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Abstract: To study the emission reduction policies’ impact on the production and economic level
of the steel industry, this paper constructs a two-stage dynamic game model and analyzes various
emission reduction policies’ impact on the steel industry and enterprises. New results are observed in
the study: (1) With the increasing emission reduction target (15%–30%) and carbon quota trading price
(12.65–137.59 Yuan), social welfare and producer surplus show an increasing trend and emission macro
losses show a decreasing trend. (2) Enterprises’ reduction ranges in northwestern and southwestern
regions are much higher than that of the other regions; the northeastern enterprise has the smallest
reductions range. (3) When the market is balanced (0.8543–0.9320 billion tons), the steel output has
decreased and the polarization in various regions has been alleviated to some extent. The model is
the abstraction and assumption of reality, which makes the results have some deviations. However,
these will provide references to formulate reasonable emissions reduction and production targets.
In addition, the government needs to consider the whole and regional balance and carbon trading
benchmark value when deciding the implementation of a single or mixed policy. Future research will
be more closely linked to national policies and gradually extended to other high-energy industries.

Keywords: carbon trading mechanism; emission reduction policy; China’s iron and steel industry;
a two-stage dynamic game

1. Introduction

The iron and steel industry (hereafter referred to as the steel industry) is an important fundamental
industry of China’s economy. After the founding of New China, the development of steel industry
has gone through three stages. The first stage was from 1949 to 1960. The steel industry achieved
rapid development under the influence of a “steel-oriented” mindset and the large-scale steelmaking
movement, and steel output rose sharply. In the second stage, from 1960 to 1980, the development of
the steel industry during this period was in a sluggish state. Many factors had brought about a huge
negative impact on the development of the steel industry, causing the steel industry to stagnate. In the
third stage, after the 1980s, the steel industry developed rapidly. The rank of annual output jumped
to the top in the world in 1996. In recent years, the annual steel output has ranked first in the world,
achieving a leap in the development of the steel industry.
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For a long time, the steel industry has provided important raw material guarantees for national
construction, which has strongly supported the development of related industries, promoted the
process of industrialization and modernization in China, and promoted the improvement of people’s
livelihood and social development.

Though the iron and steel industry has achieved remarkable achievements, it also faces many
problems. The national steel industry equipment level is uneven, especially in terms of energy
conservation and emission mitigation; a lot of debts of energy conservation and environmental
protection investment were left over. Many enterprises have not achieved the comprehensive and
stable discharge of pollutants; energy conservation and environmental protection facilities need to be
further upgraded. Though the energy consumption and pollutant emissions of steel, per ton, have
decreased in recent years, it cannot offset the increase in total energy consumption and pollutants
caused by the increasing production. With the booming advancement of national industrialization and
urbanization and the continuous upgrading of the consumption structure, the energy conservation
and emission reduction work will become increasingly serious to the steel industry. At the same
time, social development, ecological civilization construction, people’s living needs, public opinion
concerns, and more will impose new and more stringent requirements on energy conservation and
emission reduction.

Obviously, for future development prospects, the steel industry still needs to make great efforts to
adhere to green development, in addition to adhering to structural adjustment and innovation drive.
It should aim to reduce energy consumption and pollutant emissions and to fully implement energy
conservation and emission reduction. The government should keep on renovating, continuously
optimizing the original fuel structure, vigorously developing the circular economy, actively researching
and promoting green steel throughout the life cycle, and building a new pattern of steel manufacturing
and social harmonious development.

At present, emission reduction policies such as the carbon trading mechanism or the carbon
taxation mechanism have not been fully implemented. What are their impacts on the production
level and economic profit of enterprises and the steel industry? Whether or not it is suitable for the
actual situation of the steel industry is still unclear. Therefore, it is an urgent and difficult task for the
steel industry to figure out the way to achieve green development in order to complete increasingly
stringent emission reduction tasks.

In China, on 18th December, 2017, the National Development and Reform Commission announced
the “National Carbon Emissions Trading Market Construction Plan (Power Generation Industry),”
setting the threshold for China’s power generation industry to be included in the carbon market:
Annual emissions of 26,000 tons of carbon dioxide or above. It provides a reference for other industrial
sectors, so this paper will study the carbon trading mechanism’s impact on production level based on
this program.

The remainder of this paper is organized as follows: In Section 2, a literature review focusing
on the distribution mode and policy influence of carbon trading system is provided; in Section 3,
a two-stage game theory modeling is constructed, and policy assumptions and data sources are
provided; in Section 4, results and discussions are presented based on accounting data and statistical
analysis; and in Section 5, conclusions and policy recommendations for China’s iron and steel industry
are drawn.

2. Literature Review of Distribution Mode and Policy Influence of Carbon Trading System

Dales [1] first proposed the concept of emissions trading, which aims to apply Coase’s theorem
of “efficiency in resource allocation through clear definition of rights” to water pollution control.
In 2005, the European Union established the Emission Trading Scheme (ETS), covering more than
11,000 companies including manufacturing. The United States, the United Kingdom, and Australia
have also established emission trading systems and exchanges. In China, although the “National
Carbon Emissions Trading Market Construction Plan (Power Generation Industry)” was announced
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and the threshold for China’s power generation industry to be included in the carbon market was
set, the quota allocation method has not yet been announced. Moreover, the carbon market was only
included in the power, cement, and electrolytic aluminum industries at the beginning, leaving the steel
industry unincluded.

Scholars have studied the carbon trading mechanism from the perspectives of applicable industries,
allocation, and influences. In the applicable industry research, most of the studies have been focused
on the power industry where data and methods are relatively mature. Li and Colombier [2] analyzed
the effects of different energy conservation and emission reduction policies on reducing carbon dioxide
in the construction industry based on energy demand, population growth, and economic development
trends. The results showed that the carbon emission trading mechanism has played a prominent role
in improving the buildings’ energy efficiency and energy-saving technologies’ promotion. Anger [3],
Chen and Tseng [4], and Alberola [5] discussed the application of carbon trading mechanisms in
electricity, the manufacturing industry, and aviation. Considine and Larson [6] examined fuel switching
in electricity production following the introduction of the European Union’s Emissions Trading System
(EU ETS) for greenhouse gas emissions. Shen et al. [7] used structural modeling methods to determine
the factors affecting the carbon trading mechanisms’ implementation in construction industry and
explained the complex relationship between factors. In combination with the carbon footprint and the
classic transportation model, Su [8] added carbon trading mechanism to the traditional three-level
transportation network model and comprehensively analyzed the impact of carbon quotas and trading
mechanisms on operating costs and transportation networks. Based on the Computable General
Equilibrium (CGE) model, Zhang [9] studied the impact of China’s establishment of carbon trading
system on the construction industry.

Policy makers, economists, and researchers have different opinions on the issue of the allocation
of quotas, due to their own situations. Ahman and Zetterberg [10] believed that, according to the
different basic calculation data, the free distribution method can be divided into two distribution
methods: Carbon emissions and production. However, the latter has higher data requirements than
the former. Goeree et al. [11] believed that the free distribution method based on historical emissions
as the basis for allocating quotas will lead to high carbon emission enterprises obtaining large quotas
of carbon emission quotas due to historical data accounting, as well as raising quota prices in quota
trading in the carbon market. Zetterberg et al. [12] suggested that the government should reward
companies that have adopted emission reduction actions at the beginning of the carbon trading system,
which will incentivize companies to obtain more quotas by increasing output. Grimm and Ilieva [13]
believed that the allocation baseline for carbon emission rights will change over time and technology,
so they cannot be allocated with reference to historical emissions data. For this reason, they proposed
a scalable free allocation model. Wang and Wang [14] studied the carbon emission rights allocation
in Beijing. They believed that distribution model combining free and auction is more suitable for
China’s national conditions. In the Emission Trading Scheme in Korea, Lee and Yu [15] observed the
actual CO2 emission levels in the first compliance year and estimated the maximum and minimum
emission levels by conducting a sensitivity analysis. They also estimated the surplus or deficit of
emission permits during the first phase by comparing the estimated emission levels and the permit
supply. Finally, they explored the supply and future prospects of offset credits, as well as the allocated
permits. Guo, Chen, and Long [16] studied the initial quota allocation of the consuming government
(based on the perspective of government and family evolutionary game) and found that when the
government’s evolutionary stability strategy is “strict policy,” the family’s evolutionary stabilization
strategy will be affected by carbon reduction costs and purchasing carbon emission rights costs. Zhang,
Li and Jia [17] established a Computable General Equilibrium (CGE) model to analyze the impact of
different ETS quota allocation schemes on the electricity industry and determined the best choice of a
quota allocation scheme for the electricity industry in China. The research on China’s carbon trading
market may provide an important case for the global carbon trading market. In the European Union’s
Emissions Trading System (EU ETS), Duscha [18] analyzed the demand for certificates from a reserve
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of about 400 million allowances under different assumptions on production development as well as
different design options for Phase IV. The analysis was built on freely available allocation data from
Phase III along with projections of production trends from different time periods in the past.

The impact of implementing carbon emission trading policies is mainly reflected by the impact on
macroeconomic factors such as government welfare, emission reduction effects, and prices. Chen and
Wu [19] constructed a model for the free allocation and sale of carbon allowances. The results showed
that China’s implementation of carbon emission trading can reduce the economic losses caused by CO2

emission reduction. Ellerman et al. [20] believed that developing countries can take full use of the new
export chances brought about by carbon trading mechanisms to reap the benefits, while the countries
with rich energy can have the largest revenues. Babiker M, Reilly J, and Viguier L [21] used CGE model
to find that carbon emissions trading plays a negative role on social welfare. Wang, Chen, and Zou [22]
found that carbon emission trading has a strong impact on prices. CO2 emission reduction policies
can stimulate energy efficiency in the energy sector to reduce carbon emissions effectively. However,
China’s GDP growth and labor efficiency will be negatively affected. Jamasb and Kohler [23] used
learning curve theory to find that carbon emission trading could play a role in updating and promoting
energy-saving and emission-reducing technologies; they also found that the continuous popularization
of energy-saving and emission-reducing technologies would, in turn, reduce carbon emission reduction
costs. Aviyonah and Uhlmann [24] believed that environmental externalities could be measured by
carbon trading prices, and carbon trading mechanisms can generate profits for companies that reduce
CO2 emissions costs. Cong and Wei [25] studied the impact of power companies under different carbon
trading allocation criteria and found that different allocations would also change carbon prices and
electricity prices. Wu et al. [26] found that after the establishment of the carbon trading system, net
exports of high-energy-consuming industries such as steel and electricity were greatly affected, and the
power industry was even more affected. Li and Zhu [27] obtained the carbon emission trading’s impact
on high energy industries by constructing a partial equilibrium model of the three commodities in two
countries and an emission reduction cost curve based on the micro level of technology. The results
showed that in the carbon market with free quota allocation, carbon emission trading may cause
distortion effects of non-backward capacity and backward production capacity. Wu, Fan, and Xia [28]
used a multi-regional computable general equilibrium (CGE) model to analyze the economic impacts
of ETS policy when combined with renewable energy sources (RES) policies in China. Dai, Xie, and
Liu [29] used the CGE model to assess the carbon emissions trading’s impact and renewable energy
policies on economic contribution and to explore the influence of carbon trading volume, carbon price,
and emission limits on the GDP in different sectors. Using the real trading data from the EU carbon
market, Liu, Gao, and Guo [30] constructed a network model by integrating time windows with the
network model; three types of network features were examined. The growth pattern of the carbon
trading network was analyzed. Fernández et al. [31] analyzed the effectiveness of the carbon market as
a basic tool in the reduction of emissions. The analysis also included other overlapping policies aimed
at fighting climate change—the promotion of renewables, for example.

On the study of the comparison and selection of carbon tax and carbon trading, it could be
found that domestic and foreign scholars have not reached a consensus. Aviyonah and Uhlmann [24]
argued that the carbon tax mechanism is easier to implement than the carbon trading mechanism
because carbon trading mechanisms face the challenge of setting emission reduction targets. Mann [32]
contended that a carbon tax policy is more important because carbon tax has the advantages of a
simple implementation, a favorable emission reduction path for enterprises, and a small space for
local governments to implement local protectionism. Wang et al. [33] believed that in the short term,
the carbon trading mechanism is more cost-effective because of the higher cost in CO2 emission
reduction technology.

For ease of reference, the references and summary information involved in this section are shown
in Table 1.
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Table 1. References and summary information about the carbon trading mechanism involved in
this section.

Applicable industries

Year Researcher Industrial sector

2009 Li and Colombier construction
2010 Anger electricity
2008 Chen and Tseng manufacturing industry
2009 Alberola aviation
2012 Considine and Larson electricity
2016 Shen et al. construction
2017 Su transportation
2017 Zhang construction

Allocation

Year Researcher Main ideas

2007 Ahman and Zetterberg Free distribution method can be divided into two distribution methods:
Carbon emissions and production.

2010 Goeree et al.
Free distribution method based on historical emissions will lead to high

carbon emission enterprises to obtain large quotas of carbon emission quotas
and raise quota prices.

2012 Zetterberg et al. The government should reward companies that have adopted emission
reduction actions at the beginning of the carbon trading system.

2013 Grimm and Ilieva Allocation baseline will change over time and technology, cannot be allocated
with reference to historical emissions data.

2014 Wang Distribution model combining free and auction is more suitable for China’s
national conditions.

2017 Lee and Yu Permits were either in surplus or insufficient, depending on the sub-sector.

2018 Guo, Chen, and Long
When the government’s evolutionary stability strategy is “strict policy,” the

family’s evolutionary stabilization strategy will be affected by the cost of
carbon reduction.

2018 Zhang, Li and Jia Different quota allocation schemes have impacts on electricity price, and
there are some spillover effects to other industries.

2018 Duscha Amount of allowances foreseen for dynamic allocation is sufficient for Phase
IV in the European Union’s Emissions Trading System (EU ETS).

Impact of implementing carbon emission trading policies

Year Researcher Main effect

1998 Chen and Wu Reduce the economic losses caused by CO2 emission reduction.

1998 Ellerman et al. Gain new export opportunities to reap the benefits.

2004 Babiker M, Reilly J, and
Viguier L Negative impact on the social welfare.

2005 Wang, Chen, and Zou A strong impact on production and prices. However, China’s GDP growth
and labor efficiency will be negatively affected.

2007 Jamasb and Kohler Update and promote energy-saving and emission-reducing technologies.

2009 Aviyonah and
Uhlmann Generate profits for companies that reduce CO2 emissions costs.

2010 Cong and Wei Change carbon prices and electricity prices.

2015 Wu, Fan, and Xia et al. Net exports of high-energy-consuming industries were greatly affected.

2017 Li and Zhu Cause distortion effects of non-backward capacity and backward
production capacity.

2017 Wu, Fan and Xia The combination of an ETS and a feed-in tariff (FIT) results in greater GDP
cost and welfare loss in all Chinese regions

2018 Dai, Xie, and Liu et al. Contributes to the achievement of emission reduction targets with less
economic cost

2018 Liu, Gao and Guo As the market grows, the geodesic distances become shorter and the
clustering coefficients become larger.

2018 Fernández. et al. EU-ETS is effective to reduce emissions, and each phase has a greater impact
on the reduction.
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Through the literature review of emission reduction policies, especially carbon trading mechanisms,
we can find that the macroeconomic energy and economic model can be used to calculate carbon
trading quotas, carbon prices, and other values, which can better analyze the impact on the economy,
environment, and emission reduction. However, most of this research was conducted from a macro
perspective, and there is less literature on using game theory to study the mutual decision-making
and emission reduction mechanism between the industry and enterprises from both microscopic and
macroscopic perspective. There is also relatively less research literature on the integration of policies
such as mechanisms into the emission reduction model and the comparison of single and mixed
emission reduction policies. With the continuous economy development and the constant attention of
environmental concerns, emission mitigation pressure will increase continuously. An individual carbon
emission reduction policy cannot meet the needs of national economic development and emission
mitigation. Carbon capture and storage (CCS), carbon sinks, and other significant reductions methods
are possible to be integrated into the overall mitigation system. There are few papers on relevant game
theory, and, as such, more research needs to be introduced. In addition, China has not yet started the
carbon tax mechanism, and the official has not formulated detailed implementation plans. Therefore,
this paper uses the carbon trading mechanism as the background of emission reduction policies to
conduct corresponding policy research and analysis.

Secondly, we find that researchers have usually focused on national level and entire sectors
(industry, service industry, agriculture). Research on a provincial level or a single industry department
are few. The iron and steel industry is a basic industry and one of the most CO2-emitting heavy
industrial sectors, which needs to do some further important emission reduction tasks research.

Thirdly, the model gives priority to the literature while giving less focus to empirical analysis
in the previous research, and the parameters usually derive from the existing data of developed
countries. The study of two typical enterprises is the most classic. In China, there are significant
regional differences and economic development imbalances, and these areas’ steel industry information
and parameters need to be supplemented.

Above all, the reasonable CO2 emission reduction policy will be the core issue in this paper.
Therefore, this paper organizes the six main areas’ steel industry’s energy, environment, and
economic data. Integrated with the government corresponding long-term plan, the carbon trading
mechanism—including production subsidies, CCS, and CO2 external losses—is included in this
research; then, a two-stage dynamic game model is constructed. Using the background of different
carbon emissions’ decreased demand, we discuss game behavior in different regions under different
reduction targets; and, finally, we investigate different emissions reduction scenarios’ effect and
economic impact.

3. Methods

3.1. Notations and Explanations

As shown in Figure 1, according to the regional division of China, China is divided into six regions:
North China (i.e., 1O Beijing, 2O Tianjin, 3O Hebei, 4O Shanxi, and 5O Inner Mongolia), Northeast China
(i.e., 6O Liaoning, 7O Jilin, and 8OHeilongjiang), East China (i.e., 9O Shanghai, 10O Jiangsu, 11O Zhejiang,
12O Anhui, 13O Fujian, 14O Jiangxi, 15O Shandong, and 32O Taiwan), South Central China (i.e., 16O Henan,
17O Hubei, 18O Hunan, 19O Guangdong, 20O Guangxi, 21O Hainan, 33O Hong Kong, and 34OMacau), Southwest
China (i.e., 22O Chongqing, 23O Sichuan, 24O Guizhou, 25O Yunnan, and 31O Tibet), Northwest China
(i.e., 26O Shaanxi, 27OGansu, 28OQinghai, 29ONingxia, and 30O Xinjiang). For data reasons, Tibet, Hong Kong,
Macau, and Taiwan are not included. In this paper, regions are presented by subscripts: 1 represents
North China, 2 represents Northeast China, and so on.
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Consistent with the game sequence described in the literature of Duan et al. [34], the main
research focus of this paper includes the government and the above six regions, and the regional steel
industry data is regarded as a steel enterprise entity. The government emissions reduction policy
is a double game problem. Firstly, there is a decomposition game between the government and
regional enterprises: The government stipulates the emissions reduction target for a certain period,
after which the regional enterprises should determine their respective reduction ranges according
to their own cost curves. Secondly, there is a game of product output between the six regions, and
the different targets of the regional enterprises will affect their respective output levels and market
competitiveness. Therefore, the resultant game order is as follows: In the first stage, the government
sets corresponding reduction targets and reduction policies (e.g., emissions allowances, product
subsidies, CCS, independent or mixed); in the second stage, on the premise of guaranteeing profit
maximization, the regional enterprises choose their respective reduction targets and output levels
simultaneously. Based on this idea, this paper adopts the inverse method to solve the two-stage game
problem. The notations used in this paper and their explanations are presented in Table 2. The main
hypothesis of this paper is basically consistent with the hypothesis of Duan et al. [34].

Table 2. Notations and explanations used in this paper.

Notations Explanations

Q Steel production
P The price of steel
α The constant of the market inverse demand curve
β The primary coefficient of the market inverse demand curve
qi Steel production of region i

e2015,i The region i CO2 emission intensity of per ton steel in 2015
ei The region i CO2 emission intensity of per ton steel at some stage
ri The decline range of CO2 emission intensity of per ton steel in region i at some stage
R The decline target of national CO2 emission intensity of per ton steel at some stage

MAC Marginal abatement cost curve in iron and steel industry
ai The quadratic coefficient of steel industry’s MAC in region i
bi The primary coefficient of steel industry’s MAC in region i
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Table 2. Cont.

Notations Explanations

Ci The cost function of steel industry in region i
C0,i The production cost of steel industry in region i
ci The cost of base period emission reduction in region i
e0 Carbon trading benchmarks
PP Purchase price of carbon quota
SP Selling price of carbon quota

CQi Carbon quota of region i
W Social welfare function
CS Consumer surplus
PS Producer surplus

D(E) Total macro external environment loss of CO2 emission
θ The external loss parameter of CO2
η The production subsidies
m The CO2 emission reduced by CCS demonstration project
A The primary coefficient of CCS demonstration project cost curve
B The constant of CCS demonstration project cost curve
πi The profit function of steel industry in region i
E The total CO2 emissions in iron and steel industry
S The total subsidy
M The total cost of CCS demonstration project

3.2. Scenario Assumptions

For future development direction of steel industry and CO2 emission reduction targets, the relevant
development plans are mostly based on textual qualitative language, and the description of clear
emission reduction policies is rather vague. Due to the uncertainty of the policy and the combing of
the literature, this paper establishes a model of enterprise output selection under the carbon trading
mechanism, studies the impact of future government (steel industry) emission reduction policies on
the economic, environmental, and other factors of enterprises and the steel industry, and focuses on
the trends of various economic and environmental indicators.

3.2.1. Case 1: Only Carbon Trading Scenarios

Recently, due to policy and technology constraints, the carbon trading mechanism is the only
policy-based emission reduction measure to achieve emission reduction targets. The government
(steel industry) sets CO2 emission allowances for production enterprises, and enterprises buy or sell
their quotas in the market. To prevent corporate speculation, this paper stipulates that the subsidy
value is not greater than the enterprise purchase quota expenditure, and the time is set to 2020.

3.2.2. Case 2: Mixed Policy Scenario, Carbon Trading and Subsidy

When emission reduction targets continue to increase, steel companies that purchase carbon
emission allowances will face increasing pressure to reduce emissions and purchase quotas, which
will severely compress producers’ profit margins. At this time, the rebate subsidy based on product
output for enterprises purchasing carbon emission quota can improve their production enthusiasm
and capacity. To prevent corporate speculation, this paper stipulates that the subsidy value is not
greater than the enterprise purchase quota expenditure, and the time is set to 2025.
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3.2.3. Case 3: Mixed Policy Scenario, Carbon Trading, Subsidy, and CCS

When the emission reduction targets gradually increase, the implementation of carbon trading and
subsidies may not fully meet the CO2 emission reduction target. CCS, which will play as a large-scale
CO2 emission reduction role, will be put into operation in the medium and long term. This research
assumes that all subsidies are provided by the government (steel industry). To prevent corporate
speculation, this paper stipulates that the subsidy value is not greater than the enterprise purchase
quota expenditure, and the time is set to 2030. The government invests in the construction of one or
two demonstration projects that can absorb millions of tons of CO2.

3.3. The Two-Stage Dynamic Game Solving Process

Regional enterprises will face the given government emission mitigation targets and corresponding
policies in the second stage, and select the decline in production output and emission intensity. The profit
function in different situations is as follows:

πcase1,i = P(Q)qi −Ciqi = (α− βQ)qi − qiC0,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi

= (α− βQ)qi − qiC0,casel,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi

(1)

Among them, CTi =

 SP · [e0 − e2015,i(1− ri)] · qi, when e0 ≥ e2015,i(1− ri)

PP · [e0 − e2015,i(1− ri)] · qi, when e0 < e2015,i(1− ri)
.

πcase2,i = P(Q)qi −Ciqi = (α− βQ)qi − qiC0,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi + ηkiqi

= (α− βQ)qi − qiC0,case2,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi + ηkiqi

(2)

which, CTi =

 SP · [e0 − e2015,i(1− ri)] · qi, when e0 ≥ e2015,i(1− ri)

PP · [e0 − e2015,i(1− ri)] · qi, when e0 < e2015,i(1− ri)
, ki =

 0, when e0 ≥ e2015,i(1− ri)

1, when e0 < e2015,i(1− ri)
.

πcase3,i = P(Q)qi −Ciqi = (α− βQ)qi − qiC0,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi + ηkiqi

= (α− βQ)qi − qiC0,case3,i − qiλ
(
ci +

∫ ri
0 MACi(r)dr

)
+ CTi + ηkiqi

(3)

which, CTi =

 SP · [e0 − e2015,i(1− ri)] · qi, when e0 ≥ e2015,i(1− ri)

PP · [e0 − e2015,i(1− ri)] · qi, when e0 < e2015,i(1− ri)
, ki =

 0, when e0 ≥ e2015,i(1− ri)

1, when e0 < e2015,i(1− ri)
.

Each enterprise faces different profit functions because of different emission levels. In case 2 and
case 3, the government subsidizes enterprises that purchase carbon quotas and does not subsidize
enterprises which sell carbon quotas. When solving, it is necessary to comprehensively consider
the relationship between the emission intensity and the reference value to determine whether the
enterprise enjoys subsidies, and then determines the profit function of the enterprise.

Let
∂πi
∂qi

= 0 and
∂πi
∂ri

= 0, the corresponding reduction range of emission intensity ri and output

qi of iron and steel enterprises in each region can be obtained.
In different cases, the social welfare function has been expanded, the specific form is as follows:

WCase1 = CS + PS−D(E) =
∫ Q

0 P(q)dq− P(Q)Q +
6∑

i=1
πcase1,i − θE

=
∫ Q

0 (α− βq)dq− (α− β
6∑

i=1
qi)

6∑
i=1

qi +
6∑

i=1
πcase1,i − θ

6∑
i=1

e2015,i(1− ri)qi

(4)
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WCase2 = CS + PS− S−D(E) =
∫ Q

0 P(q)dq− P(Q)Q +
6∑

i=1
πcase2,i−η

6∑
i=1

kiqi − θE

=
∫ Q

0 (α− βq)dq− (α− β
6∑

i=1
qi)

6∑
i=1

qi +
6∑

i=1
πcase2,i − η

6∑
i=1

kiqi − θ
6∑

i=1
e2015,i(1− ri)qi

(5)

WCase3 = CS + PS− S−D(E) −M =
∫ Q

0 P(q)dq− P(Q)Q +
6∑

i=1
πcase3,i − η

6∑
i=1

kiqi − θE− (Am + B)

=
∫ Q

0 (α− βq)dq− (α− β
6∑

i=1
qi)

6∑
i=1

qi +
6∑

i=1
πcase3,i − η

6∑
i=1

kiqi − θ
6∑

i=1
e2015,i(1− ri)qi − (Am + B)

(6)

In the first stage, 6 regions’ enterprises obtain the corporate profit function by selecting the
decline in their respective product output and emission intensity as a response to the government’s
corresponding emission reduction policy and emission reduction target R. The following relationship
of government’s decision can be obtained and expressed as:

Case 1
max W

s.t.



6∑
i=1

e2015,i(1− ri)qi

6∑
i=1

qi

= e2010(1−R)

0 < ri < 1
ei > 0
qi > 0
0 ≤ SP ≤ PP
i = 1, 2, 3, 4, 5, 6

(7)

Case 2
max W

s.t.



6∑
i=1

e2015,i(1− ri)qi

6∑
i=1

qi

= e2010(1−R)

0 < ri < 1
ei > 0
qi > 0
0 ≤ SP ≤ PP
η ≥ 0

0 ≤
η

6∑
i=1

kiqi

−

6∑
i=1

ki · PP · [e0 − e2015,i(1− ri)]qi

≤ 1

k = 0, 1
i = 1, 2, 3, 4, 5, 6

(8)
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Case 3
max W

s.t.



6∑
i=1

e2015,i(1− ri)qi −m

6∑
i=1

qi

= e2010(1−R)

0 < ri < 1
ei > 0
qi > 0
0 ≤ SP ≤ PP
η ≥ 0

0 ≤
η

6∑
i=1

kiqi

−

6∑
i=1

ki · PP · [e0 − e2015,i(1− ri)]qi

≤ 1

k = 0, 1
1× 106

≤ m ≤ 2× 106

i = 1, 2, 3, 4, 5, 6

(9)

The equilibrium of production and emissions mitigation can be described by SP, PP, and η.
Then, we put the production and emission reduction results determined by SP, PP, and η into the
first stage to get the expression formula of social economic welfare (W). In the game’s first stage,
the government maximizes social economic welfare determined by SP, PP, and η. Finally, we get W
and other corresponding conclusions.

3.4. Data Sources

The statistics are from China Statistical Yearbook [35], China Industrial Statistical Yearbook [36],
China Energy Statistical Yearbook [37], China Steel Yearbook [38], and the statistical yearbooks of
various provinces. Relevant economic data are equivalent to comparable prices in 2010. The time span
is from 2005 to 2016. In addition, CO2 emissions in industrial production (IPPU CO2), which also
produces large amounts of CO2, are included in this paper.

Because of the data availability, the steel industry’s relevant energy consumption and economic
data are derived from the ferrous metal smelting and calendaring processing industry in the China
Statistical Yearbook. The CO2 accounts of fossil energy consumption and IPPU refers to IPCC2006 [39]
and Duan et al. [40].

4. Results and Discussions

4.1. The Parameter Fitting’s Results

In this paper, referring to the research of Ma and Li [41], the market demand for steel industry is
expressed by the apparent consumption, and the product price was obtained by dividing the industrial
output value by the output. In the selection of the curve form, the inverse demand curve can be
approximated as a straight line inclined to the lower right. The inverse demand curve fitting equation
is as follows:

P = α− βQ = 15769.56− 1.13× 10−5Q (10)

In 2010, CO2 emissions average level in steel industry was 3.1710 tons CO2 per ton of steel
(the same below, omitted). In the calculation below, the base period data of each region is the basic
data for 2015 unless otherwise specified. According to the collection and calculation, the average level
of CO2 emission in 2015 was 2.8210. Correspondingly, the CO2 emission levels of the six regions in
2015 were e1 = 2.3344, e2 = 3.5698, e3 = 2.9040, e4 = 2.8779, e5 = 3.2202, and e6 = 4.5864.
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In this paper, China’s steel industry CO2 emissions from 2005 to 2016 were calculated by a
non-parametric method, the CO2 marginal abatement cost was estimated by shadow price, and then
the marginal abatement cost curve (MACC) was obtained. The calculation method reference was
made to the relevant literature of Duan et al. [42–44] (the data was updated to 2016 and the function
form was slightly changed), and the quadratic form was selected as the regression equation of MACC.
The relationship between the emission intensity reduction in each region and the CO2 MACC is shown
in Table 3. It should be pointed out that due to the estimation of shadow price, the error and uncertainty
of the CO2 marginal abatement cost curve are increased, which leads to a certain distance between
the calculated abatement cost and the real abatement cost. This paper uses λ

(
ci +

∫ ri
0 MACi(r)dr

)
to

represent the actual emission reduction cost; λ is 0.5, in order to reduce the error.

Table 3. Some parameter values.

Notations Unit i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

e2015,i t CO2/t 2.3344 3.5698 2.9040 2.8779 3.2202 4.5864
ai - 11661 17208 16932 12952 6397.2 3485
bi - −169.76 8876.7 −166.92 1483.6 502.52 421.13
ci Yuan 2168.2 3511.1 2165.4 3325.1 2368.7 3814.3

C0,2015,i Yuan

2015 2833.15 4898.47 3453.53 4153.15 3799.03 3832.38
2020 2124.86 3918.77 2590.15 2491.89 3609.08 3640.76
2025 1699.89 2743.14 2072.12 1868.92 3067.72 3094.64
2030 1444.91 2194.51 1761.30 1588.58 2454.17 2475.71

Through the combing of relevant policy documents, the future economic development goals
of China’s iron and steel industry and target of energy conservation and CO2 emission mitigation
have been designated as mostly textual narratives, and there are basically no quantitative indicators
of data. Accurately predicting future steel industry emission reduction targets, product yields, and
development levels is impractical. Based on this, the focus of this paper is to explore the influence of
implementation of different emission mitigation policies combination in China’s steel industry’s social
welfare (W), consumer surplus (CS), producer surplus (PS), output, and total CO2 emissions, as well as
the enterprise’s output, profits, CO2 emissions, and other economic and environmental factors.

In the setting of the CO2 emission intensity reduction target, this paper refers to target of reducing
the comprehensive energy consumption of ton steel by 12 kgce in 2020 (Steel Industry Adjustment
and Upgrade Plan (2016–2020)). The target of 2020 is about 85% of the energy consumption level in
2010. Therefore, this paper sets the CO2 emission intensity in 2020 to be 15% lower than that in 2010.
We will observe the reaction of output, profit, and emission intensity of iron and steel enterprises
and industries when the emission reduction target under the condition of 15%–20%. We set the CO2

emission intensity in 2025 to be 20% lower than that in 2010 and observed the reaction of output, profit,
and emission intensity of iron and steel enterprises and industries when the emission reduction targe
under the condition of 20%–25%. We set the CO2 emission intensity in 2030 to be 25% lower than that
in 2010 and observed the reaction of output, profit, and emission intensity of iron and steel enterprises
and industries when the emission reduction target under the condition of 25%–30%.

Referring to Li’s research [45], the average production cost of the base period can be obtained
by calculating the business (regional) operating costs and steel production. This paper assumes that
by 2020, the production costs in North China, East China, and South Central China will decrease
significantly, and the production costs in Northeast China, Southwest China, and Northwest China will
decrease less. Then, the gap will be gradually narrowed. By 2030, North China, East China, and South
Central China will be basically in the same cost range, and the Northeast, Southwest, and Northwest
regions will be located in another cost range. The external macro-environmental loss parameters refer
to the study of Guenno and Tiezzi [46], θ = 14.55 Yuan/ton CO2. In 2030, it is assumed that the steel
industry will plan to build 1–2 million tons of government-funded demonstration projects. The cost
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curve refers to [47–50], and the linear curve is M = 204.96m + 11.53× 106, m ∈
[
1 × 106, 2 × 106

]
ton.

The unit is RMB. Since the relationship between PP and SP is not easy to determine, let PP = SP in
order to facilitate calculation; that is, when carbon trading is conducted between enterprises, the price
used to purchase or sell unit quota is the same.

In the selection of the benchmark value of the carbon trading mechanism e0, considering that
China has just started to pilot the carbon trading mechanism, the steel industry emission benchmark
value should not be set too high. After the system is mature, the benchmark value should be set
strictly. Assume that the benchmark value for 2020 is 2.8210 tons of CO2/per ton steel (the average
CO2 emission intensity in 2015). The benchmark value for 2025 is 2.3782 (25% lower than the national
emission level in 2010). For 2030, it will be 2.2197 (30% lower than the national emissions level in 2010).

The specific data simulation parameter settings are shown in Table 3.

4.2. Empirical Analysis

4.2.1. Case 1, in 2020 Scenario

The carbon trading policy is the only emission mitigation policy. Detailed results are shown in
Figures 2 and 3, Tables 4 and 5. When the emission reduction targets gradually increase from 15%
to 20%, the transaction price of carbon emission allowance increases from 12.65 yuan/ton to 34.81
yuan/ton, which increases by 2.75 times. Total output, total social welfare (W), consumer surplus (CS),
and producer surplus (PS) all show an upward trend, and the macro environmental damage caused by
CO2 emissions shows a decreasing trend. The total output maintains at around 854 million tons, which
is a drop of nearly 25% compared to the 1.135 billion tons of steel production in 2016. This means that
demands in the steel market declined significantly in 2020. As the emission reduction target gradually
increases from 15% to 20%, total output, W, CS, PS, and emission loss increase by 0.05%, 0.21%, 0.10%,
0.34%, and −5.84%, respectively.
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Figure 3. The change of regional emission intensity with the overall emission reduction target (15%–20%,
carbon trade scenario only).

Table 4. The changes of the overall industry indicators under the carbon trade mechanism; the emission
reduction target is 15%–20%.

Emission Reduction Target 15% 16% 17% 18% 19% 20%

Carbon quota transaction price (Yuan) 12.65 16.28 20.30 24.74 29.57 34.81
Production (100 million tons) 8.5427 8.5432 8.5439 8.5447 8.5457 8.5471

Rate of change, production (with 15% as the base) - 0.01% 0.01% 0.02% 0.04% 0.05%
Rate of change, social welfare (with 15% as the base) - 0.03% 0.07% 0.11% 0.16% 0.21%

Rate of change, producer surplus (with 15% as the base) - 0.06% 0.12% 0.19% 0.26% 0.34%

Table 5. The changes of the various region enterprise indicators under the carbon trade mechanism;
the emission reduction target is 15%–20%.

Emission Reduction Target 15% 16% 17% 18% 19% 20%

Production (100
million tons)

North China 2.5841 2.5854 2.5869 2.5884 2.5900 2.5916
Northeast China 0.3872 0.3864 0.3856 0.3847 0.3837 0.3827

East China 2.1673 2.1678 2.1684 2.1690 2.1696 2.1702
South Central China 1.7405 1.7409 1.7413 1.7417 1.7422 1.7427

Southwest China 1.1722 1.1723 1.1725 1.1726 1.1728 1.1730
Northwest China 0.4915 0.4901 0.4886 0.4871 0.4856 0.4841

Rate of change,
production (with 15%

as the base)

North China - 0.11% 0.23% 0.36% 0.50% 0.65%
Northeast China - −0.42% −0.91% −1.47% −2.11% −2.82%

East China - 0.05% 0.10% 0.16% 0.22% 0.29%
South Central China - 0.05% 0.10% 0.15% 0.21% 0.27%

Southwest China - 0.02% 0.05% 0.09% 0.13% 0.18%
Northwest China - −0.59% −1.19% −1.80% −2.40% −2.98%

The decline range of
emission intensity

(with data in 2015 as
the base)

North China −7.88% −8.83% −9.77% −10.71% −11.63% −12.55%
Northeast China −1.00% −1.28% −1.58% −1.92% −2.28% −2.66%

East China −7.10% −7.98% −8.85% −9.72% −10.58% −11.43%
South Central China −3.71% −4.53% −5.36% −6.22% −7.09% −7.97%

Southwest China −8.02% −9.46% −10.90% −12.34% −13.77% −15.20%
Northwest China −13.18% −15.52% −17.85% −20.18% −22.50% −24.82%
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To achieve the 15%–20% emission reduction target, enterprises in each region choose the emission
intensity and output. As the emission reduction target increases, the emission intensity of Southwest
China and Northwest China decreases more. When the industry emission reduction target is 20%,
the Northwest region’s emission reduction rate reaches its maximum, which is 24.82%; the East
China and North China range is moderate, with a range of 7%–13%; the emission reductions in the
Northeast and South Central regions are small, and the Northeast is the smallest. For production, due
to the different production costs and the impact of emission mitigation intensity, coupled with the
implementation of the carbon trading policy, when the emission reduction targets grow, output of most
regions has increased significantly, and only the steel production in Northeast China and Northwest
China has declined. The output of the two regions has dropped significantly, which is approaching 3%.

Under the premise emission reduction target of 15%–20% and 2.8210 tons CO2/ton steel as the
benchmark value, the CO2 emission intensity of North China, East China, and South Central China in
the carbon trading market are lower than the benchmark value; they can choose to sell their carbon
quota. The Northeast and Northwest regions have exceeded the benchmark value and need to purchase
carbon quotas. For the Southwest region, when the emission reduction target is low (15%–18%), CO2

emission intensity is more than the benchmark and the enterprise needs to be purchased for the quotas;
when the emission reduction target is high (18%–20%) and CO2 emission intensity is lower than the
benchmark value, the enterprise can choose to sell its own carbon quotas.

4.2.2. Case 2, in 2025 Scenario

The mixed emission mitigation policy includes carbon trading and subsidy policies. Detailed
results are shown in Figures 4 and 5, Tables 6 and 7. Due to the strict emission benchmark values,
the CO2 emission intensity of some regional enterprises cannot meet or fall below the benchmark
value. The government needs to provide subsidies for enterprises with higher emission intensity.
When the emission reduction targets gradually increase from 20% to 25%, the transaction price of
carbon emission allowance increases from 47.21 yuan/ton to 84.43 yuan/ton, an increase of 1.79 times.
The value is maintained at around 15.5 yuan to 17 yuan.
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Figure 5. The change of regional emission intensity with the overall emission reduction target (20%–25%,
carbon trade+ subsidy).

Table 6. The changes of the overall industry indicators under the carbon trade mechanism; the emission
reduction target is 20%–25%.

Emission Reduction Target 20% 21% 22% 23% 24% 25%

Carbon quota transaction price (Yuan) 47.21 53.86 60.91 68.37 76.21 84.43
Carbon quota transaction price (Yuan) 9.0173 9.0159 9.0143 9.0129 9.0113 9.0093

Unit value of subsidy (Yuan) 17 17.5 17.5 17.5 17 15.5
Rate of change, production (with 20% as the base) - −0.02% −0.03% −0.05% −0.07% −0.09%

Rate of change, social welfare (with 20% as the base) - 0.01% 0.02% 0.03% 0.05% 0.07%
Rate of change, producer surplus (with 20% as the base) - 0.09% 0.19% 0.29% 0.39% 0.50%

Table 7. The changes of the various region enterprise indicators under the carbon trade mechanism;
the emission reduction target is 20%–25%.

Emission Reduction Target 20% 21% 22% 23% 24% 25%

Production (100
million tons)

North China 2.4863 2.4883 2.4900 2.4921 2.4942 2.4963
Northeast China 0.9253 0.9231 0.9209 0.9185 0.9160 0.9134

East China 2.1506 2.1511 2.1517 2.1521 2.1526 2.1531
South Central China 1.8143 1.8145 1.8149 1.8152 1.8154 1.8156

Southwest China 1.1706 1.1707 1.1710 1.1712 1.1715 1.1717
Northwest China 0.4702 0.4686 0.4673 0.4659 0.4646 0.4634

Rate of change,
production (with 20%

as the base)

North China - 0.15% 0.32% 0.49% 0.68% 0.90%
Northeast China - −0.48% −1.01% −1.58% −2.21% −2.91%

East China - 0.05% 0.09% 0.14% 0.17% 0.19%
South Central China - 0.03% 0.06% 0.09% 0.10% 0.10%

Southwest China - 0.04% 0.08% 0.12% 0.17% 0.20%
Northwest China - −0.60% −1.17% −1.67% −2.11% −2.52%

The decline range of
emission intensity

(with data in 2015 as
the base)

North China −14.49% −15.43% −16.36% −17.29% −18.21% −19.13%
Northeast China −3.55% −4.02% −4.51% −5.01% −5.54% −6.08%

East China −13.23% −14.09% −14.96% −15.81% −16.67% −17.52%
South Central China −9.85% −10.77% −11.69% −12.62% −13.55% −14.47%

Southwest China −18.22% −19.69% −21.14% −22.60% −24.05% −25.49%
Northwest China −29.72% −32.09% −34.45% −36.81% −39.15% −41.48%

The total output, consumer surplus, and macro environmental damage caused by CO2 emissions
have decreased, and the overall social welfare and producer surplus have shown an upward trend.
This shows that, although the emission reduction target has become increasingly severe, the behavior
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of returning subsidies to enterprises has increased the production enthusiasm of producers and helps
to increase corporate profits. The total output has remained at around 900 million tons. Though the
emission reduction target has increased, the total output has increased slightly compared to the 2020
emission reduction targets case. When emission reduction targets increase from 20% to 25%, total
output, W, CS, PS, and emission loss decrease by 0.09%, −0.07%, 0.18%, −0.50%, and 6.33%, respectively.

For the sub-region, to achieve the emission mitigation target of 20%–25%, enterprises in each
region choose the emission intensity and output. When the emission reduction targets gradually
increased, the rate of decline in emission reduction intensity in various regions has gradually increased.
In Southwest and Northwest China, the emission reduction rate has exceeded 20% in most cases. When
the industry emission reduction target is 25%, the emission reduction rate in the northwest region has
reaches the maximum, which is 41.48%, in East China and North China. When the emission range is in
the middle, the decline range is about 13%–19%. The emission reduction range in the Northeast and
South Central regions is small, and, in the Northeast, it is the smallest. Along with the effects of carbon
trading policies and subsidies, the output changes show great regional differences. The output of North
China, East China, South Central, and Southwest China present an upward trend; steel production in
Northeast China and Northwest China show a downward trend, with a drop of 2.5%–3%.

Under the premise emission reduction target of 20%–25% and 2.3782 tons CO2/ton steel as the carbon
trading benchmark value, only the North China CO2 emission intensity is lower than the benchmark value,
and the enterprise can choose to sell its own carbon quotas; CO2 emission intensity in other regions cannot
be lower than the benchmark level, and carbon quotas need to be purchased. In addition, the government
(steel industry) needs to return subsidies based on production to these regions.

4.2.3. Case 3, in 2030 Scenario

The mixed emission mitigation policies cover carbon trading policy, subsidies, and government-funded
CCS demonstration projects. The results are shown in Figures 6 and 7, Tables 8 and 9. Due to the strict
emission benchmark values, the CO2 emission intensity of some regional enterprises cannot meet or fall
below the benchmark value. The government needs to provide subsidies for enterprises with higher
emission intensity. As the emission reduction target increases from 25% to 30%, the transaction price of
carbon emission allowance increases from 91.70 yuan/ton to 137.59 yuan/ton—an increase of 1.79 times.
The unit subsidy value is maintained at around 30–36 yuan; the CO2 processed by the government-funded
CCS demonstration project are always at the lowest value, m = 1,000,000 ton.
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Table 8. The changes of the overall industry indicators under the carbon trade mechanism; the emission
reduction target is 25%–30%.

Emission Reduction Target 25% 26% 27% 28% 29% 30%

Carbon quota transaction price (Yuan) 91.70 100.24 108.95 117.98 127.83 137.59
Carbon quota transaction price (Yuan) 9.3391 9.3368 9.3348 9.3323 9.3283 9.3274

Unit value of subsidy (Yuan) 30.5 29.5 28.5 26.5 36.5 36
Rate of change, production (with 25% as the base) - −0.02% −0.05% −0.07% −0.12% −0.13%

Rate of change, social welfare (with 25% as the base) - 0.00% 0.00% 0.01% 0.05% 0.07%
Rate of change, producer surplus (with 25% as the base) - 0.06% 0.12% 0.19% 0.53% 0.59%

Table 9. The changes of the various region enterprise indicators under the carbon trade mechanism;
the emission reduction target is 25%–30%.

Emission Reduction Target 25% 26% 27% 28% 29% 30%

Production (100
million tons)

North China 2.3949 2.3974 2.3999 2.4024 2.4049 2.4078
Northeast China 1.0483 1.0449 1.0413 1.0377 1.0341 1.0302

East China 2.1003 2.1005 2.1007 2.1008 2.1009 2.1009
South Central China 1.7343 1.7342 1.7342 1.7341 1.7339 1.7337

Southwest China 1.3864 1.3866 1.3869 1.3872 1.3875 1.3877
Northwest China 0.6749 0.6743 0.6739 0.6736 0.6734 0.6732

Rate of change,
production (with 25%

as the base)

North China - 0.21% 0.42% 0.66% 0.97% 1.17%
Northeast China - −0.66% −1.35% −2.10% −1.75% −2.54%

East China - 0.02% 0.03% 0.03% 0.60% 0.61%
South Central China - −0.01% −0.02% −0.05% 0.62% 0.60%

Southwest China - 0.04% 0.08% 0.11% −1.28% −1.18%
Northwest China - −0.15% −0.23% −0.27% −3.18% −2.94%

The decline range of
emission intensity

(with data in 2015 as
the base)

North China −19.90% −20.77% −21.62% −22.47% −23.36% −24.21%
Northeast China −6.55% −7.09% −7.63% −8.19% −8.79% −9.37%

East China −18.24% −19.04% −19.83% −20.62% −21.44% −22.22%
South Central China −15.26% −16.14% −17.01% −17.88% −18.79% −19.66%

Southwest China −26.71% −28.08% −29.42% −30.76% −32.16% −33.50%
Northwest China −43.45% −45.68% −47.85% −50.01% −52.27% −54.44%
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When the emission reduction targets gradually increase from 25% to 30%, the total output,
consumer surplus, and macro-environmental losses caused by CO2 emissions have decreased, and the
overall social welfare and producer surplus have shown an upward trend. This suggests that, although
the emission reduction target becomes increasingly severe, the behavior of returning subsidies to
enterprises has increased the production enthusiasm of producers and helps to increase corporate
profits. The total output has remained at around 933 million tons. Though the emission reduction
target has increased, the total output has increased slightly compared to the 2025 emission reduction
targets case. Total output, W, CS, PS, and emission loss decreased by 0.13%, −0.07%, 0.25%, −0.59%,
and 6.81%, respectively.

For the sub-region, as the emission reduction target increases, and the rate of decline in emission
reduction intensity in various regions has gradually increased. In most cases in Southwest China and
Northwest China, the emission intensity decrease exceeded 30%. When the overall emission reduction
target is 30%, the Northwest region’s reduction rate reaches the maximum, which is 54.43%. In North
China, East China, and South Central China, the emission reduction rate is in the middle; the rate in the
Northeast is the smallest. Along with the effects of mixed carbon trading policies, the output changes
show great regional differences. In North China, East China, and South Central China, it showed an
upward trend; the output of steel in Northeast China, Southwest China, and Northwest China show a
downward trend.

Under the premise emission reduction target of 25%–30% and 2.2197 tons CO2/ton steel as the
carbon trading benchmark value, only the North China CO2 emission intensity is lower than the
benchmark value, and the enterprise can choose to sell its own carbon quotas. CO2 emission intensity
in other regions cannot be lower than the benchmark value under most emission reduction targets;
they need to purchase carbon quotas, and the government (steel industry) needs to return subsidies
based on production. When the target is high (29%–30%), the CO2 emission intensity in Southwest
China and Northwest China is slightly lower than the benchmark value, so they can choose to sell their
carbon quotas.

4.2.4. Comparison of Single Emission Reduction Policies and Mixed Emission Reduction Policies

Sections 4.2.2 and 4.2.3 discuss the impact of the implementation of the mixed emission reduction
policy on the changes in the economic and environmental factors of steel companies and industries
under the carbon trading mechanism. This section calculates the changes in the output and emission
reduction intensity of enterprises and other economic factors in the implementation of the single policy
under the same emission reduction targets, then compares and analyzes the single and mixed emission
reduction policy.

(1) Comparison of only carbon trading policies and mixed policies in 2025.
After calculation and as shown in Table 10, Figures 8–10, the social welfare, total output, producer

surplus, consumer surplus, carbon allowance transaction price, and the macro environmental damage
caused by CO2 emissions and the decline in CO2 emission intensity under the mixed policy mechanism
in various regions have increased more than that under the situation of the single policy. Under the
mixed policy mechanism, the carbon price trading price and the regional emission intensity decrease
than that in the single policy mechanism, but the gap is negligibly small.

Table 10. The indicators change under the carbon trade mechanism; the target in single policy is 20% to 25%.

Emission Reduction Target 20% 21% 22% 23% 24% 25%

Carbon quota transaction price (Yuan) 46.91 53.54 60.59 68.03 75.88 84.12
Production (100 million tons) 9.0066 9.0049 9.0033 9.0019 9.0006 8.9995

Rate of change, production (with 20% as the base) - −0.02% −0.04% −0.05% −0.07% −0.08%
Rate of change, social welfare (with 20% as the base) - 0.01% 0.02% 0.03% 0.05% 0.07%

Rate of change, producer surplus (with 20% as the base) - 0.09% 0.19% 0.29% 0.40% 0.50%
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The rate of change reflects the intensity of changes in various indicators as the emission reduction
target increases (compared to 20% reduction in 2010). From the figures, it can be found that in
production change rates when emission reduction targets are low (20%–24%), steel production under a
single policy changes significantly. When emission reduction targets are high (24%–25%), the change
of steel production under the mixed policy is more obvious. In the change rate of producer surplus and
social welfare, the two policy conditions are basically flat, and the single policy changes slightly larger.

(2) Comparison of only carbon trading policies and mixed policies in 2030.
Calculations have found that in the case of emission reduction targets of 25%–30%, the CO2

emissions processed by CCS demonstration projects are at the lowest value; that is, under each emission
reduction target, the CCS demonstration project is only at the lowest maintenance stage.

Similarly, after calculation and as shown in Table 11, Figures 11–13, the social welfare, total output,
producer surplus, consumer surplus, carbon allowance transaction price, and the macro environmental
damage caused by CO2 emissions and the decline in CO2 emission intensity under the mixed policy
mechanism in various regions have increased more than that under the situation of the single policy.
Under the mixed policy mechanism, the carbon price trading price and the regional emission intensity
decrease more than that in the single policy mechanism, but the gap is so small that they can be ignored.

Table 11. The indicators change under the carbon trade mechanism; the target in single policy is 25% to 30%.

Emission Reduction Target 25% 26% 27% 28% 29% 30%

Carbon quota transaction price (Yuan) 91.17 99.72 108.45 117.51 126.89 136.59
Production (100 million tons) 9.3200 9.3183 9.3168 9.3156 9.3146 9.3138

Rate of change, production (with 25% as the base) - −0.02% −0.03% −0.05% −0.06% −0.07%
Rate of change, social welfare (with 25% as the base) - 0.00% 0.00% 0.01% 0.02% 0.03%

Rate of change, producer surplus (with 25% as the base) - 0.07% 0.13% 0.20% 0.27% 0.34%

The rate of change reflects the intensity of changes in various indicators as the emission reduction
target increases (compared to 25% reduction in 2010). From the figures, it can be found that in
production change rate, the effect of implementing a single policy on output change is significantly
less than the impact of the implementation of the mixed policy. In the change rate of W and PS, when
emission reduction targets are low (26%–28%), change rates are basically flat under the two policy
conditions and slightly larger under a single policy. When emission reduction targets are higher
(28%–30%), changes under mixed policies are more pronounced.Energies 2018, 11, x FOR PEER REVIEW  22 of 27 
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4.3. Discussions

Current research on the emissions mitigation targets is scarce. Therefore, this paper does not
discuss optimal emissions intensity and methods. Only the above three scenarios (2020, 2025, 2030)
have been analyzed. For China’s industrial sector, the results of parameters and numerical calculations
are few and lack certain references. Since the country has not announced the relevant details and trading
methods of the carbon trading market, the carbon trading benchmark value is set based on the historical
data. Moreover, due to these certain assumptions, there are some gaps between the calculations results
and the actual situation, but some trends and rules can still be found and determined.

Since the carbon trading mechanism is based on the government’s provision of a free carbon quota
for each company, the benchmarks are set differently, and the results will vary. Under the conditions set
in this paper, whether under the single carbon trading policy or the mixed policy, when the reduction
target increases from 15% to 30%, the quota trading price steadily increases from 12.65 Yuan to about
137 Yuan (nearly 11 times), and the social welfare and producer surplus of the steel industry show an
increasing trend—nearly 14% and 4%, respectively. While the macro-loss of CO2 emissions shows
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a decreasing trend (decrease by more than 10%), other indicators increase or decrease. This shows
that from the perspective of the implementation of the policy, the carbon trading policy and the mix
with other emission reduction policies are conducive to the improvement of the economic level and
emission reduction level of the steel industry.

For the sub-region, when the CO2 emission reduction target gradually increases, the regional
emission reduction pressure gradually increases as well. However, there are differences between
regions. The decline range in emission reductions in Northwest China and Southwest China is much
bigger than other four regions, and the range in the northeast region is the smallest.

Under the mixed policy mechanism, compared with the single carbon trading policy, the social
welfare function, total output, producer surplus, consumer surplus, carbon quota trading price,
macro-loss caused by CO2 emissions, and emission reductions of the entire steel industry improve.
Though under the same emission reduction target, the carbon allowance trading price in the single
policy is less than that in the mixed policy, and the decline range in regional emissions reduction in the
single policy is also lower than that under the mixed policies (though it is almost negligible—no more
than 1 Yuan and 0.01 ton CO2/ton). Therefore, under the carbon trading mechanism, it is necessary to
comprehensively consider the balance between the whole industry and regions and to consider whether
to use a single carbon trading mechanism or a mixed mechanism under the comprehensive evaluation.

Through numerical simulation, when the benchmark values in 2020, 2025, and 2030 are 2.8210 tons
of CO2/ton steel, 2.3782 tons of CO2/ton steel, and 2.2197 tons of CO2/ton steel, respectively, China’s
future steel output will be in the range of 854–934 million tons under the mixed policy mechanism.
The carbon price trading price range is between 12.65–137.59 yuan. The subsidy unit value ranges
from 15.5–36.5 yuan. The CCS demonstration projects are only in the minimum maintenance stage and
have not played a significant role in social emission reduction. Under the single carbon trading policy,
the future steel output will be in the range of 854–932 million tons, and the price of carbon trading
quotas will be between 12.65 and 136.59 yuan.

Obviously, whether it is a single carbon trading policy or a mixed policy, when the market is
balanced, the output is reduced by more than 200 million tons from the peak in 2016 (1.1346 billion
tons). North China and East China have decreased a lot, while the northeast, southwest, and northwest
regions have increased in production. This shows that the implementation of carbon trading policies
and mixed policies have alleviated the polarization of production in various regions to some extent,
which is conducive to optimizing the distribution of production between regions and enterprises so
that enterprises can better achieve the best profit.

5. Conclusions

Through the introduction of carbon trading policy, subsidy policy, CCS, and other emission
reduction policies, a two-stage multi-oligopoly enterprise production selection model including
emission reduction policies is established. This paper makes a preliminary study on the changes of
total production and social welfare indexes, which are under the restriction of the industry emission
reduction target and emission reduction policy, and carries on the quantitative research with the
operation data of iron and steel industry. The model is an abstraction and hypothesis of a practical
problem, which causes the calculation results in this paper to potentially deviate a little from the actual
situation. This paper emphasizes the change trends of corresponding indicators with the increase of
governmental pressure on emissions reduction.

The main conclusions are as follows:
Under the carbon trading policy mechanism, the carbon quota trading price increases as the

reduction targets increase, and the steel industry social welfare and producer surplus show an increasing
trend. The CO2 emission macro loss shows a decreasing trend, and the other indexes increase or
decrease. When the emission reduction targets gradually increase, the pressure on emission reduction
among regional oligarchic enterprises also gradually increases. The emission reduction rate of oligarchs
in Northwest and Southwest China is much bigger than that in other regions. Oligarchy enterprises in
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North China, East China and South Central China are second. Oligopolistic enterprises in Northeast
China are the lowest. Since the benchmark values are set differently, the numerical results will be
different, but the trends are basically similar.

Compared with the single carbon trading policy, the indicators under the mixed policy have
increased. In the view of change rate in production, social welfare, and producer surplus, when under
the lower emission reduction target, the change under a single policy is greater; when under the higher
target, change caused by the mixed policy is more obvious.

Based on the above results and conclusions, the Chinese steel industry should focus on the following
two aspects when formulating emission mitigation targets and auxiliary emission mitigation policies:

Firstly, the Chinese iron and steel industry at present is in the stage of excess production capacity,
which means that the output capacity is far greater than the actual consumption level. Through the
calculation of this paper, when the market reaches the equilibrium, the production and consumption
are less than the present level, especially in 2016. As a result, for China’s iron and steel industry
(government) should alleviate the contradiction of excess production capacity and bring relief to the
industry. It is immediate and necessary for the government to ban new production and push obsolete
and backward-producing enterprises out of the market as soon as possible.

Secondly, at present, there is no clear-text regulation of the use conditions and industry scope of
carbon trading policies in China. This paper uses the benchmark method to conduct a preliminary
study on the carbon trading mechanism of the steel industry. In combination with the actual situation,
we propose that in the use of single and mixed emission reduction policies under the carbon trading
mechanism, the government should consider the whole industry sector, regional balance, and carbon
trading benchmarks to determine the implementation of a single or mixed carbon trading policy. In the
selection of the carbon trading benchmark value, it is necessary to carefully select according to the
emission reduction target and the requirements for economic indicators.

This paper conducted a preliminary study on the carbon trade mechanism. With the gradual
improvement of relevant national policies, laws, and regulations, this study will continue to explore the
details of the carbon trading market of the steel industry and the game behavior between enterprises.
Future research will be more closely linked to national policies and will be gradually extended to other
high-energy industries such as cement industry and chemical industry.
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