subcooling of the surface of the dimple, i.e., when the surface temperature
decreases below the temperature of the plane-parallel channel wall and is accompanied by the growth
of heat transfer.
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Figure 15. Comparison of the dependences of relative friction (a,b), Nusselt number (c,d), wall
temperature (e,f) in the middle longitudinal cross sections for single oval dimples of different insert
length: 1—L = 0.5; 2—0.625; 3—0.75; 4—0.825; 5—0.9; 6—1; 7—1.25; 8—1.5; 9—1.75; 10—2. b, d,
f—enlarged fragments of the dependences.

As the length of the cylindrical insert of the oval dimple L is increased above 1.25, Tw/Twpl
becomes less than 1 in the separation zone. The region of dimple subcooling coincides with the zone
of enhanced heat transfer and, vice versa, the increased temperature regions correspond to the low
heat transfer zones.

To determine the influence of the oval dimple width b on the integral characteristics of flow and
heat transfer is an important subject of the present study (Figure 16). With a decrease in b, when the
dimple spot area is kept constant, the length of the cylindrical insert of the dimple is increased from 1
to 6.78, and therefore, the degree of influence of the dimple on flow in the near-wake. The total Nusselt
number Nun is calculated on the control area of the rectangular section 3 in length and 2 in width
(with a shift by 0.5 relative to the center downstream) around the dimple without and with regard
to the increase in the curvilinear surface of the dimple. Figure 16 serves to illustrate the ratio of the
total Nusselt number Nun in the section (in Table 3 the section is designated by 1) of the dimpled
wall to the equivalent characteristic for the plane channel Nunpl. Hydraulic losses are determined,
as described in [32], in terms of the boundaries of the control section of the dimpled (ζ) and plane
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(ζpl) channels (Figure 3). Thermal and hydraulic performance (THP) are calculated as the ratio of
the thermal performance Nun/Nunpl in the selected section to relative hydraulic losses ζ/ζpl at the
boundaries of the section.
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Figure 16. Influence of the oval dimple width b on thermal (1,2,6,7) and thermal-hydraulic (4,5,9,10)
performances, as well as relative hydraulic losses (3,8); 6,7,8,9,10—conical dimple; 2,5,7,10—with regard
to the area of the dimple inner surface in the 3 × 2 section and the shift of the dimple center by 1 from
the front boundary.

With increasing the length of the cylindrical insert of the oval dimple to 6.78 (in terms of width),
the thermal and hydraulic performance of the rectangular section of the dimpled channel were
dramatically improved in comparison to the spherical dimple: THP = 1.17 versus 1.002; for the last
THP with the consideration of increase in the area of the streamlined wall of the channel, it was
less than 1.

For the rectangular section with longer oval dimples, the rate of increasing the thermal
performance was considerably ahead of increase in hydraulic losses. The thermal performance
of the dimple with L = 2 was six times higher than that of the spherical dimple with no regard to the
area of the inner surface of dimples and was four times more preferred with regard to the area of the
streamlined wall (Nun/Nunpl = 1.245 versus 1.063 and 1.19 versus 1.054, respectively).

Hydraulic losses in the section with the oval dimple were maximum at the dimple width b = 0.549
(the cylindrical insert length was equal to 1) that exceed by a factor of 1.5 hydraulic losses in the case
of the spherical dimple. Hydraulic losses in the section with a narrow dimple with L = 2 appeared to
be the smallest and practically equal to hydraulic losses in the section with a basic spherical dimple.

6. Conclusions

1. The analysis of longer oval dimples located at a 45◦ angle of orientation to the flow in the channel
showed that methodologically, it was important to fix a spot area of a dimple and its depth for
the same channel.

2. Tasks of hydrodynamics and heat transfer were solved with the use of original MCTs on
different-scale structured overlapping grids of simple topology. These technologies meant for
solution of RANS—steady Reynolds-averaged Navier–Stokes equations—were implemented in
the VP2/3 code and were tested in the present study using the turbulence models and boundary
conditions for heat transfer.

3. Testing calculations:
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a. Testing was performed on the experimental setup [9] for determining characteristics of
convective heat transfer near a heated spherical dimple of depth 0.13 over the Re number
range 104–105 (MCTs) with the use of the VP2/3 code and the shear stress transport (SST)
model [34] with curvature correction within the Rodi–Leschziner–Isaev (RLI) approach [36].
A fair agreement between numerical predictions and measurement data was obtained.

b. The comparison of the boundary conditions T = const and q = const in the problem on heat
transfer in the vicinity of a shallow spherical dimple in the narrow channel showed that
integral characteristics of the thermal and hydraulic performance of the channel with a
spherical dimple practically are independent of the type of boundary conditions for heat
transfer within the turbulent flow regime. However, local distributions are substantially
different in the near-edge zone and in the dimple center. Difference in maximum relative
local heat transfer values is 1.5; at the same time, loads against the near-edge zone are
much higher at T = const than at q = const.

c. The comparison of the SST models [34,35] and the SST model [36,39] with curvature
correction within the Rodi–Leschziner–Isaev (RLI) approach and the Smirnov–Menter (SM)
approach showed that the numerical predictions of integral characteristics are pretty close
according to the standard and modified SST models. Some differences in the SST model [35]
are small, but noticeable, especially in zones of extreme local heat fluxes. However, it was
seen that the values of k and Reνt in the spiral vortex core were too high. This is indicative
of the fact that error is available in the standard SST model [34] in the calculation of
high-intensity 3D separated flows.

d. The computational algorithm was validated by comparing numerical predictions for local
and integral characteristics of flow and heat transfer in the channel with an oval-trench
dimple that were obtained on the grids with 1.6 mln cells and about 3 mln cells. Their fair
agreement shows that the data for the dimple with a moderate cylindrical insert length are
quite acceptable in accuracy.

4. We revealed a series of oval-trench dimples with the cylindrical insert length 0.625–0.9, in
which the separated flow structure gradually changed, the separation zone was localized behind
the leading edge and backflow enhanced in it. The oval-trench dimple becomes flowing and
non-separated throughout behind the separation zone.
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