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Abstract: This paper aims to propose and compare three new structures of single-phase field
excited flux switching machine for pedestal fan application. Conventional six-slot/three-pole salient
rotor design has better performance in terms of torque, whilst also having a higher back-EMF
and unbalanced electromagnetic forces. Due to the alignment position of the rotor pole with
stator teeth, the salient rotor design could not generate torque (called dead zone torque). A new
structure having sub-part rotor design has the capability to eliminate dead zone torque. Both the
conventional eight-slot/four-pole sub-part rotor design and six-slot/three-pole salient rotor design
have an overlapped winding arrangement between armature coil and field excitation coil that depicts
high copper losses as well as results in increased size of motor. Additionally, a field excited flux
switching machine with a salient structure of the rotor has high flux strength in the stator-core that
has considerable impact on high iron losses. Therefore, a novel topology in terms of modular rotor of
single-phase field excited flux switching machine with eight-slot/six-pole configuration is proposed,
which enable non-overlap arrangement between armature coil and FEC winding that facilitates
reduction in the copper losses. The proposed modular rotor design acquires reduced iron losses as
well as reduced active rotor mass comparatively to conventional rotor design. It is very persuasive
to analyze the range of speed for these rotors to avoid cracks and deformation, the maximum
tensile strength (can be measured with principal stress in research) of the rotor analysis is conducted
using JMAG. A deterministic optimization technique is implemented to enhance the electromagnetic
performance of eight-slot/six-pole modular rotor design. The electromagnetic performance of the
conventional sub-part rotor design, doubly salient rotor design, and proposed novel-modular rotor
design is analyzed by 3D-finite element analysis (3D-FEA), including flux linkage, flux distribution,
flux strength, back-EMF, cogging torque, torque characteristics, iron losses, and efficiency.

Keywords: flux switching machine; modular rotor; non-overlap winding; magnetic flux analysis;
iron losses; copper loss; stress analysis; finite element method

1. Introduction

In everyday applications, universal motors are mostly used in such devices as power tools,
blenders, and fans. They are operated at high speed and deliver high starting torque as getting
direct power from the ac-grid. At high speeds, universal motors cause noise due to their mechanical
commutators, and they have a comparatively short maintenance period. To cope with these snags,
research of a high-performance and low-cost brushless machine is greatly in demand [1,2]
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Switched-flux brushless machines, a new class of electric machine were first presented in
the 1950s [3]. Flux switching machines (FSMs), an unconventional machine, originated from the
combination of principles among induction alternator and switched reluctance motor [4]. Distinct
features of FSMs are their high torque density and robust rotor structure resulting from putting all
excitation on the stator. In the past decade, various novel FSMs have been developed for several
applications, confines from domestic appliances [5], automotive application [6,7], electric vehicles [8,9],
wind power, and aerospace [10]. FSMs are categorized into permanent magnet flux switching machines
(PMFSM), field excited flux switching machines (FEFSM), and hybrid excited flux switching machines
(HEFSM). Permanent magnet FSMs and field excited FSMs have a permanent magnet (PM) and field
excitation coil (FEC) for generation of flux source respectively, whilst both PM and FEC are generation
sources of flux in HEFSM. The major advantage of FSMs is their simple/robust structure of rotor
and easy management of temperature rise as all the excitation housed on stator. Recently, use of a
permanent magnet as a primary source of excitation has dominated in flux switching research, due to
their high torque/ high power density and optimum efficiency [11]. However, the maximum working
temperature of PM is limited due to potential irreversible demagnetization. The use of PM in not
always desirable due to high cost of rare earth material. For low cost applications, it is desirable to
reduce the use of permanent magnets and hence they are replaced by DC-FEC. FEFSMs are capable of
strengthening and weakening the generated flux as it is controlled by dc-current. FEFSMs have the
disadvantage of less starting torque, fixed rotational direction, and high copper losses. The cumulative
advantages of both FEC and PM are embedded in HEFSM having high torque capability/high torque
density, HEFSMs also have high efficiency and flux weakening capability. However, the demerits of
HEFSMs include a more complex structure, saturation of stator-core due to use of PM on stator, greater
axial length, and high cost due to use of rare earth material. Therefore, FEFSMs could be considered a
better alternative for requirements of low cost, wide speed controllability, high torque density, simple
construction, less need of permanent magnet, and flux weakening operations as compared to other
FSMs [12].

Numerous single-phase novel FS machines topologies has been developed for household
appliances and different electric means. Single phase FSMs were first presented in [13] and further
investigated in [14,15] by C. Pollock, they analyzed an 8S-4P doubly salient machine that offers high
power density and low cost as shown in Figure 1. The FEC and armature has an overlapped winding
arrangement resulting in longer end winding. To overcome the drawback of long end winding,
the 12S-6P FSM has been developed that has same coil pitch as eight stator slots and four rotor poles
but shorter end winding [16]. Figure 2 depicts how a 12-slot/6-pole machine has fully pitched winding
arrangement as with C. Pollock’s design. The end windings effect is even shorter by re-arranging
the armature winding and FEC to different pitch of one and three slot pitches as shown in Figure 3.
Both machines with F2-A2-six-pole and F1-A3-six-pole coil pitches have better copper consumption
than a conventional machine (F2-A2-four-pole) for short axial length but has a disadvantage of higher
iron loss due to more rotor poles [17]. The stator slots and rotor poles could be halved into F1-A3-3P
machine as shown in Figure 4, that is more appropriate for high speeds due to a significant reduction in
iron loss [16]. When the axial length is short, that is up to 25 mm, the average torque of both F2-A2/4P
and six-pole machine is similar. However, F1-A3/3P exhibit higher average torque than F1-A3/6P
machine at longer axial length of 60 mm. At the point when end winding is disregarded, a machine
with fewer stator teeth and rotor poles has less average torque as compared to a machine with fewer
rotor poles and stator slots for the same type of machine.
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In single phase FS machines, torque is generated with doubly salient structure due to the tendency
of rotor to align itself into a minimum reluctance position as shown in Figure 5. When the stator slot
and rotor pole are aligned at a minimum reluctance position, the motor cannot generate torque (called
‘dead zone of torque’) at aligned positions unless armature current direction is reversed. The dead
zone of torque is eliminated in [18] with sub-part rotor structure having different pole arc lengths.
The eight-slot/four-pole sub-part rotors are merged on the same face and pole axes are not parallel.
However, sub-rotor poles cannot be allied with stator slots at a same-time, thus reluctance torque
is generated at any rotor position. The single phase 8S/4P sub-part rotor FSM only applicable for a
situation that requires a continuous unidirectional rotation. The conventional sub-part rotor design
has demerit of overlapped winding arrangements between FEC and armature winding that results
in higher copper consumption and higher iron losses due to salient rotor structure. A single phase
sub-rotor FS machine minimizes the advantage of high speed, as it cannot operate at speed higher than
normal level.
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This paper presents a novel-modular rotor structure for single phase FS machines as shown in
Figure 6. The proposed design comprises of non-overlapped winding arrangements between armature
winding and FEC, and modular rotor structure. The consumption of copper is much reduced due to
non-overlapped winding arrangements. The modular rotor single phase FSM exhibit a significant
reduction in iron losses, also reduces the rotor mass and lower the use of stator back-iron without
diminishing output torque.
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2. Design Methodology

The proposed novel modular rotor single phase eight-slot/six-pole FEFSM with non-overlapping
winding arrangements is presented, as shown in Figure 7. To design the modular structure,
JMAG designer ver.14.1 is used and the results obtained are validated by the 3D finite element
analysis (3D-FEA). First, every section of motor such as stator, rotor, field excitation coil (FEC),
and armature coil of modular design with eight stator slots and six rotor poles is designed in Geometry
Editor. Then, the material, mesh properties, circuit, various properties, and conditions of the machine
is selected and is simulated in the JMAG designer. The complete flow of the proposed design starts in
Geometry Editor up to coil test analysis is shown in Figure 8. An electromagnetic steel sheet is used for
the stator and rotor core. The design parameters and specifications of the modular design is illustrated
in Table 1.
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Table 1. Design parameter of machines

Design Parameters F1-A3-3P Sub-Part Rotor Design Modular Rotor Design

Number of phases 1 1 1
No. of slots 6 8 8
No. of pole 3 4 6

Stator outer diameter 96 mm 96 mm 96 mm
Rotor outer diameter 55.35 mm 53.55 mm 53.55 mm

Air-gap 0.45 0.45 mm 0.45 mm
Stator pole arc length - 15.2 mm 5.5 mm

Teeth’s arc of sub-rotor-1 - 15.2 mm -
Teeth’s arc of sub-rotor-2 - 26.9 mm -

Rotor pole width 8 mm - 5.6 mm
Stack length 60 mm 60 mm 60 mm

No. of turns per phase 120 30 30
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3. Deterministic Optimization

The average torque analyses of eight-stator slots/six-rotor poles are examined. The maximum
output torque obtained by the initial design is 0.88 Nm at speed of 400 rpm, which is much lower from
the other designs. In order to improve the average torque characteristics, deterministic optimization
is used. First optimization cycle consists of five steps, that is RIR, θ, SR, TWA, TRA, TWD, and TRD,
as shown in Figure 9. Design free parameters RIR, θ, SR, TWA, TRA, TWD, and TRD are defined in rotor
and stator part, as depicts in Figure 10 are optimized, while the outer radius of stator, air gap, and shaft
of the motor are kept constant.
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Initially, the design free parameters of rotor are updated, first of all, the inner rotor radius, RIR,
changes while the other parameters of stator and rotor remain constant. Then, rotor pole angle, θ,
and split ratio, SR, are varied and adjusted. The rotor pole angle, θ, is a dominant parameter in
modular design to increase torque characteristics. Once the combination of promising values of rotor
part for highest average output torque is determined, the next step is to refine the TWD and TRD of
FEC, while rotor and armature slot parameter are kept constant. Finally, the essential armature slot is
optimized by changing TWA and TRA while all other design parameters are preserved. To attain the
highest average output torque, the above design optimization process is repeated. Figure 11 illustrates
the highest average torque result after two cycles of optimization by updating several parameters that
are already mentioned above. From Figure 11, it is also clear that during the first cycle the torque
increases to a certain level by varying the above parameters of the machine and it becomes constant.
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Figure 11. Effect of design parameters on average torque

During the first cycle, 32 percent of increase in the average output torque is achieved by refining the
dominant parameter of rotor pole angle, θ, whilst other free design parameter adjustment shows less
improvement in torque. In comparison with the initial design, the average output torque is improved
by 40 percent after completion of second optimization cycle. The initial and optimized structure of
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8S/6P modular design is illustrated in Figure 12. Additionally, the comparison of parameters of initial
and final design is presented in Table 2.

Table 3 depicts comparison of cogging torque, flux linkage, back-EMF, average torque, and power
of 3D-modular un-optimized and optimized design. The cogging torque and flux linkage of optimized
designs is 0.3374 Nm and 0.2114 Wb respectively, which is 50% lower than the un-optimized cogging
torque and flux linkage. Whilst, back-EMF of optimized modular 8S/4P is improved by 15%, that is still
much lower than the applied input voltage of 220V. Furthermore, before optimization of modular design
the maximum average output torque and power obtained is 9.77 Nm and 162.9 Watts respectively,
at maximum FEC current density, Je, is set to 10 A/mm2 and 25 A/mm2 is assigned to the armature coil,
which is improved to 1.66 Nm and 288 Watts, respectively. Comparatively, average output torque and
power is improved by 58.85% and 56.40%, respectively.
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Table 2. Initial and refined design parameters of Novel-modular rotor design

Parameters Units Initial Values Optimized Values

Outer stator (OS) mm 48 48
Inner stator (IS) mm 27 24.7

Back-iron width of AC (TRA) mm 42.5 41.4
Tooth width of AC (TWA) mm 7.6 7.5

Back-iron width of DC (TRA) mm 42.5 38.66
Tooth width of DC (TWD) mm 7.6 5.5

Rotor inner circle radius (RIR) mm 10 9.7
Pole shoe width (PSW) mm 3 3

Rotor pole angle (θ) deg 45 36
Split ratio (SR) - 0.55 0.5

Air gap mm 0.45 0.45
Shaft radius mm 10 10
Avg. torque Nm 0.880 1.454

Table 3. Results comparison of optimized and un-optimized design

– Cogging Torque
(Nm)

Flux Linkage
(Wb)

Back-EMF
(Volt)

Avg. Torque
(Nm)

Power
(Watts)

Motor Mass
(Kg)

Un-optimized design 0.67 0.01060 3.9 0.97775 162.986 4.02345
Optimized design 0.3374 0.02114 4.6 1.66148 288.967 3.84697
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4. Result and Performance Based on 3D-FEA Finite Element Analysis (3D-FEA)

4.1. Flux Linkage

Comparison of flux linkages of three field excited FSM at no-load is examined by 3D-FEA [16,18].
To analyze the sinusoidal behavior of flux, the input current density of FEC, and armature coil is fixed
to 10 A/mm2 and 0 A/mm2 respectively. Figure 13 shows that proposed modular design has peak
flux of 0.021 Wb which is approximately equal to the peak flux of 15% of F1-A3-3P design. Similarly,
sub-part rotor design has a 66% higher peak flux linkage than 8S/6P modular structure due to different
pole arc length. The conventional F1-A3-3P design has the highest peak flux as compared to modular
design, as well as sub-part rotor design due to the doubly salient structure.
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Figure 13. Comparison of U-flux linkages.

4.2. Flux Distribution

Flux density distribution generated by the DC coil in three FEFSM is shown in Figure 14. The red
spot mention in Figure 14a–d show saturation of stator teeth and back-iron respectively of both
conventional designs. F1-A3-3P design and sub-part rotor design has vector plot value of magnetic flux
density distribution of 1.9953 and 1.9760 maximum, respectively. Whilst, the flux density distribution of
modular design from the vector plot is 2.2528 maximum at 0◦ rotor position. Additionally, in comparison
with 8S/4P sub-part rotor design and 6S/3P design, the proposed 8S/6P modular rotor design exhibits
higher flux distribution. For completely utilizing flux in the proposed design, various parameters of
the machine are optimized to enhance the flux distribution from the stator to the rotor and vice versa.
The peak flux in the modular rotor pole at its lowest magnetic loading is 0.0453 Wb, which increases
with increasing magnetic loading. Figure 15 illustrates flux density distribution at maximum armature
current density of 25 A/mm2.
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4.3. Flux Strengthening

The effect of flux strength is analyzed by increasing current density; Je of field excitation coil (FEC)
is varied from 0 A/mm2 to 20 A/mm2, whilst armature current density; Ja is set 0 A/mm2. The FEC
input current is calculated from (1)

Ie =
JeαSe

Ne
(1)

where, Ie, Je, α, Se, and Ne are the input current of FEC, field current density, filling factor, slot area
of FEC, and number of turns of field coil respectively. The analysis of coil test can be verified from



Energies 2019, 12, 1576 12 of 27

the flux strengthening. Increasing the current densities of FEC, the pattern plot clearly shows a linear
increase in flux until 0.027 Wb at Je of 20 A/mm2 as shown in Figure 16.Energies 2019, 12 FOR PEER REVIEW  12 
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4.4. Back-EMF Versus Speed

“Back-EMF is the induce voltages in the armature winding which opposes the change in current
through which it is induced”. The back-EMF (ea) in the armature can be determined from the rate of
change in armature flux or applying the co-energy concept [19]. For motor with Nr rotor poles

ea = ωφ f
2KNaNr

π
(2)

where Na, Nr, ω, φ f and K is number of armature turns, number of rotor poles, rotational speed,
field flux, and constant of field flux that are linked with the armature winding respectively. Substituting
the φ f (field flux) with

φ f =
N f I f

R
(3)

ea =
2KNr

πR
NaN f I fω (4)

where N f , I f , and R is the number of field turns, the field current and reluctance of magnetic circuit.
For the maximum conversion of electro-mechanical energy, armature current must flow in the opposite
direction of the induced-EMF in the armature.

Figure 17 shows the 3D-FEA predicted induced-EMF of eight-slot/six-pole modular rotor structure
at a fixed field current density (Je; 10 A/mm2) and various speeds. The induced-EMF increases linearly
with increasing speed. The maximum induced voltage is 22 V at a maximum speed of 1600 rpm
which is quite lower than the applied input voltage (220 V) which confirms the motor actioning of
the machine.

4.5. Intantaneous Torque and Torque Ripple Calculation

Figure 18, investigates the instantaneous torque versus rotor mechanical revolution in electrical
degrees of eight-slot/four-pole, six-slot/three-pole, and eight-slot/six-pole FESF machines. Six-slot/three-pole
(F1-A3-3P) rotor design has high peak to peak torque as compared to eight-slot/six-pole (modular
design) and eight-slot/four-pole (sub-part rotor) FESF machines. Figure 18 illustrates that characteristics
of instantaneous torque at 10 A/mm2 of six-slot/three-pole are better as compared to eight-slot/six-pole
and eight-slot/four-pole FESF machines.
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Whilst F1-A3-3P design exhibits the highest torque ripples comparatively to sub-part rotor design
and modular rotor design. The proposed modular design has lower torque ripples than both the
conventional designs, that is 29% and 60% lower than sub-part rotor design and F1-A3-3P design,
respectively. Torque ripples are calculated from expression (5)(

τmax − τmin
τavg

)
× 100 (5)

4.6. Total Harmonics Distortion (THD)

Total harmonics distortion is the ratio of the summation of all harmonic components to the
fundamental frequency harmonics of the power or harmonics distortion that exists in flux. In electric
machines, THD occurs due to harmonics present in flux. THD determines the electromagnetic
performance of the machine as it is the representation of the harmonics in the machine. Mathematically,
the THD of an electric machine can derived from equation (6)

THD =

√∑k=2n+1
n=1,2... Φ2

k

Φ1
(6)
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where k is odd number and Φk is the odd harmonics of flux. THD of proposed design is higher as
compared to conventional design due to the modular structure of rotor. Figure 19 shows the THD of
three FEFS machines. The graph shows that the THD of sub-part rotor design and F1-A3-3P design is
7% and 4% respectively, while THD of the proposed modular rotor design is 16.4%.
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4.7. Cogging Torque

The interaction between the Stator excitation source (PM, excitation coil) and rotor pole of machine
at no-load is called cogging torque. The magnetic circuit consists of an existing PM and coil having
co-energy, the total co-energy is formulated as [20,21].

Wc = Niϕm +
1
2

(
Li2 + (R+Rm)ϕm

2
)

(7)

where, N, i, Rm, L, R and ϕm are the number of turns, current, magnetic flux, inductance of coil,
magneto-motive force, and magnetic flux linkage respectively. The change in total co-energy with
respect to the mechanical angle of the rotor determines the average torque of the machine.

Te =
∂Wc

∂θ
with i = constant (8)

where, Wc and θ are total co-energy and mechanical rotor angle, respectively.

Te =
∂
(
Niϕm + 1

2

(
Li2 + (R+Rm)ϕm

2
))

∂θ
Te = Ni

dϕm

dθ
+

1
2

i2
dL
dθ
−

1
2
ϕm

2 dR
dθ

(9)

The third term in Equation (9) changes in mmf with respect to the mechanical position of rotor
causes cogging torque. The cogging torque produces unwanted noise and vibration. As Equation (9)
shows that the cogging torque lead to a significant reduction in the average torque.

The cogging torque of F1-A3-3P, sub-part rotor and modular designs is comparing in Figure 16.
The cogging of modular design is less than F1-A3-3P and sub-part rotor designs as depicts in Figure 16.
Figure 20 illustrates that the cogging torque of modular design is 12% of F1-A3-3P and 53% of sub-part
rotor. As a result, the modular design has less vibration and more average torque as to compare to
F1-A3-3P and sub-part rotor design.
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4.8. Copper Loss versus Torque

In field excited FSM, the copper consumption is the main constituent affecting the overall cost of
the machine. As compared to other materials for FEFSM, copper is more expensive. The copper-loss of
single phase FEFSM can be calculated from the formula as

PCu = I2
a Ra + I2

f R f

where Ia, Ra, If, and Rf is the armature current, armature winding resistance, field current, field winding
resistance, respectively. The comparison of copper loss-torque curve of three field excited FSM is shown
in Figure 21. The average output torque modular design is almost similar to the sub-part rotor design
but is much higher than the F1-A3-3P design. At fixed copper loss of 60 watts, the average torque
of conventional sub-part rotor design, F1-A3-3P design, and proposed modular design is 1.6 Nm,
0.98 Nm, and 1.58 Nm, respectively. However, the plot clearly shows that modular design achieves
a higher average torque under the constraint of maximum copper loss of 120 watts due to the short
pitch coils.Energies 2019, 12 FOR PEER REVIEW  16 
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4.9. Torque versus Current Density

Torque versus current density of three FEFS machines is calculated at various current density
and maximum current set to 25 A/mm2. Figure 22 illustrates torque versus the current density of
sub-part rotor design, F1-A3-3P design, and modular rotor design. Both conventional machines are
saturated beyond 10 A/mm2, while proposed machine has increasing torque profile, by increasing
current density. At maximum 25 A/mm2 current density F1-A3-3P design has higher average torque
than modular rotor and sub-part rotor 65.6% and 63.05%, respectively. F1-A3-3P demonstrates high
torque due to high flux linkage.
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4.10. Torque Density and Power Density

Torque density and power density of three FEFS machines is calculated at a fixed current density of
10 A/mm2. Figure 23 illustrates torque densities of sub-part rotor design, F1-A3-3P design, and modular
rotor design. Comparatively, the torque density of the F1-A3-3P design is 1.89 times higher than modular
rotor design and 1.71 times higher than sub-part rotor design as shown in Figure 23. The proposed
modular design has a reduced total mass of 23% and 44.8% as compared to sub-part rotor design and
F1-A3-3P design, respectively, as shown in Table 4.
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Table 4. Comparison of active mass

Design Stator Mass (Kg) Rotor Mass (Kg) Copper Mass (Kg) Total Mass (Kg)

F1-A3-3P 1.366 0.536 5.137 7.04
Sub-part rotor design 1.499 0.732 2.758 4.99
Modular rotor design 1.825 0.247 1.774 3.84

The power density of conventional and proposed design is expressed in Figure 24. Power density
attains by modular rotor design is 0.0783 Watt/kg at current density of FEC, Je, and armature current
density, Ja, of 10 A/mm2 as shown in Figure 24. High power density exhibits high efficiency and
better electromagnetic performance. The proposed 8S/4P modular rotor design achieves 1.3 times and
1.9 times higher power densities as compared to F1-A3-3P design and sub-part rotor design respectively.Energies 2019, 12 FOR PEER REVIEW  18 
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4.11. Torque and Power Versus Speed Characteristics

The comparison of torque and power versus speed curve of three single phase FEFSM are
illustrated in Figure 25. At a rated speed of 1664 rpm, the maximum average torque of the modular
rotor design is 1.64 Nm which corresponds to the power generated by the proposed design at 286 W.
Additionally, the average torque obtained by conventional 8S-4P sub part rotor design and 6S-3P salient
rotor is 1.4 Nm and 3.77 Nm, at a base speed of 1389 rpm and 1053 rpm, respectively. The average
torque of proposed design is higher as compared to the sub part rotor design. At a speed of 1600 rpm,
the average torque of the proposed design is similar to 6S-3P design while being 19 percent higher than
the 8S-4P design. Although the generated power of 8S-6P modular design is 28.4 percent higher than
8S-4P design, it is 31 percent lower than F1-A3-3P design. The pattern plot shows that, beyond rated
speed, the average torque of the machine starts to decrease and power is decreased as well. The power
of 6S-3P FEFSM decreases more rapidly due to an increase in iron loss above the rated speed.
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4.12. Rotor Stress versus Speed

Rotor stress analysis is a technique to identify the principal stress, nodal force, and displacement
occurred in the rotor structure in an ideal state after load is applied. Generally, the condition for
mechanical stress of the rotor structure is accomplished by centrifugal force due to the longitudinal
rotation of the rotor. Additionally, centrifugal force of the rotor is greatly affected by the speed.
The rotor could highly withstand stress, if the principal stress of the rotor is higher. Principal stress
is a crucial result in the analysis of stress. By increasing the angular velocity of the rotor, principal
stress is increased exponentially. Thus, the rotor principal stress versus the speed of the three-field
excited flux switching machines (rotor structure) is analyzed using 3D-FEA. The angular velocity
varies from 0 rpm to 20,000 rpm for conventional three-pole salient rotor structure, four-pole sub-part
rotor structure, and the proposed six-pole modular structure to analyze the maximum capability of
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mechanical stress. The constraints that coincide with the force acting on the rotor is faces, edges,
and vertices. The maximum principal stress on each rotor at various speed is shown in Table 5.

Table 5. Stress analysis at various speed

Speed 5000 20,000

F1-A3-3P

Energies 2019, 12 FOR PEER REVIEW  19 

 

 342 
(b) 343 

Figure 25. (a) Comparison of torque versus speed; (b) Comparison of power versus speed of three 344 
FEFSM. 345 

4.12. Rotor Stress versus Speed 346 

Rotor stress analysis is a technique to identify the principal stress, nodal force, and displacement 347 
occurred in the rotor structure in an ideal state after load is applied. Generally, the condition for 348 
mechanical stress of the rotor structure is accomplished by centrifugal force due to the longitudinal 349 
rotation of the rotor. Additionally, centrifugal force of the rotor is greatly affected by the speed. The 350 
rotor could highly withstand stress, if the principal stress of the rotor is higher. Principal stress is a 351 
crucial result in the analysis of stress. By increasing the angular velocity of the rotor, principal stress 352 
is increased exponentially. Thus, the rotor principal stress versus the speed of the three-field excited 353 
flux switching machines (rotor structure) is analyzed using 3D-FEA. The angular velocity varies from 354 
0 rpm to 20000 rpm for conventional three-pole salient rotor structure, four-pole sub-part rotor 355 
structure, and the proposed six-pole modular structure to analyze the maximum capability of 356 
mechanical stress. The constraints that coincide with the force acting on the rotor is faces, edges, and 357 
vertices. The maximum principal stress on each rotor at various speed is shown in Table 5. 358 

Table 5. Stress analysis at various speed 359 

Speed 5000 20000 

F1-A3-3P 

 

(a) 

 

(b) 

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

P
o

w
er

, w
at

t

Speed, rpm

Modular design

F1-A3-3P

sub-part rotor

Energies 2019, 12 FOR PEER REVIEW  19 

 

 342 
(b) 343 

Figure 25. (a) Comparison of torque versus speed; (b) Comparison of power versus speed of three 344 
FEFSM. 345 

4.12. Rotor Stress versus Speed 346 

Rotor stress analysis is a technique to identify the principal stress, nodal force, and displacement 347 
occurred in the rotor structure in an ideal state after load is applied. Generally, the condition for 348 
mechanical stress of the rotor structure is accomplished by centrifugal force due to the longitudinal 349 
rotation of the rotor. Additionally, centrifugal force of the rotor is greatly affected by the speed. The 350 
rotor could highly withstand stress, if the principal stress of the rotor is higher. Principal stress is a 351 
crucial result in the analysis of stress. By increasing the angular velocity of the rotor, principal stress 352 
is increased exponentially. Thus, the rotor principal stress versus the speed of the three-field excited 353 
flux switching machines (rotor structure) is analyzed using 3D-FEA. The angular velocity varies from 354 
0 rpm to 20000 rpm for conventional three-pole salient rotor structure, four-pole sub-part rotor 355 
structure, and the proposed six-pole modular structure to analyze the maximum capability of 356 
mechanical stress. The constraints that coincide with the force acting on the rotor is faces, edges, and 357 
vertices. The maximum principal stress on each rotor at various speed is shown in Table 5. 358 

Table 5. Stress analysis at various speed 359 

Speed 5000 20000 

F1-A3-3P 

 

(a) 

 

(b) 

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000 4500

P
o

w
er

, w
at

t

Speed, rpm

Modular design

F1-A3-3P

sub-part rotor

Sub-part
Rotor

Design

Energies 2019, 12 FOR PEER REVIEW  20 

 

Sub-part Rotor 

Design 

 

(c) 

 

(d) 

Modular rotor 

design 

  

(e) 

 

(f) 

Figure 26 shows that comparison of principal stress of three different rotor structures versus 360 
speed. At a maximum speed of 20000 rpm, the principal stress of salient rotor structure, sub-part 361 
rotor structure and modular rotor structure is 6.73 MPa, 11.61 MPa, and 2.11 MPa respectively. The 362 
pattern plot clearly shows that principal stress of proposed modular rotor structure is much lower as 363 
compared to the conventional rotor design. The maximum allowable principal stress of 35H210 364 
electromagnetic steel is 300 MPa. All the three rotor structures are capable of high-speed applications, 365 
but the only salient rotor structure can be operated at high speeds due to the single piece rotor 366 
structure. Whilst the sub-part rotor and modular structure are only applicable for low-speed 367 
applications.  368 

 369 

Figure 26. Principal stress against speed. 370 

 371 

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000

P
ri

n
ci

p
al

 s
tr

es
s,

 M
P

a

Speed, rpm

F1-A3-3P

Sub-Part rotor

Modular design

Energies 2019, 12 FOR PEER REVIEW  20 

 

Sub-part Rotor 

Design 

 

(c) 

 

(d) 

Modular rotor 

design 

  

(e) 

 

(f) 

Figure 26 shows that comparison of principal stress of three different rotor structures versus 360 
speed. At a maximum speed of 20000 rpm, the principal stress of salient rotor structure, sub-part 361 
rotor structure and modular rotor structure is 6.73 MPa, 11.61 MPa, and 2.11 MPa respectively. The 362 
pattern plot clearly shows that principal stress of proposed modular rotor structure is much lower as 363 
compared to the conventional rotor design. The maximum allowable principal stress of 35H210 364 
electromagnetic steel is 300 MPa. All the three rotor structures are capable of high-speed applications, 365 
but the only salient rotor structure can be operated at high speeds due to the single piece rotor 366 
structure. Whilst the sub-part rotor and modular structure are only applicable for low-speed 367 
applications.  368 

 369 

Figure 26. Principal stress against speed. 370 

 371 

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000

P
ri

n
ci

p
al

 s
tr

es
s,

 M
P

a

Speed, rpm

F1-A3-3P

Sub-Part rotor

Modular design

Modular
rotor design

Energies 2019, 12 FOR PEER REVIEW  20 

 

Sub-part Rotor 

Design 

 

(c) 

 

(d) 

Modular rotor 

design 

  

(e) 

 

(f) 

Figure 26 shows that comparison of principal stress of three different rotor structures versus 360 
speed. At a maximum speed of 20000 rpm, the principal stress of salient rotor structure, sub-part 361 
rotor structure and modular rotor structure is 6.73 MPa, 11.61 MPa, and 2.11 MPa respectively. The 362 
pattern plot clearly shows that principal stress of proposed modular rotor structure is much lower as 363 
compared to the conventional rotor design. The maximum allowable principal stress of 35H210 364 
electromagnetic steel is 300 MPa. All the three rotor structures are capable of high-speed applications, 365 
but the only salient rotor structure can be operated at high speeds due to the single piece rotor 366 
structure. Whilst the sub-part rotor and modular structure are only applicable for low-speed 367 
applications.  368 

 369 

Figure 26. Principal stress against speed. 370 

 371 

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000

P
ri

n
ci

p
al

 s
tr

es
s,

 M
P

a

Speed, rpm

F1-A3-3P

Sub-Part rotor

Modular design

Energies 2019, 12 FOR PEER REVIEW  20 

 

Sub-part Rotor 

Design 

 

(c) 

 

(d) 

Modular rotor 

design 

  

(e) 

 

(f) 

Figure 26 shows that comparison of principal stress of three different rotor structures versus 360 
speed. At a maximum speed of 20000 rpm, the principal stress of salient rotor structure, sub-part 361 
rotor structure and modular rotor structure is 6.73 MPa, 11.61 MPa, and 2.11 MPa respectively. The 362 
pattern plot clearly shows that principal stress of proposed modular rotor structure is much lower as 363 
compared to the conventional rotor design. The maximum allowable principal stress of 35H210 364 
electromagnetic steel is 300 MPa. All the three rotor structures are capable of high-speed applications, 365 
but the only salient rotor structure can be operated at high speeds due to the single piece rotor 366 
structure. Whilst the sub-part rotor and modular structure are only applicable for low-speed 367 
applications.  368 

 369 

Figure 26. Principal stress against speed. 370 

 371 

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000

P
ri

n
ci

p
al

 s
tr

es
s,

 M
P

a

Speed, rpm

F1-A3-3P

Sub-Part rotor

Modular design

Figure 26 shows that comparison of principal stress of three different rotor structures versus
speed. At a maximum speed of 20,000 rpm, the principal stress of salient rotor structure, sub-part rotor
structure and modular rotor structure is 6.73 MPa, 11.61 MPa, and 2.11 MPa respectively. The pattern
plot clearly shows that principal stress of proposed modular rotor structure is much lower as compared
to the conventional rotor design. The maximum allowable principal stress of 35H210 electromagnetic
steel is 300 MPa. All the three rotor structures are capable of high-speed applications, but the only
salient rotor structure can be operated at high speeds due to the single piece rotor structure. Whilst the
sub-part rotor and modular structure are only applicable for low-speed applications.
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4.13. Copper Losses versus Je at Various Ja

Copper losses of three FEFSM at various armature current densities is shown in Figure 27.
To analyze the total copper losses, FEC current density, Je, is set to 10 A/mm2, and armature current
density is varied from 0 A/mm2 to 25 A/mm2. Figures 28–30, illustrate copper losses of both armature
coil and FEC, in isolation at fixed Je, whilst Ja changes to maximum. The pattern plot clearly showed
that the copper losses are increased with increasing current densities. Comparatively, the proposed
modular rotor design shows approximately 56% and 88% lower copper losses to sub-part rotor design
and F1-A3-3P design respectively, at a maximum armature current density of 25 A/mm2 as depicted in
Figure 27. However, the proposed structure has reduced copper losses, indicating improved efficiency
compared with the conventional designs.
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4.14. Iron Loss versus Speed

Iron loss is a significant portion in the total losses of machine. Machine performance is greatly
affected by iron losses due to flux emphasis of novel-modular topology in the stator, which generates a
variation of flux densities in the rotor and stator core [17,22]. The flux density variation is expected to
be reduced by implementing the novel-modular topology due to the reduction in utilization of the
stator. Iron losses are increased with increasing electrical loading due to higher armature reaction [23].
The iron losses of the switched flux machine also vary greatly with speed at every part as shown in
Figures 31–33. At low-speed, the machine dominates electromagnetic losses. The method of iron loss
calculation can be found in [17,24].
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The iron loss of each component of three-field excited FSM is calculated by 3D-FEA. In Figure 34,
the plot clearly shows that the proposed modular rotor structure has lowest iron loss then the
conventional sub-part rotor design and F1-A3-3P design. At a maximum speed of 4000 rpm, modular
design reduces the iron losses of 29.44% and 7.22% compared with the conventional F1-A3-3P design
and sub-part rotor design respectively. The reason for iron loss reduction in the stator is due to the
modular rotor, variation of flux densities in the stator-core is investigated in [25].
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4.15. Motor Losses and Efficiency Analysis

The efficiencies of three FEFSMs are computed by 3D-FEA, considering all motor losses (iron losses
in core laminations and copper losses in FEC and armature coil). Copper losses (Pcu) are calculated
at fixed current densities of 10 A/mm2, for both FEC, Je, and armature coil, Ja, for all designs. Whilst,
the iron losses are calculated at varying speed of 1000–4000 rpm. In single phase FEFS machines,
copper losses can be illustrated as

PCu = I2
a Ra + I2

f R f (10)

where Pcu, If, Rf, Ia, and Ra are copper losses, field current, total field coil resistance, armature current,
and total armature coil resistance, respectively. Figure 35a–c shows iron losses (Pi), copper losses (Pcu),
output power (Po), and efficiency at different speeds (range: 1000–4000 rpm) of sub-part rotor design,
F1-A3-3P design, and modular rotor design, respectively. However, with increasing speed the iron
losses increase in addition to further degrading efficiency. Furthermore, at every operating speed from
1000 rpm to 4000 rpm, the proposed design achieves comparatively higher efficiencies. At a max speed
of 4000 rpm, the iron losses of the proposed modular rotor design are 9% and 30% lower than the
conventional sub-part rotor design and F1-A3-3P design, respectively. However, reduction in iron
losses shows a significant reduction in total machine losses, approximately 49% of F1-A3-3P design
and 15% of sub-part rotor design. Furthermore, by adopting the modular structure, the proposed
8S/6P design achieves a higher average efficiency of approximately 12.8% and 11.4% higher than the
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conventional F1-A3-3P and sub-part rotor designs, respectively. Finally, it can be seen from Figure 36
that the efficiency of a single phase modular 8S/4P FEFS machine exhibit higher efficiency than other
conventional FEFS machines.
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5. Conclusions

A novel single-phase field excited topology of modular rotor flux switching machine is presented
and the result is investigated by 3D-FEA.

In this paper, a comparison of single-phase eight-slot/four-pole sub rotor design and
six-slot/three-pole salient rotor design with a novel modular rotor eight-slot/six-pole FSM is
demonstrated. For comparison of flux linkage, cogging torque, average torque, and other different
analyses of proposed FEFSMs, an optimal split ratio is set identical to the conventional designs.

The performance comparison of the three different types of single-phase eight-slot/four-pole sub
rotor design and six-slot/three-pole salient rotor designs with a novel modular rotor eight-slot/six-pole
FSM is demonstrated. he optimal split ratio is kept the same as the conventional designs for comparison
of flux linkage, cogging torque, average torque, and other analyses of the proposed FSM. The initial
design achieved inadequate power and torque production. Therefore, a deterministic optimization
technique was adopted to improve the characteristics. The optimized design enhanced power, torque,
and efficiency compared to existing eight-slot/four-pole and six-slot/three-pole FESF machines.

Novel modular 8S/6P single phase FSM with non-overlapped winding arrangement is designed.
Copper consumption of modular rotor design is much lower than conventional designs that is 90%
lower than F1-A3-3P and 56% than sub-part rotor design, at Ja = 25 A/mm2, due to non-overlap winding
between FEC and armature coil. The proposed design shows a higher average output torque when
compared under constraints of fixed copper losses. Modular rotor structure also exhibits a significant
reduction in iron losses, 30% as compared to F1-A3-3P and 9% reduced when compared with sub-part
rotor design. Due to the modular structure of the rotor, the active rotor mass of the proposed design is
reduced and the use of stator back-iron is lowered without diminishing torque output. This research
also examines the principal rotor stress of the conventional rotor designs (sub-part rotor design
and three-pole salient rotor design) and proposed (modular) rotor design with a different direction
of constraints. Additionally, average efficiency of proposed modular design is increased by 12.8%
compared with F1-A3-3P design and 11.4% compared with sub-part rotor design. Hence, the proposed
motor is suitable for pedestal fan application by replacing induction machine. The proposed design
has not yet been comprehensively analyzed and will be examined in our future work.
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