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Abstract: Industrial applications nowadays are facing the complexity of the problem of finding an
optimal energy supply composition. Heating and electricity needs vary throughout a year and need to
be addressed. There is usually power available from the market, but a company has other investment
options to consider, such as solar power, or utilization of local biomass. Fixed and proportional
investment and operational costs must be compared to long-term cost-efficiency. The P-Graph
framework is an effective tool in the design and synthesis of process networks, and is capable of
showing optimal decisions. In the present work, a new P-Graph model was implemented to address
the synthesis of the energy supply options of a manufacturing plant in Hungary. Compared to
the original approach, a multi-periodic scheme was applied for heating and electricity demands.
Also, the pelletizer and biogas plant investments are modeled in the P-Graph with a new technique
that better reflects equipment capacities and flexible input ratios. The best solutions in this case study
in terms of total costs are listed. It can be concluded that a long-term investment horizon is needed
for the incorporation of sustainable energy sources into the system to be cost-efficient.

Keywords: P-Graph framework; process network synthesis; multi-periodic model; optimization;
energy efficiency; sustainability; biomass

1. Introduction

1.1. Overview of the Present Work

Energy supply is one of the most important problems for modern industrial facilities. Usually,
when a plant is built, it is connected to the grid allowing it to purchase electricity for its operation.
The same holds for heating, water, or other requirements where public services are available. However,
environmental regulations play an increasing role, and small to medium scale power plants are
becoming popular. Such power sources have the ability to supply the needs of individual residential
homes or firms. These can have significant investment costs, but operation in the long-term may make
them cost-efficient solutions. There is no absolute winner technology in terms of costs.

The power supply decision can be a complex problem. Several different energy sources have to
be taken into account. Renewable energy sources like biomass can have a limited availability and
are usually neither economical nor environmentally friendly if they need to be transported over long
distances. Different technologies and energy supply methods may coexist, but each having different
investment and operational costs, for which capacity is also limited. Energy demands can also vary,
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not only from one year to the other, but even from month to month, according to the seasons. This is
especially true for heating requirements.

The P-Graph framework is a modeling tool with which one can define Process Network
Synthesis (PNS) problems. In a PNS, a system of complex possible flow of materials is given,
and a cost-optimal selection of possible operating units must be found. The P-Graph framework
consists of the mathematical model of P-Graphs, the corresponding theorems and algorithms, and also
software in which we can solve PNS problems.

This work presents a case study made for a manufacturing plant, for which decision makers needed
to consider alternative energy sources like solar power and local biomass availabilities, instead of
purchasing all the electricity and heating need required. Naturally, the method of modeling we present
here can be adopted for any plant if the available technology options, energy sources and demands
are specified.

The optimization problem for finding the minimal operating cost of the firm during the course
of the investments’ considered horizon is modeled as a PNS problem, and then solved utilizing the
P-Graph framework. The model uses the multi-periodic modeling technique to address fluctuating
demands in two different seasons. The pelletizer and biogas plant equipment units are modeled with a
new technique allowing mass-based capacities and flexible inputs simultaneously. Several different
investment horizons are investigated, and the best solutions for each scenario are presented. In the end,
we can conclude that all energy options can be an economical replacement of direct energy purchase,
but a long horizon must be assumed to be so.

1.2. Importance of Sustainability

Sustainability is at its core about finding practically possible ways to maintain conditions on Earth
suitable for civilized human life. This is considered to be quite a challenge for several reasons:

• The human population is large and it is still increasing [1].
• Simultaneously to increasing population, the consumption of resources shows an increasing trend.

A fourfold increase in private consumption expenditures from 1960 to 2000 could be observed [2].
• The human population is using approximately 38% of the world terrestrial net primary

consumption [3], leaving a much smaller portion than before to support the planetary ecosystem.
Net primary production is the solar energy captured by the ecosystem and made into biologically
accessible energy.

Note that manufacturing consumes an enormous amount of energy, for example, 2.2 EJ in 2010 [4].
Energy generation at present still heavily relies on fossil fuels [5], and this has a wide range of
environmental impacts. The most widely known is the emission of carbon dioxide which contributes
significantly to climate change. Therefore, a possibly effective way in decreasing the human footprint
is to target manufacturing. This can be done by the provision of alternative energy supply options for
operating plants, especially when shifting to more efficient energy use and to the use of renewable and
low environmental impact forms of energy generation. The importance of this is established by the
fact that increasing population and consumption will likely result in the increase in manufacturing
needs, hence energy consumption. It is a common idea that instead of purely relying on a highly
centralized network for electricity or heating, each firm resolves its own energy demands locally.
Of course, this implies additional investment costs compared to the ordinary scheme. Particular
examples for locally feasible energy supplies are the usage of biomass or solar cells. Nevertheless,
decreasing demands by alternative production technologies or more efficient energy usage can also be
promising options.

Synthesis of supply chains of renewable energy sources, for example solar, wind, hydropower,
and biomass utilization, possibly simultaneously to other sources, until the potential demands of
energy or water, is a challenging task in general, and has drawn much attention [6,7]. The complexity of
the systems to be designed optimally yields for adequate modeling and optimization tools, regardless
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of the scope being a single plant or a whole region. Novel, general methods are published [8],
using mathematical programming solutions which are a conventional way of modeling. But due to
their limitation in solving larger or too special problems, specific case studies may require other model
developing techniques.

2. Theory

2.1. Process Network Synthesis and the P-Graph Framework

Process Network Synthesis is the act of designing and making decisions about a complex system
of processes consisting of several steps and dependencies. The process under examination is generally
the production or achievement of a dedicated material, state, or a set of such. Steps of the process to be
modeled must be identified, but the emphasis is on the whole system itself. Usually there is a range
of options leading from the available sources, like raw or freely available materials, or conditions,
to the desired final products. Most importantly, selection of the actually utilized options must be made,
so that other details, like actual material flows can be selected.

The P-Graph is a graph-theoretic model first introduced by Friedler et al. [9]. It is capable
of modeling PNS problems unambiguously and gives options to effectively find optimal solutions.
The model consists of a directed bipartite graph of a material node set and an operating unit node set.
The material nodes resemble the states in the model. A state is usually representing the presence of
some material or other physical or virtual property. The operating unit nodes represent transitions of
a set of states into another. This is generally some kind of production step, transportation of goods,
purchase, but may simply mean some logical consequence of the existence of a state based on others.
Arcs from material nodes to operating unit nodes represent consumption. Arcs between operating
units to materials represent production. That means the inputs and outputs of an operating unit are
the materials for which there exist arcs going towards, and starting from the operating unit. In both
cases, arcs are directed towards material flow. Materials can be both inputs and outputs at the same
time. In this way, the P-Graph represents the structure of the process, see Figure 1. There are three
types of materials in a P-Graph:

• Raw materials are the ones available from external sources, and cannot be produced.
• Final products are those we want to obtain.
• Intermediate material nodes are other materials involved in the system, typically in between the

production chain from raw materials to final products. Intermediates can be produced by some
operating units and can be consumed by others.

The goal of the PNS problem is to find a structure and operation for the system which is optimal
in some manner. A structure of the system involves appropriate selection of available technologies and
other activities, and the corresponding material flows. Optimality may refer to different objectives,
typically it is cost minimization. A structure of the process network is to be found for which all
products are obtained. This is called a solution structure, and it is, in general, a subset of the original
P-Graph. Along with the rigorous mathematical definition of P-Graphs, five axioms are described that
must hold for a P-Graph in order to be considered as a solution structure [9]:

• All of the final products of the PNS problem are represented in the resulting P-Graph.
• Any material has no input if and only if it is a raw material.
• Every operating unit in the P-graph is also defined in the PNS problem.
• Every operating unit is part of a path leading to a final product.
• Every material in the P-Graph must be the input to or an output from at least one operating unit

in the graph.

The P-Graph framework also includes algorithms that can be used to solve PNS problems:
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• The Maximal Structure Generation (MSG) is a polynomial-time algorithm which finds the so-called
maximal structure of a PNS problem [10]. This structure is the union of all solution structures,
and it is itself a solution structure as well, as a consequence of the axioms. The point in finding
the maximal structure is that unnecessary parts of the PNS problem can be excluded a priori
from optimization.

• The Solution Structure Generation (SSG) is an algorithm for systematically generating all solution
structures of the PNS problem [11]. This is useful, because once the structure is fixed, other decisions
like exact material flows are easier to determine. For large problems, the number of solution
structures may explode.

• The Advanced Branch and Bound (ABB) method is an algorithm which finds the optimal solution
of a PNS problem modeled as a P-Graph, driven by underlying MILP model constructed and
decisions based on the combinatorial nature of the problem [12]. Note that MSG and SSG only
operate on the graph itself, without other problem data like material flow ratios, costs, or capacities,
see Figure 2.Energies 2019, 12, x FOR PEER REVIEW 4 of 24 
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These data also correspond to a PNS problem and the ABB is capable of presenting detailed
solutions only when these are also available. PNS Studio is a software toll with which PNS problems can
be designed as P-Graphs. These can also be solved using the SSG or ABB methods to find cost-optimal
solutions for a process network. The software is freely Available online [13], and was also used in the
case study of this work.

2.2. Extensions of the P-Graph Framework

The P-Graph framework originally targeted chemical engineering problems, but the tool is useful
for other areas as well. The framework itself was also extended by additional functionalities, either in
implementation or application.

Time-Constrained PNS (TCPNS) is a problem where timing constraints on the flows can be
added [14]. This gives the possibility to make scheduling decisions by P-Graphs. Note that this was
already possible with the framework with certain circumstances. Certain vehicle routing problems
where deliveries are fixed in time were also solved by P-Graphs before TCPNS was introduced [15].
Purely scheduling problems of process networks, where there is a fixed set of tasks and orders must
be found with various storage policies, can also be addressed [16]. These methods most importantly
show that operating units in P-Graphs do not necessarily resemble actual equipment, but possibly
logical relationship, like conversion, or precedence relationships.

Separation Network Synthesis (SNS) is a production environment that can separate chemicals
into their pure components in multiple possible ways that can be optimized. This is not a utility, but a
production optimization problem, which can be transformed to a PNS problem and solved by the ABB
algorithm [17].

In a PNS problem, the input and output ratios for operating units are fixed. This is not the case in
some real world circumstances, when equipment units can have several different inputs with arbitrary
ratios. Pelletizers and furnaces are an example for this. The model complicates if ratios are arbitrary,
but also subject to constraints, like minimum or maximum ratios. The P-Graph framework was
extended to address such case of input scenarios [18], as the underlying MILP model of the system was
extended with linear constraints to obtain an appropriate model. Note that the P-Graph framework
may be itself capable of modeling such operating units with several material nodes and operating
unit nodes.

The P-Graph methodology can be extended to meet multi-periodic demands and supplies.
Multi-periodic means different rates of production of final products or consumption of raw materials and
products at various time periods, and optimization of the whole duration in a single model [19]. Periods
are an important issue, because assuming average load during a period may lead to underestimating
capacity needs during the year. This is especially true if operation should run at an extremely high rate
in short periods, while at low rate in general, resulting in an average that is way under the capacity
required to be operational at all times. However, the equipment units may have minimal required
flow to be working, which complicates the operating unit model of the P-Graph, so the multi-periodic
modeling scheme can possible be extended to model such technologies [20]. Although multi-periodic
modeling is a logical extension of the P-Graph framework, which means it does not require additional
tools to be implemented, the PNS Studio software already has support for making multi-periodic
models easier [21]. Note that this usually requires manual addition of a vast amount of data, as each
period is usually modeled by its own P-Graph, which is replicated. The PNS problem can get very
difficult to understand if the number of periods is high.

2.3. Applications

The P-Graph framework can be applied to a wide range of process network optimization problems,
including those for which production, utility, or transport systems are in question. The methodology is
a useful alternative to implementation of Mixed-Integer Linear Programming models or other solution
methods. For example, pinch analysis [22] is a widely used tool for system design, one possible
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application of which is energy sector planning with carbon emission constraints [23], but the same
problem can also be solved by the utilization of P-Graphs [24]. Note that the ABB algorithm itself
relies on linear programming. However, the P-Graph framework has some advantages, for example
providing the series of the best solutions, in order, instead of finding just a single optimal solution [25].

A thorough collection of P-Graph applications can be found in [26], showing that the framework
is useful in various case studies, including transportation, supply chain system design and plant
management. There is a particular review that focuses on P-Graph applications on sustainability
projects, like optimization from processing facilities to supply chains [27]. Another review is made
by [28], which also notices possible future developments of the framework. Particularly, the theory
allows more complex operating unit models than the current implementations can handle.

Polygeneration plant modeling can also be done by the P-Graph framework [29]. The recent
study involves satisfying multiple uncertain demands like heating, electricity, cooling, and treated
water. Not only the optimal, but the near-optimal solutions can be found. However, risks and possible
reactions in case of equipment failure must be taken into account, which can also be handled by
the same framework, as an alternative to linear programming models [30]. Uncertainty in supply
and demand in general and risks for inoperability generally affects the usability of supply chains.
The P-Graph framework was also used in such a scenario to analyze risks in the supply network of
bioenergy parks [31]. A more simple case, in the modeling point of view, is when risks can be derived
as parameters of the available technological options. This can be the case when probability of losses is
attributed to each activity and these can be penalized in the objective [32]. The authors in the example
seek to minimize fatalities in the whole bioenergy supply chain.

The framework was used to address a biomass supply chain enhancement [33], where P-Graphs and
conventional mathematical programming tools were used simultaneously to obtain a decomposition
of the main problem. The authors remark that the results must be regularly revised to reflect real
circumstances. Several biomass types were considered in connection with the palm oil industry. Another
set of biomass resources were inspected in a work of wood processing residues [34]. One drawback is
observed in this case study, particularly, that minor changes to problem data may result in significant
changes in the solution structures. This makes the option of finding near-optimal solutions valuable.

Addressing heat and electricity needs simultaneously is a common scenario for plant design.
Available biomass is often considered in parallel or as a replacement with purchasing natural gas and
electricity directly [35]. The case study, after optimization with the P-Graph framework, pointed out a
potential 17% decrease in operating costs if biomass is integrated into the energy supply, while other
objectives like ecological footprint can also be taken into account [36].

Spatial distribution of the biomass types and demands points can be simultaneously taken into
account to address the optimization of a full renewable energy supply chain [37]. In their work,
authors first determine clusters to minimize transportation needs by mathematical programming,
and then apply a PNS model to optimize material flow in and between these clusters.

The methodology is also useful in determining bottlenecks in the complete supply chains for
biomass utilization [38]. The proposed method also relied on the suboptimal solutions the P-Graph
framework was able to find. The method was used to improve sustainability indices in three different,
novel scenarios [39].

Synthesis of carbon management networks (CMN) is an important issue in the sustainability
point of view, and lead to complex optimization problems. The P-Graph framework was used for the
synthesis of biochar-based CMN [40]. The model uses a set of sources of biochar and a set of sinks,
that are soils that can contain it, and operating units resemble transportation between sources and sinks.
Note that in this case, the number of operating units is the product of the number of sources and sinks,
and other limits, for example the contamination of the soils can also be taken into account. Another
example for carbon management network optimization used P-Graphs in conjunction with Monte
Carlo method [41]. The Monte Carlo simulation was used to test near-optimal solutions reported by
the PNS solver, and estimate their robustness.
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The multi-periodic modeling technique itself was first applied to a real world case study where
corn production was investigated, for which the supplies and demands both change throughout the
year [42]. In another model formulation, the method was used to optimize annual electricity production
for various demands and sources. Afterwards, a polygeneration case study was performed that also
addresses steam, chilled and treated water demands [43]. It can be seen that the multi-periodic scheme
can be independently applied to the raw materials, or the final demands of a supply network, based on
which of them are fluctuating.

3. Materials and Methods

In this section the P-Graph model to be solved in the case study is described in detail. Our previous
work included the case study utilizing a single period model [44], and input data we use is also presented
here. The present work has two major improvements. First, electricity and heating demands were
modeled as a multi-periodic P-Graph model. Second, the modeling of some equipment units—namely,
the pelletizer and the biogas plant—involves a technique that allows mass-based equipment capacities
and flexible input of different kinds of biomass.

In the optimization problem, the energy supply needs of the manufacturing plant must be satisfied.
This means that some investments are considered against the business as usual solution of purchasing
all the electricity and heating power from the public service providers.

The optimization problem is modeled as a PNS problem. This requires that raw material,
intermediate, and final product nodes, operating units and connecting arcs are defined. Moreover,
problem data like raw material costs, available amounts, operating unit investment and operating costs
and capacities, and energy conversion rules must also be explicitly defined. After determining the
demands, the underlying single stage model is described. Afterwards, the way this model is extended
into a multi-periodic one, is presented.

For the sake of simplicity of the model, all energy quantities are expressed in kWh, regardless of
being heat or electricity at a particular point in the process network. Monetary quantities are expressed
in HUF. The value of this currency had been fluctuating, one EUR was between 300–330 HUF in the
recent years where data into the case study were collected from. In the scenario for the manufacturing
plant, expenses were in HUF uniformly. It shall be noted that interpreting results with an exchange
rate to another currency only involves a linear factor for all monetary values, including the minimized
total costs, but the obtained solution structures and their order would remain the same.

3.1. Electricity and Heating Requirements

The plant has two needs that are subject to the scenario: electricity and heating. These are
the demands in the process system, and are modeled as product nodes in the resulting P-Graph.
The business as usual solution is that electricity is bought from the grid in the amount needed.
Heating is provided by the plant’s own furnace, in which natural gas is fed, bought from the public
service provider.

Detailed consumption data about the plant’s natural gas consumption was provided in Table 1.
The plant requires indoors heating. The heating requirements are therefore modeled as the total heating
value of gas or other materials and energy consumed, with possible conversion ratios depending
on source. A single yearly heat consumption value is assumed to describe the requirement. We can
see there are significant fluctuations from year to year, with a clear tendency of decreasing, which is
probably due to the company optimizing its operation constantly. Also, the heating requirements are
a magnitude larger at winter than at other times of the year. This is the key fact that motivated the
multi-periodic modeling scheme to be applied in this case study.
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Table 1. Past data for natural gas usage of the manufacturing plant. These data are used to predict
future demands.

Gas Used (m3) 2009 2010 2011 2012 2013 2014

January 133,999 128,744 157,085 123,770 75,782 48,635
February 123,836 95,406 137,103 124,305 51,407 49,067

March 120,326 77,536 123,795 83,362 43,560 16,847
April 37,378 58,464 83,305 61,092 15,452 4337
May 35,057 63,719 51,009 37,482 2785 4247
June 37,065 52,094 30,924 17,340 1919 2688
July 30,396 44,485 31,560 12,891 1554 2416

August 34,232 44,628 30,105 20,179 1534 2117
September 28,607 81,730 30,024 19,829 3072 2136

October 82,299 105,612 74,841 25,235 4208 10,982
November 105,599 104,195 125,638 50,535 24,273 43,769
December 116,459 156,139 129,481 73,819 57,240 62,139

Yearly total 885,253 1,012,752 1,004,870 649,839 282,786 249,380

Electricity consumption data was also provided in a similar manner (see Table 2).

Table 2. Past data for electricity usage of the manufacturing plant. These data are used to predict
future demands.

Electricity Used (kWh) 2009 2010 2011 2012 2013 2014

January 905,533 796,117 993,044 788,703 453,838 255,517
February 1,128,039 715,508 926,508 769,565 382,042 270,539

March 1,328,232 809,142 1,074,706 736,811 359,696 217,190
April 1,076,030 787,400 963,416 624,634 310,077 176,142
May 1,142,927 918,350 890,317 862,085 228,225 200,673
June 1,176,784 1,021,286 843,147 327,853 251,323 191,459
July 1,215,169 1,170,359 871,462 502,244 254,907 270,710

August 1,281,732 1,089,277 928,240 327,853 241,197 414,119
September 1,183,526 983,531 872,692 454,764 201,446 425,678

October 1,002,034 989,398 868,299 923,389 211,333 439,628
November 926,870 969,743 880,829 346,867 248,156 439,837
December 872,000 901,317 856,199 399,713 289,379 502,415

Yearly total 13,238,876 11,151,428 10,968,859 7,064,481 3,431,619 3,803,907

Electricity consumption also shows a decreasing tendency, but the consumption rates do not seem
to clearly depend on the month. They more likely depend on production load of the plant, or other
causes for which are unavailable in this case study. It can also be seen that the decreasing tendency
is not necessarily rigorous: in the last year with known data, 2014, electricity consumption actually
increased. For these reasons, the following decisions were made about the modeling method of the
demands:

• Future demands that are used in the model are estimated based on a recursive formula of the
data shown.

• Two periods are introduced to be handled differently: winter (from December to February,
inclusive), and the other part of the year (from March to November, inclusive). From now on,
we call these winter and mid-year periods.

The formula we used in the case study for demands were the following. This is applied to both
the natural gas and the electricity consumption:

s2015 =
0.8 · s2012 + 0.9 · s2013 + 1.0 · s2014

2.7
· 1.15 (1)
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The first three years are omitted, since the significantly larger consumption in those is due to past
changes in the plant operation. For the last three years, we apply a weighted average, with weights of
0.8, 0.9 and 1.0 for 2012, 2013 and 2014, respectively (note that 0.8 + 0.9 + 1.0 = 2.7). It is multiplied by
a factor of 1.15 for more security of the energy supply, and to accommodate a slight potential increase.

This single value, obtained for both the electricity and heat demands, are used assuming them to
be the constant yearly demands in all consecutive years. Nevertheless, it shall be noted that this is
a rough estimation. Actual data could severely affect the results provided by our model. However,
the P-Graph model we present can easily be resolved with different data.

To be able to model a multi-periodic scenario, the demands must be estimated for each period
individually. Note that even though electricity consumption is somewhat independent of the periods,
we have to calculate periodical demands since heat and electricity production can both be done from
the same energy sources. The electricity and heating demands we suppose in the case study are
summarized in Table 3. Note that it is obtained as a direct application of Equation (1) on data from
Tables 1 and 2.

Table 3. Demands of the manufacturing plant assumed in the case study. Note that heating demands
are calculated from the natural gas consumed with a 34 MJ/m3 rate.

Demand Period Used Value

Natural gas
yearly (total) 436,045 m3

≈ 4,118,206 kWh
mid-year 248,460 m3

≈ 2,346,569 kWh
winter 187,585 m3

≈ 1,771,637 kWh

Electricity
yearly (total) 5,342,793 kWh

mid-year 3,806,227 kWh
winter 1,536,566 kWh

In the P-Graph model, the four periodical demands represent the final product nodes. They must
be satisfied with a combination of the available technologies, which are able to produce heat, electricity,
or both.

3.2. Energy Sources and Their Availability

In the previous section, the final products of the process network were defined. Now, the raw
materials are introduced. In the present case study, there are different kinds of energy sources
considered. In general, there are more options, but due to the properties and environment of the plant,
the following resources were included:

• Public service providers, from which unlimited amount of electricity and natural gas can
be purchased.

• Solar power, which is also unlimited, as long as there is solar power plant capacity.
• Several different kinds of biomass of limited availability from the same region.

For purchased electricity and natural gas, and the different kinds of biomass, we assume a unit
cost for each resource. Purchased electricity and natural gas are unlimited sources. This means that
practically any amount can be purchased as long as the company is willing to spend the money
needed. Solar power is freely available. Of course, it does not mean that solar power is a free energy
source. Rather, regardless of the amount of solar power plant capacity we want to invest into, there is
always a supply of solar radiation. The different kinds of available biomass are purchased locally.
Note that these have a limited availability, as these are mostly byproducts from agriculture. Biomass
has a drawback of having low energy content. Transportation of biomass over longer distances is not
economical, and does not have a sense in the sustainability point of view either. We assume that the
biomass types each have an own fixed unit cost, and an upper limit for purchase.
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The energy sources are represented in raw material nodes in the P-Graph. Table 4 contains data
for these raw materials. We must note that these are estimations we assume in this case study. We also
assume that there is no concurrent demand for these materials from other parties. Each of the enlisted
raw materials corresponds to a raw material node in the resulting P-Graph.

Note that there are costs associated with the processing of these resources. These are embedded
into the operating costs of the operating units instead. For example, maintenance costs of the solar
power plants are costs of the power plant, not the solar energy itself. The reason behind this scheme of
modeling is that raw material nodes can have a straightforward implementation in the P-Graph based
on the unit prices and available amounts.

Table 4. Raw material availabilities in the case study.

Energy Source Unit Price Available for Use (per y)

Saw dust 24 HUF/kg 150,000 kg
Wood chips 22 HUF/kg 600,000 kg

Sunflower stem 5 HUF/kg 500,000 kg
Vine stem 7 HUF/kg 600,000 kg
Corn cob 6 HUF/kg 1,200,000 kg

Energy grass 8 HUF/kg 1,600,000 kg
Wood 20 HUF/kg 2,000,000 kg

Solar energy free unlimited
Natural gas 114 HUF/m3 unlimited

Electricity from the grid 38 HUF/kWh unlimited

3.3. Operating Units

In a P-Graph, all transformations of materials to others are done by operating units. This means
that an operating unit may resemble an actual technological step, or market operations like purchase
or selling, or only be a modeling tool. In this case study, operating units are introduced to fit into the
following roles:

• Direct supply by purchase of electricity or natural gas.
• Solar power plants.
• Biomass processing chain.

Note that these roles are in a one-to-one correspondence with energy source types. Those operating
units that correspond to actual equipment units that require investment and operating costs are shown
in Table 5, with the following meanings:

• Fixed investment costs are to be paid once, at investment, if the technology is used.
• Proportional investment costs are to be paid once, at investment. The amount is proportional to

the yearly capacity of the operating unit, which cannot be changed later.
• Fixed operating costs are paid yearly, for using the operating unit, regardless of rate of utilization.
• Proportional operating costs are paid yearly, for using the operating unit, and are proportional to

the actual utilization of the operating unit.

This means we assume that each possible investment has linear costs in terms of capacity, with a
starting fixed investment cost. This assumption is required in order for the network to be modeled
with the P-Graph framework. More complex cost functions can be estimated, or alternatively, different
operating units can be introduced in the model if necessary. Investment costs appear as costs evenly
distributed in the investment horizon. That means if a longer horizon is considered, then investment
costs are decreasing in the modeling point of view, as the current model seeks to minimize yearly
operating costs.

Note that the P-Graph methodology would allow the modeling of any operating units which
can operate in parallel to each other from the modeling point of view, as long as they can be properly
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represented by linear fixed and proportional investment and operating costs and capacities. In this
case study, some technologies like heat pumps were initially excluded by the management due to the
plant’s properties, electricity needs, initial investment costs, and lack of subsidized project possibilities.

Table 5. Possible investments. These are all new equipment units in the case study, also called
operating units.

Equipment Costs
Investment Costs Operating Costs

Fixed Proportional 1,2,3 Fixed Proportional

Solar power plant 50,000,000 HUF 353.98 HUF/kWh none 22.12 HUF/kWh
Pelletizer 5,000,000 HUF 10 HUF/kg none 4 HUF/kg

Biogas plant 20,000,000 HUF 240 HUF/kg none 10 HUF/kg
Biogas furnace 10,000,000 HUF 20 HUF/kWh 6,000,000 HUF 4 HUF/kWh

Biogas CHP plant 20,000,000 HUF 36 HUF/kWh 6,000,000 HUF 6 HUF/kWh
1 The solar power plant has proportional costs given in terms of produced electricity in kWh/y. These values are
equal to 400,000 HUF and 25,000 HUF per 1130 kWh/y. 2 The pelletizer and the biogas plant have proportional costs
given in terms of input amount, in kg/y. 3 The biogas furnace and CHP plant have proportional costs given in terms
of the heating value of the biogas consumed.

Other operating units in the process network are either already present or only represent
some activities that are not physical production steps. This means that other operating units have
neither investment nor operating costs, nor maximal yearly capacities. We assume that all operating
requirements can be expressed in the aforementioned costs, including energy requirements. Note that,
for safety reasons, the plant would anyways be connected to the grid. This makes any particular
solution easily adjustable if demands unexpectedly increase. It also means that the possibility of
self-sustaining energy supply is neglected in this case study.

3.4. Direct Purchase

The electricity consumption is the simplest operation in the process network. An operating unit
representing electricity purchase from the grid is introduced. Its single input is the electricity from the
grid, and its single output is the electricity demand as depicted in Figure 3.
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Figure 3. Electricity purchase in the P-Graph model.

The natural gas purchase is done by a single operating unit. This unit has a single input and
output: natural gas from the provider, and purchased amount. In contrast to electricity, natural gas
purchase is not directly supplying heat. For this reason, the manufacturing plant has a furnace which
consumes the natural gas purchased, and produces the heat demand. Transfer ratios represent the
heating value of natural gas, which is 34 MJ per m3, converted to kWh as shown in Figure 4.

Solar power is considered as an alternative energy source to be exploited solely by solar cells.
This means that a solar power plant is introduced which transforms solar power into electricity.
By estimation, we assume that 8760 kWh solar energy can be converted into 1130 kWh of electricity,
or any amounts with this same ratio. Note that although the efficiency of solar cells is important in
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reality, only the output of 1130 kWh is of interest in this model. The reason for this is that solar energy
is free and unlimited anyways, and solar power plant investment and operating costs are given in
terms of throughput, see later.Energies 2019, 12, x FOR PEER REVIEW 12 of 24 
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The reason for using the number 1130 kWh is that the proportional investment and operating costs
were originally available as 400,000 HUF and 25,000 HUF per 1130 kWh/y throughput (see Table 5).

The electricity produced by the solar power plant can be directly fed into the electricity demand.
Alternatively, an electric heater can be utilized, which contributes to the heat demand, see Figure 5.
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3.5. Biomass Utilization

The biomass supply is a bit more complicated. First, some kinds of the biomass are needed to
be pelletized first. Table 6 summarizes the data for these materials, which are sawdust, wood chips,
sunflower stems and vine stems. Note that different pellets have slightly different energy contents.
This fact is a key observation for correctly modeling the pelletizer.

Table 6. Biomass types that must be pelletized before usage.

Biomass Type (to be Pelletized) Heating Value

Saw dust 4.50 kWh/kg
Wood chips 4.25 kWh/kg

Sunflower stem 3.75 kWh/kg
Vine stem 4.10 kWh/kg
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Pellets and the rest of the biomass, see Table 7, are considered as feeds into a biogas plant. Note that
the heating value of each input type determines the amount of heating power the resulting biogas has.

Table 7. Biomass types that can be directly fed into the biogas plant.

Biomass type (to be Directly Fed) Heating Value

Corn cob 4.00 kWh/kg
Energy grass 4.80 kWh/kg

Wood 4.16 kWh/kg
Pellets depends on raw material

The biogas can be fed into either a biogas furnace, or a biogas-based “Combined Heat and Power”
(CHP) plant. The former generates heating only, while the latter also produces electricity. We model
these operating units in the following way, see Figure 6:

• The input of each operating unit is the total energy content of the biogas available. This is a single
material node.

• The biogas furnace consumes 1 unit of biogas, and produces 0.7 kWh heating power, or different
amounts with the same conversion rate.

• The biogas CHP plant consumes 1 unit of biogas, and produces 0.4 kWh heating power and
simultaneously 0.35 kWh electricity, or different amounts with the same conversion rate.

• Productions are directly fed into the demands of the process network.
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Figure 6. Biogas furnace and CHP plant modeling. Note that the material node “Biogas” is expressed
as the heating values of the input materials instead of mass or volume.

Attention is required to correctly model the part of the network from the biomass inputs to the
biogas heating power. The key observation is that different inputs yield different energy contents.
One way this can be modeled, used in [44], is the following procedure:

• Define a common input material node for both the pelletizer and the biogas plant.
• For all actual inputs, introduce a logical operating unit in the model which transforms the input to

its heating power, which is a linear transformation. These are fed into the inputs of the equipment.
• From now on, the operating unit of the pelletizer and the biogas plant consumes the material

introduced for the heating power of its inputs, and not their mass.

In this way, the heating content of each individual biomass type is respected and properly
transferred until the heating power of the resulting biogas. The P-Graph resulting from this approach
is depicted in Figure 7. Note that the appropriate point for modeling energy losses is the conversion
factors in this design, so it is not happening at the pelletizer and biogas plant operating units in
the model.
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3.6. Modeling of Capacity Restrictions and Flexible Input Ratios

The problem with this approach is that the pelletizer and the biogas plant have capacity restrictions
based on the mass of their inputs, not their heating power. It is natural, as a pelletizer does not
“know” anything about the heating power of its product, only the mass. We must note that the original
approach is therefore a modeling simplification which does not introduce a large error on the network,
for two reasons. One is that operating costs for the pelletizer and the biogas plant are negligible
compared to other terms like material costs and power plant investments. The second reason is that the
conversion ratios for all kinds of biomass are similar in magnitude. To correctly model these operating
units, a different approach is used in the present case study, summarized as follows:

• An individual logical operating unit is introduced for both the pelletizer and the biogas plant,
which represent the investment, have no inputs, and produce a “production capacity” material.
This is a logical material that can be distributed among the possible inputs arbitrarily.

• For each input, its pelletizing and biogas production operation is modeled by an individual
operating unit each. These consume the production capacity from the corresponding investment.

• The four pelletizing processes produce different materials, for the different pellet types, in a ratio
of 1:1 compared to input.

• The seven biogas production processes produce the single biogas heating value material node,
in a ratio corresponding to the heating value of each input as in Tables 6 and 7.

In this way, the heating values of the different biomass types are respected in the model, and the
pelletizer and biogas plant is constrained by their actual total utilization rates, expressed in total mass
of inputs. This approach can be summarized in Figure 8.

Note that simplifications can be made in this design. Observe that pellets have no other usage in
the process network than being fed into the biogas plant. This way, the logical operating units of the
pelletizer and corresponding ones of the biogas plant can be merged. This means that the pelletizer
and the biogas plant together have seven logical operating units that produce the biogas. Each logical
operating unit is corresponding to a biomass input type. The final form of the biomass supply part of
the P-Graph model is depicted in Figure 9. Energy conversion ratios do not only reflect the heating
values of the raw materials, but also the possible losses until the final conversion to heating power.
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available biomass type.

3.7. Multi-Periodic Model

So far, the constructed P-Graph of a process network only considers a single period of operation.
In a single period model, all data are given on a yearly basis—that means yearly total demands,
and yearly total production rates. It is generally assumed in this case that timing of the production can
be arranged to fit the demands arising throughout the period. This can be a valid assumption in some
cases. One case is when there are little fluctuations in the supply and the demand, so a constant rate of
production and demand satisfaction can be assumed in the whole period. Another case is when there
is storage available for the production, and that is used up on demand. The single period P-Graph
model is depicted in Figure 10.
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Figure 10. Single period P-Graph model for the energy options of the manufacturing plant.

Into this model, we introduced two different periods instead of the single period of one year.
The nine months long mid-year and the three months long winter period are used. Each period has its
own demand that must be satisfied. For example, heating demands are considerably higher during
winter than at mid-year (see Table 3).

We assume that demands are fixed to the periods, but supplies are not. The required heat must be
produced or purchased in the period where it is demanded, and no energy transfer is possible between
periods. On the other hand, the same yearly supply of each limited raw material (biomass) is available
throughout the year, and can be used up in the periods in any ratios and combinations. This implies
that storage from one period to the next is assumed to be available, and its requirements are neglected.
Note that the multi-periodic modeling technique would allow binding the supplies to the periods,
and also properly modeling significant storage costs and capacities.

Solar energy works a bit differently than raw biomass, because throughput is generally much
lower at winter than at mid-year. This is a significant factor that is addressed in the model. Concluding
the multi-periodic scheme, demands are calculated for each of the two periods, while supplies are
freely distributed between periods—the only exception being the solar radiation.

The data we use about solar power plants is that a production of each yearly 1 kWh of electricity
requires 353.98 HUF proportional investment and 22.12 HUF proportional operating costs. These are
distributed across a 3 months long winter and a 9 months long mid-year period. If an investment is
made, we assume that the solar power plant is utilized throughout the year. For this reason, there is no
point in dividing the costs of the plant between the periods. What actually makes sense, is dividing
the throughput between the periods. We assume that, on average, solar power plants are λ = 2 times
more efficient in mid-year, than in winter. Provided that a total yearly production of Eyearly electricity
is given, we can calculate the amounts Ewinter and Emid−year from the following formulas:

Ewinter = Eyearly ·
3 · 1

3 · 1 + 9 · λ
= Eyearly ·

1
7

(2)

Emid−year = Eyearly ·
9 · λ

3 · 1 + 9 · λ
= Eyearly ·

6
7

(3)
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This means that, in the multi-periodic model we assume that a production of 1
7 kWh electricity at

winter and 6
7 kWh production at mid-year requires an investment cost of 353.98 HUF and a yearly

operating cost of 22.12 HUF. These are both proportional costs.
The way we transform the single period P-Graph model into a multi-periodic one with the

aforementioned two periods, is the following:

• The P-Graph is duplicated, each having the same set of raw materials, intermediates, final products,
and operating units. One clone is for each period.

• The raw materials are merged between periods, as they are available for consumption at any time.
• The operating units for the biogas plant and the pelletizer, which hold the cost data of these two

equipment units, are merged for each, while keeping both of their capacity outputs. The new
operating units produce the logical “production capacity” materials in a ratio of 1

4 for winter,
and 3

4 for mid-year, because of the respective lengths of the periods. These capacities can be freely
used in each period, by each of the available logical operating units representing pelletizing and
biogas production from a particular input.

• For the biogas furnace, biogas CHP plant and the solar power plant, we replicate the scheme
applied to the biogas plant and the pelletizer. A single operating unit is introduced holding the cost
data, which produces two logical “production capacity” materials—one used in winter, one used
in mid-year. The ratio of capacity generation is 1

4 for winter and 3
4 for mid-year, with the exception

of the solar power plant, which produces 1
7 for winter and 6

7 for mid-year. The production
capacity materials are consumed by the only logical operating unit in the period, representing
actual production.

• For the rest of the operating units, like the electricity transfer, electric heaters, natural gas furnace,
the duplicates remain, as there are no costs or other constraints associated with these operations
that would require to be treated globally for the two periods.

The resulting final multi-periodic P-Graph model is shown in Figure 11. We can observe that the
same scheme is applied to the five operating units with costs. This scheme had been already done
halfway for the pelletizer and the biogas plant, not because of the multi-periodic model, but for the
sake of modeling the capacities correctly.
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4. Results and Discussion

The single period and multi-periodic models were solved by the PNS Studio program,
version 5.2.3.1, on a Lenovo Y50-70 laptop computer equipped with an i7-4710 HQ processor and
8 GB RAM. Note that the problem sizes are relatively small, which means that solution should be
fast on any modern computer. First, both models were solved with an assumed investment horizon
of 20 years. Then, lower horizons were set. We could observe that the MSG algorithm reports the
P-Graphs themselves as maximal structures. The reason behind this is that these P-Graph models do
not contain any redundancy. All parts are candidates for an optimal solution. The ABB algorithm
was launched, and the first few best solution structures were manually investigated. The algorithm
succeeded in 1 s for the single period case, and 2 s for the multi-periodic case. The P-Graph model files
for PNS Studio and solutions discussed here are available in the supplementary materials.

4.1. Single Period Model

The optimal solution is 220.709 M HUF/y operating cost for the single period case. The 10 best
solution structures (including the first, optimal) are summarized in Table 8. Note that the usage of
the Pelletizer and the Biogas plant are a direct consequence of the existence of their respective raw
materials in the model. We can see that the first few solution structures differ only slightly in terms of
the yearly cost. The difference between the #1 and #10 solutions is 2.72%. Still, a unique set of energy
sources is used each time. This means that all of these solutions can be sensible choices, as little change
to the data, or other factors considered may justify the selection of an alternative of the optimal solution.

Table 8. The 10 best solution structures for the single period P-Graph model, minimizing yearly
operation costs. The objective values as well as the used technologies and biomass types are depicted *.

Obj. M HUF/y Cc Eg Wd Sd Wc Ss Vs Eh Et Bf Bc Pg Pe

#1 220.709 X X X X
#2 224.057 X X X X X
#3 224.325 X X X X X
#4 224.357 X X X X X
#5 224.496 X X X X X
#6 224.526 X X X X X
#7 225.895 X X X X X
#8 226.049 X X X X X
#9 226.380 X X X X X
#10 226.723 X X X X X X

* Columns: Cc—corn cob, Eg—energy grass, Wd—wood, Sd—sawdust, Wc—wood chips, Ss—sunflower stem,
Vs—vine stem, Eh—electric heater from the solar power plant, Et—electricity transfer from the solar power plant,
Bf—biogas furnace, Bc—Biogas CHP plant, Pg—purchase of natural gas, Pe—purchase of electricity.

The biogas CHP plant is used in all cases, making it a very useful candidate for sustainable energy
supply. Contrary, the biogas furnace is not present in the first few solutions, even though it is cheaper.
This means that the greatest advantage of the biogas CHP plant is that it can generate electricity.
Note that also all seven types of biomass appear in different combinations. Decisions on which is the
better and worse are determined by their available amounts, costs and heating values, and whether
they must be pelletized or not.

We shall also note that even though solar power plants appear in solution structure #9, it is only
used for electricity production. Purchase of natural gas or electricity from the grid is still present in
many solutions. Actually, #9 is the only one where purchasing electricity is completely eliminated.
There are structures where both additional heating and electricity is required from the providers.

It may be an important question whether the resulting solution structures actually represent good
practical choices. One security concern is that if the manufacturing plant is only relying on its own
energy supplies, then unforeseen shortages could lead to vast losses. This is not a high risk in our
model. In the worst case, electricity and natural gas can still be purchased, even when the scenario is
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set to completely omit these sources. These options are valid because no investment or operational
costs are required for purchase, and the manufacturing plant already has a furnace. If we assume this
infrastructure is maintained, losses can be kept minimal.

4.2. Multi-Periodic Model

The optimal solution for the multi-periodic model is 228.942 M HUF/y, see Figure 12. The used
options for the 10 best solution structures again are listed in Table 9. The optimal solution for the
problem utilizes the biogas plant and a biogas CHP plant for producing part of the requirements
at mid-year and at winter. Note that energy grass and corn cobs are utilized at full capacity of the
purchased equipment units. Energy grass is the dominant biomass supply, but direct purchase of
energy is also needed. It is also worth noting that each period can have an individual supply. In this
example, natural gas purchase is not needed at all mid-year, but is utilized at winter. Resource
utilization of this solution is detailed in Table 10, and plant capacities in Table 11.

Table 9. The 10 best solution structures for the multi-periodic model. The objective values as well as
the usage of technologies and biomass types in each period are depicted *.

Obj. M HUF/y Cc Eg Wd Sd Wc Ss Vs Eh Et Bf Bc Pg Pe

#1 228.942 X X X W X
#2 228.986 M X X W X
#3 229.205 W X X W X
#4 229.358 X X X W X
#5 229.362 W X M X W X
#6 229.363 W X M W X W X
#7 229.366 W X M X W X
#8 229.378 X W M X W X
#9 229.385 X X X W X
#10 229.391 X X X W X

* Columns: Cc—corn cob, Eg—energy grass, Wd—wood, Sd—sawdust, Wc—wood chips, Ss—sunflower stem,
Vs—vine stem, Eh—electric heater from the solar power plant, Et—electricity transfer from the solar power plant,
Bf—biogas furnace, Bc—Biogas CHP plant, Pg—purchase of natural gas, Pe—purchase of electricity. Cell values:
W—winter period, M—mid-year period, X—both periods.
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Table 10. Energy supply overview for the optimal solution in the multi-periodic model.

Period Resource
Usage Cost Contribution

(per y) (per y) Heat Electricity

Mid-year

Corn cob 26,606 kg 159,636 HUF 1.81% 0.98%
Energy grass 1,200,000 kg 9,600,000 HUF 98.19% 52.97%
Natural gas 0 m3 0 HUF 0.00% N/A
Electricity 1,752,980 kWh 66,613,200 HUF N/A 46.06%

Winter

Corn cob 8869 kg 53,214 HUF 0.80% 0.81%
Energy grass 400,000 kg 3,200,000 HUF 43.35% 43.73%
Natural gas 104,765 m3 11,943,200 HUF 55.85% N/A
Electricity 852,150 kWh 32,381,700 HUF N/A 55.46%

Table 11. Utilization of the plant producing biogas, and the CHP power plant producing energy,
according to the optimal solution of the multi-periodic model with 20 years investment horizon assumed.

Resource Period Capacity % Cost (per y)

Biogas plant
yearly (total) 1,635,470 kg 100% 36,980,400 HUF

mid-year 1,226,603 kg 75%
winter 408,868 kg 25%

Biogas CHP plant
yearly (total) 7,821,900 kWh 100% 68,010,800 HUF

mid-year 5,866,430 kWh 75%
winter 1,955,470 kWh 25%

Several interesting facts can be deduced from the solutions. First, the objective for the multi-periodic
model is slightly worse than the objective for the single period case, by 3.73% at the best structures.
This is natural, because the multi-periodic is a more accurate model with additional requirements.
This means that not only the total demands must be satisfied, but the demands for each period
individually, which is a more restrictive condition.

We can also see that solution structures show little variation, either in structure, or in objective
values. Solution #1 and #10 have a difference of just 0.2%. The reason behind this might be
that multi-periodic models have much more solution structures in general than their single period
counterparts. We suspect that the technologies and options observed in the single period case would
turn up if more solution structures of the multi-periodic model were investigated.

The general structure of the first few solutions is that the biogas CHP plant is used as the only
investment. It is sufficient to serve the heating requirements in the mid-year period, but natural gas
purchase is always required in the winter period. In both periods, the electricity requirements are
still not satisfied, so electricity must be purchased. The solar power plant does not appear in the first
few solutions. This might be due to the fact that it is especially weak in the winter period. Saw dust
and wood chips do not appear in the first 10 solutions, while energy grass is used in all cases, in both
periods. There are very small differences between some structures. For example, #1, #2 and #3 only
differs on the fact that whether corn cobs are used in winter, mid-year, or both.

Overall, we can observe how the multi-periodic models behave compared to their single period
counterparts. The case is more restricted, but there is also more flexibility. The energy supply
scenario can be different for the winter period and the mid-year period, even though exactly the same
investments are available in both.

4.3. Shorter Investment Horizons

The costs of units in the model have two components, operational cost and investment cost.
The investment horizon is used to annualize the investment cost. The horizon in this model means
the length in years for which the annually most profitable solution is to be found. Consequently,
the investment costs are divided evenly in the investment horizon. Note that this is different from
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the payback time of a single operating unit, as the investment horizon is a single parameter for the
optimization of the whole system. The purchased equipment units are assumed to be in their useful
life throughout the horizon, but management often considers only those solution scenarios which
are profitable in a much shorter term. As yearly investment costs are vast and are depending on the
horizon length, this modeling parameter should be investigated.

The former investigation was done assuming a 20 y horizon, now additional results for shorter
ones, 10 y and 5 y are presented. The first two solution structures for each model and in each considered
horizon length are shown in Table 12.

What can be seen is that even for 10 y, the business as usual solution is the optimal. This means
that all heating and electricity demands are purchased as natural gas and electricity from the grid,
rather than being produced, and no additional investments are made. This exact solution is actually
the optimum for both the single and multi-periodic cases, for both 10 y and 5 y of investment horizons.
It may happen that the two different models, the single and multi-periodic ones, have a common
solution, as in this case.

Table 12. Results for different investment horizons.

Investment Horizon Periods Obj. M HUF/y

20 y Single #1 220.709
20 y Single #2 224.057
20 y Multi #1 228.942 1

20 y Multi #2 228.986
10 y Single #1 252.735 2

10 y Single #2 268.288
10 y Multi #1 252.735 2

10 y Multi #2 264.647 1

5 y Single #1 252.735 2

5 y Single #2 342.985 3

5 y Multi #1 252.735 2

5 y Multi #2 324.184 3

1 Exactly the same solution, but different objective due to the different horizon length. 2 Exactly the same, business
as usual solution, same objective as if there is no investment, so the paybacks in this case are irrelevant. 3 Technically
similar solutions.

Note that the best solution for 20 y horizon in the multi-periodic model is the same as the second
best for the 10 y horizon case. The second best solutions for 10 y horizon in both models are technically
the same. Corn cobs and energy grass are used in a biogas CHP plant. These solutions have a
considerable difference from the optimal business as usual solutions, 6.15% at the single period model,
and 4.71% at the multi-periodic model. These are larger differences than can be observed in the first
10 solutions of the 20 y horizon cases.

For the 5 y horizon, the situation is much worse; there is a whopping difference of 35.7% for the
single period case, and 28.27% for the multi-periodic case. Note that the second best solutions for both
models are technically similar. This time, the so far ignored biogas furnace is the option, supported by
energy grass consumption. The reason behind this is that probably the biogas furnace is the cheapest
working investment, if we want to invest into something and leave the business as usual solution at
all costs.

One interesting thing is that the seemingly more restrictive multi-periodic model has a better
second best solution than its single period counterpart in the 10 y and 5 y investment horizon cases.
The reason for this is that in the multi-periodic solution, gas purchase helps, but only in winter. This is
not a possible option in the single period case.

These results have shown that the biomass and solar power availability are not so promising in
this particular case study, because these investments would require a long time to become economical.
Companies usually plan for much shorter time horizons. However, the situation is constantly changing,
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better technologies may appear, or more endorsement for sustainable energy supplies. The P-Graph
model can be easily adjusted if a scenario with different data and other technologies are introduced,
provided that similar assumptions can be made as in this work.

5. Conclusions

A P-Graph model was developed, and the energy supply options of a manufacturing plant in
Hungary were investigated. The general PNS was defined, and the P-Graph framework was introduced.
Step by step, the P-Graph model of the problem was constructed. Estimates on future demands were
made to serve as a basis for our optimization model. We defined the raw materials, the demands,
the intermediates, and the operating units. Parameters were gathered to materials and the operating
units but the structure of the model has the main focus. Modeling techniques were presented for the
P-Graph framework to handle situations like mass-based capacity limitations, multiple potential inputs
with arbitrary ratios or activities like purchasing. A multi-periodic P-Graph is implemented which
differentiates winter and mid-year consumption. It is capable of modeling operating unit capacities
when demands are fluctuating, and also takes into account solar energy supplies.

The PNS Studio software was used to solve the single and multi-periodic models with the ABB
algorithm. The multi-periodic scenarios establish that energy supply methods can vary between winter
and other parts of the years. It can be observed from the results that significant improvement can
be obtained compared to the business as usual solution, where all electricity and heat is purchased
from the market. However, this requires that the investments of local energy supply options, biomass
and solar energy utilization have a long investment horizon. This means that although there are
considerable options for sustainable energy supplies, as they are beneficial in the long-term, the
economical environment significantly impacts their efficiency.

The P-Graph model was shown to be capable of determining the best solutions for an energy
supply optimization problem. Note that other aspects can be included in the future. Upgrades like
insulation, better heating system, energy saving light bulbs, and other investments can be incorporated
to yield a more precise model for the demands, as well as other power plant types and resources.
Storage and exact availability of raw materials can still be modeled in a multi-periodic manner.
Other demands, like the water system of the plant can be governed by a single unified PNS problem.
Nevertheless, the current model is capable of handling similar supply and investment options with
different data, with minor modifications.

Supplementary Materials: The following are Available online at http://www.mdpi.com/1996-1073/12/8/1484/s1.
The P-Graph model files for the case study presented, in PGSX format, with a few solution structures. These can be
viewed, edited or resolved by the P-Graph Studio software. Images of the solution structures from the mentioned
cases are also provided.
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