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Abstract: Energy disaggregation, or nonintrusive load monitoring (NILM), is a technology for
separating a household’s aggregate electricity consumption information. Although this technology
was developed in 1992, its practical usage and mass deployment have been rather limited, possibly
because the commonly used datasets are not adequate for NILM research. In this study, we report the
findings from a newly collected dataset that contains 10 Hz sampling data for 58 houses. The dataset
not only contains the aggregate measurements, but also individual appliance measurements for three
types of appliances. By applying three classification algorithms (vanilla DNN (Deep Neural Network),
ML (Machine Learning) with feature engineering, and CNN (Convolutional Neural Network) with
hyper-parameter tuning) and a recent regression algorithm (Subtask Gated Network) to the new
dataset, we show that NILM performance can be significantly limited when the data sampling rate is
too low or when the number of distinct houses in the dataset is too small. The well-known NILM
datasets that are popular in the research community do not meet these requirements. Our results
indicate that higher quality datasets should be used to expedite the progress of NILM research.

Keywords: energy disaggregation; nonintrusive load monitoring (NILM); machine learning;
data requirements

1. Introduction

Disaggregating individual appliance usage from the aggregate electricity data, without extra
per-appliance measurements, is referred to as nonintrusive load monitoring (NILM) [1]. As shown
in Figure 1, NILM aims to disaggregate a single point measurement of total consumption, as shown
in (a), into each appliance’s energy consumption. Typically, the single point corresponds to the
power distribution board where the outside power source and inside power lines interface, and a
reliable NILM solution can help avoid the cost and trouble of installing numerous measurement
devices over numerous household appliances. Disaggregated energy consumption can be used
for providing feedback to consumers in order to modify their energy consumption behavior. For
instance, Neenan & Robinson have shown that energy breakdown information can lead consumers to
energy-saving behavior that improves user efficiency by 15% [2]. Moreover, it can be used for detecting
malfunctioning appliances, designing energy incentives, managing demand–response [3], etc. Thus,
NILM can be an attractive solution in that it provides energy breakdown information without the need
for a measurement device for each appliance.
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Figure 1. Collection of electricity consumption data. (a) For collecting aggregate data, only one 
measurement device is needed; (b) For collecting individual appliance data, one measurement device 
per appliance is needed. 

Most of the studies and services that are related to NILM focus on using the disaggregation 
information as feedback to humans for improving energy efficiency [2,4]. However, many other 
services are possible [5]; Table 1 shows four different application areas together with the required 
algorithm type, examples of analysis outputs from algorithms, and examples of real-world services 
that can be offered. The table was constructed based on the opinions of energy platform operators 
and field engineers. 
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Figure 1. Collection of electricity consumption data. (a) For collecting aggregate data, only one
measurement device is needed; (b) For collecting individual appliance data, one measurement device
per appliance is needed.

Most of the studies and services that are related to NILM focus on using the disaggregation
information as feedback to humans for improving energy efficiency [2,4]. However, many other
services are possible [5]; Table 1 shows four different application areas together with the required
algorithm type, examples of analysis outputs from algorithms, and examples of real-world services
that can be offered. The table was constructed based on the opinions of energy platform operators and
field engineers.

Table 1. Application areas of nonintrusive load monitoring (NILM).

Application
Area Algorithm Examples of Analysis Output Examples of Real-world Services

Energy Cost
Saving Regression

• Identification of large
consumption appliance

• Identification of large
consumption appliance
compared to neighbors

• Targeted marketing of
energy-efficient refrigerator

• Simulation of cost saving by
changing AC usage patterns,
followed by automated advices

Smart Home Real-time Detection
• Real-time on/off monitoring
• Appliance operation

pattern monitoring

• Real-time monitoring and
on/off control

• Real-time notice and alarm

House
Categorization Classification

Identification of houses that have
• TV on until late night
• A high level usage of washer
• A high level usage

of rice-cooker

• Video-on-demand
service promotion

• Targeted marketing for home
pick-up laundry services

• Targeted marketing for home
rice delivery service (Japan)

Life Coaching Detection,
Recommendation

• Anomaly detection of TV
watching pattern

• Monitoring of on/off events
that indicate human activity

• AC on-off
time recommendation

• ‘Do not run
laundry’ recommendation

• Family/people monitoring
service – one-person
household, elderly parents, etc.

• Recommendations on when to
turn on AC (now or save cost
for other days with worse
weather; weather prediction
used together)

In a real-world service, the required type of algorithm can be identified according to the
characteristics of the service to be provided. Energy cost saving, which is arguably the most widely
recognized application of NILM, requires accurate regression. While energy saving is an important
case for justifying the value of NILM, accurate regression is technically the most challenging and there
are many other real-world services that can be implemented without regression. For instance, the
‘family/people monitoring service’ in life coaching can be a valuable service to single-elderly-person
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households, and a service can be provided as long as an algorithm can confidently detect ‘no human
action for a long while’. Another exemplary service is classifying if a house has an old refrigerator with
excessive energy consumption. With this information, targeted marketing becomes possible and only a
binary classification of each house over a long time period is sufficient for providing the service. This is
a considerably less challenging task than generating a continuous output of the refrigerator’s electricity
consumption. Smart homes are yet another application that are attracting tremendous industry interest.
For a basic function of reporting if an appliance is on or off, one only needs to develop an algorithm
that can reliably detect on/off events in real-time. In Table 2, the algorithm and service requirements
for four application areas are shown.

Table 2. Requirements for providing useful services.
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malfunctioning appliance or improper electric wiring detection [4,5]. Therefore, NILM should be 
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It is evident from Tables 1 and 2 that there are several services that require a wide range of
specifications, including algorithm accuracy. In fact, energy IoT platforms are being used not only for
NILM-relevant services, but also for other energy and life-related services such as demand response,
real-time monitoring of aggregate electricity, energy bill calculation and prediction, and malfunctioning
appliance or improper electric wiring detection [4,5]. Therefore, NILM should be viewed as a library
that provides many different functions relevant to disaggregation, and not as a stand-alone application.

In addition to basic energy saving, NILM has the potential to be utilized for a variety of services.
Despite the importance and long history, NILM is still in the early stage of adoption. Part of the reason
for this slow adoption may be attributed to the limitations of the datasets that have been used by the
research community. As will be explained in Section 2.2, there have been only a handful of public
datasets that have been repeatedly used for numerous studies and these datasets are rather limited in
terms of size and information. To understand the impact of these limitations on algorithm performance,
we collected data from 58 households using sensing devices with 10 Hz sampling rate. Additional
sensing devices were deployed to independently and simultaneously collect electricity consumption
of a set of selected appliances, which enabled an evaluation of NILM performance. Using the newly
collected dataset, we studied the sampling rate of sensor data and the number of households that need
to be included in a dataset for performing reliable NILM research.

Recently, a variety of problem frameworks have been investigated for developing NILM algorithms.
For instance, the possibility of utilizing NILM for anomalous behavior detection has been addressed
in [6] and adoption of denoising autoencoders is considered in [7]. In this study, however, we focused
on the basic classification and regression algorithms because our goal is to understand the data
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requirements. The classification algorithms in this paper were developed with the goal of encompassing
the most representative approaches, namely, feature engineering-based models, basic deep learning
models, and deep learning models with extra parameter tuning. For regression, we adopted a
state-of-the-art deep learning algorithm, as described in [8].

In Section 2, previous works on NILM algorithms and the popular datasets used for algorithm
research have been explained. In Section 3, we explain the research dataset used in this study.
In Sections 4 and 5, we present the frameworks that we used for the data requirement studies and their
basic results. In Section 6, we explore the conditions that the energy dataset must satisfy in terms of
sampling rate and the number of houses when developing supervised NILM algorithms. In Section 7,
the limitations of our study are discussed.

2. Backgrounds

In this section, NILM algorithms and the datasets used in the previous studies have been explained.
As for the datasets, the data quality issue has been addressed as well.

2.1. NILM Algorithms

Energy disaggregation is made possible by the signatures of each appliance that can be detected
in the aggregated power consumption. Signatures are the patterns that contain information on the
appliance activity, such as its on/off status. Appliances have their own power consumption patterns
depending on electrical and mechanical inner components. Practical challenges, however, exist for
detecting such patterns. For instance, the signatures of a particular type of appliance can vary
depending on the manufacturer and product model—not all TVs will show the same fingerprints,
but will fall into a few groups of fingerprints instead. Furthermore, some appliances possess multiple
signatures since they have multiple operation modes. A good example is a rice cooker that has a
‘cook’ mode and a ‘keep warm’ mode. Another challenge is that the signatures of an appliance are
usually distorted and occluded by those of other appliances, and this is the most challenging part of
energy disaggregation.

Many studies have been conducted to overcome the aforementioned difficulties. Two main
approaches among them are event detection and decomposition. An ‘event’ refers to a transition of
state for an appliance (e.g., on to off, off to on). The event detection approach focuses on identifying
and classifying an event from the aggregate data. Hart first suggested this approach [1] in 1992. More
advanced techniques with load signature feature extraction [9] and unsupervised NILM framework
with event detection method [10] have been proposed as well. Contrary to the event detection
approach, the decomposition approach directly addresses energy disaggregation by separating the
entire aggregate signal into its component appliance signals. Such methods can be grouped into
supervised and unsupervised. Sparse coding [11] might be the most representative approach in
supervised methods. The algorithm learns the dictionary of each appliance using the signals of
appliances in the training datasets and models the aggregate signal as a sparse linear combination of
the components from the dictionary. Sparse subset selection technique was suggested for composing
the dictionary of each appliance [12]. Singh et al. (2016) combined deep learning with sparse coding,
which used multiple layers with sparse coding [13]. On the other hand, a frequently used algorithm
among unsupervised methods is the factorial hidden Markov model (FHMM) [14]. Unsupervised
energy disaggregation using FHMM and variants of FHMM can be found in [15], and improvement of
FHMM with prior models is suggested in [16]. Zhong et al. incorporated signal aggregate constraints
(SACs) into an additive factorial hidden Markov model, which significantly improved FHMM [17].
Shaloudegi et al. enhanced Zhong et al.’s algorithms by combining convex semidefinite relaxations
randomized rounding [18]. However, decomposition algorithms require the total number of appliances
to be fixed and known, which is an unrealistic assumption.

Recently, state-of-the-art performances have been achieved by using deep learning techniques.
Kelly et al. applied recurrent neural network and denoising autoencoders on the UK-DALE dataset [19].
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Huss proposed a hybrid energy disaggregation algorithm based on CNNs and a hidden semi-Markov
model [20]. Zhang et al. showed sequence-to-point learning with CNN wherein the treatment of the
single midpoint of a time window as the output of the network instead of the whole sequence of the
window was beneficial [21]. Chen et al. applied deep residual networks for convolutional sequence
to sequence learning of NILM, which also improved the performance [22]. Most recently, Shin et al.
proposed subtask gated networks that incorporate on-off classification information in addition to the
original regression information to outperform the previous best regression result [8].

2.2. Datasets and Data Quality

Data generation ideally requires a large-scale deployment, but there is a cost issue because
dedicated hardware and software need to be developed and deployed. As for the hardware,
typically three tiers of products can be manufactured depending on the cost flexibility and the data
type/sampling-speed requirements. The first tier can sample electricity waveforms a few million times
per second; therefore, the high-frequency signature of each appliance can be used for disaggregation.
While this approach provides ‘naming each’ capability, the type of signatures can be highly irregular.
For instance, the signatures might look quite different even among the TVs with the same display
technology, and consequently, a manual process for matching each ‘signature’ to an appliance in a
particular house might be needed before disaggregation can be used for the house. Furthermore,
the cost of these devices is high for the first tier. The other two tiers of products collect fewer samples
per second—a few thousand per second for the second tier and at most tens of samples per second
for the third tier. While the data quality is the worst for the third tier, the manufacturing cost is the
cheapest (usually several times cheaper than the first tier) and the collected data provides a significant
amount of information for disaggregation anyway. The data fields of the third tier usually include
active power, reactive power, and voltage. In our study, we focus on the third tier because of its
competitive cost for mass deployment.

The popular public datasets from [23–28] and the ENERTALK dataset introduced in this article
are shown together in Figure 2. Because of the apparent difficulty of collecting and handling big data,
many of the existing studies in the literature have utilized the popular public datasets. The quality and
quantity of the datasets, however, are limited. As we can see in Figure 2, most of the datasets have
sampling rates of 1 Hz or under. Furthermore, each dataset typically contains the data collected from
less than ten houses.Energies 2019, 1, 15 FOR PEER REVIEW 6 of 19 

 

 
Figure 2. Summary of publicly available NILM datasets and the ENERTALK dataset used in this 
study. Datasets within the green box are the ones that require the lowest level of cost for hardware. 
Some of the datasets partly contain aggregate data with higher sampling rates, but only those 
sampling rates that are used for the supervised NILM tasks have been shown. 

Among the many data requirements of NILM, sampling rate has been found to be the most 
critical factor in such studies according to Armel et al. [4]. In their study, they perform a metastudy 
of the existing works and showed that the identifiability of appliances depended on the sampling 
rate. Many real-life modern-day appliances need to be disaggregated using edge shapes of on/off 
events or repeated signatures during the on-state. The sampling rates of public datasets might not be 
sufficiently high for capturing the critical information. In Figure 3, we have plotted the exemplary 
electricity shapes of aggregate, TV, washer, and rice cooker signals. While the regularity of repeated 
shapes during the on-state is obvious for 10 Hz sampling, the shapes start to become ambiguous as 
the sampling rate is reduced to 1 Hz and then to 0.1 Hz. In the case of a rice cooker, the heating is 
done by a heating component that consumes electricity in a train of pulse shapes. The amplitude and 
duty cycle decide how much power the appliance consumes. In the top-right of Figure 3, the train of 
the pulse can be clearly observed. When the sampling rate is reduced to 1 Hz, however, the pulse 
shape starts to be distorted and the two ‘overshooting’ signatures, which were observed with 10 Hz 
sampling, disappear. In the bottom-right of Figure 3, the sampling frequency is 0.1 Hz and it is 
impossible to confidently declare that these signatures correspond to a rice cooker. Similar behaviors 
can be observed for aggregate, TV, and washer signals.  

Besides the sampling rate issue, many public datasets contain only a small number of houses. 
The importance of the number of houses can be explained in two ways. First, machine learning 
approaches for NILM can have an overfitting problem when the number of houses is not large 
enough. Data acquired from many houses can be crucial for a better generalization of NILM 
algorithms. As the number of houses increases, the number of combinations of appliances covered 
by the algorithm also increases, which makes NILM algorithms applicable to new houses. Secondly, 
the diversity of models for the same appliance type cannot be addressed by the limited datasets. As 
an example, one can focus on a particular model of TV by studying the dataset from a single house, 
but there is no guarantee that the findings will generalize to all TV models. In fact, the core display 
technology for TV has been rapidly changing, and there are easily five types of core technologies such 
as CRT (Cathode Ray Tube), plasma, LCD (Liquid Crystal Display), LED (Light-Emitting Diode), and 
OLED (Organic Light-Emitting Diode). Therefore, to develop a ‘TV disaggregation algorithm’, one 
needs to have access to the data collected from at least tens of houses such that all types of TVs can 
have a reasonable chance of being included in the dataset.  

 

Figure 2. Summary of publicly available NILM datasets and the ENERTALK dataset used in this study.
Datasets within the green box are the ones that require the lowest level of cost for hardware. Some of
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Among the many data requirements of NILM, sampling rate has been found to be the most
critical factor in such studies according to Armel et al. [4]. In their study, they perform a metastudy
of the existing works and showed that the identifiability of appliances depended on the sampling
rate. Many real-life modern-day appliances need to be disaggregated using edge shapes of on/off

events or repeated signatures during the on-state. The sampling rates of public datasets might not be
sufficiently high for capturing the critical information. In Figure 3, we have plotted the exemplary
electricity shapes of aggregate, TV, washer, and rice cooker signals. While the regularity of repeated
shapes during the on-state is obvious for 10 Hz sampling, the shapes start to become ambiguous as the
sampling rate is reduced to 1 Hz and then to 0.1 Hz. In the case of a rice cooker, the heating is done by
a heating component that consumes electricity in a train of pulse shapes. The amplitude and duty
cycle decide how much power the appliance consumes. In the top-right of Figure 3, the train of the
pulse can be clearly observed. When the sampling rate is reduced to 1 Hz, however, the pulse shape
starts to be distorted and the two ‘overshooting’ signatures, which were observed with 10 Hz sampling,
disappear. In the bottom-right of Figure 3, the sampling frequency is 0.1 Hz and it is impossible to
confidently declare that these signatures correspond to a rice cooker. Similar behaviors can be observed
for aggregate, TV, and washer signals.Energies 2019, 1, 15 FOR PEER REVIEW 7 of 19 
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Besides the sampling rate issue, many public datasets contain only a small number of houses.
The importance of the number of houses can be explained in two ways. First, machine learning
approaches for NILM can have an overfitting problem when the number of houses is not large enough.
Data acquired from many houses can be crucial for a better generalization of NILM algorithms. As the
number of houses increases, the number of combinations of appliances covered by the algorithm
also increases, which makes NILM algorithms applicable to new houses. Secondly, the diversity of
models for the same appliance type cannot be addressed by the limited datasets. As an example,
one can focus on a particular model of TV by studying the dataset from a single house, but there is
no guarantee that the findings will generalize to all TV models. In fact, the core display technology
for TV has been rapidly changing, and there are easily five types of core technologies such as CRT
(Cathode Ray Tube), plasma, LCD (Liquid Crystal Display), LED (Light-Emitting Diode), and OLED
(Organic Light-Emitting Diode). Therefore, to develop a ‘TV disaggregation algorithm’, one needs
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to have access to the data collected from at least tens of houses such that all types of TVs can have a
reasonable chance of being included in the dataset.

3. ENERTALK Dataset

In our study, we used the ENERTALK dataset collected through a commercial energy IoT platform
called ‘ENERTALK’. In Figure 4, the system diagram of ENERTALK is shown. It is a general IoT
platform for collecting, storing, and analyzing data, and NILM is one of the analysis functions in the
platform. ENERTALK platform can be seen as a data intelligence platform based on smart meters [29].
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The ENERTALK dataset (unfortunately, the ENERTALK dataset used for this study cannot be
made public due to privacy policy issues. Instead, a comparable dataset sampled at 15 Hz is scheduled
to be released soon) contains 10 Hz energy readings from 58 homes in Japan, collected between July
and August of 2016. The exact measurement period varies by the house, with 67% of houses measured
for two months, 24% for one week, and the rest in between. The data provides readings of active
power and reactive power, along with timestamps. Both aggregate data and individual appliance data
were collected simultaneously for the developing the algorithm. Individual appliance data, which
is used to construct the true answer to the model, consists of TVs, washers, and rice cookers, and
additional per-appliance data collection devices were also deployed. Although data was collected
for other appliances as well, per-appliance measurement devices were deployed only partially for
some appliances. Therefore, our study focuses on the aforementioned three devices only. Among the
58 houses considered in this study, we collected data for 40 houses for TVs, 50 houses for washers,
and 22 houses for rice cookers.

The actual usage time of an appliance was widespread and depended on the household.
For example, a house had a TV on for more than 16 hours in a typical day, while another had
a TV on for less than half an hour. Furthermore, rice cookers had multiple states of ‘on’. For the
households that usually use the keep-warm mode of the rice cooker, a certain level of power was
always in use and a large portion of cooker data was labeled as on. In contrast, some households hardly
used the keep-warm mode, and the rice cooker was measured to be off most of the time. This on-time
variation is shown in Figure 5. The resulting imbalance in the class label ratio makes the training of the
model more difficult.

As can be seen in Figure 2, the ENERTALK dataset contains 58 houses measured at 10 Hz sampling
rate. Compared to the existing public datasets, this dataset has a relatively higher sampling rate and a
larger number of houses. Dataset BLUED offers higher frequency, but contains only one house. REDD
and part of UK-DALE also offer higher frequency data, but are applicable only for aggregate data,
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not appliance data. The HES offers data from 251 houses, but the sampling rate is only one sample
every two minutes, and thus 1200 times slower than 10 Hz.

Energies 2019, 1, 15 FOR PEER REVIEW 8 of 19 

 

and rice cookers, and additional per-appliance data collection devices were also deployed. Although 
data was collected for other appliances as well, per-appliance measurement devices were deployed 
only partially for some appliances. Therefore, our study focuses on the aforementioned three devices 
only. Among the 58 houses considered in this study, we collected data for 40 houses for TVs, 50 
houses for washers, and 22 houses for rice cookers. 

The actual usage time of an appliance was widespread and depended on the household. For 
example, a house had a TV on for more than 16 hours in a typical day, while another had a TV on for 
less than half an hour. Furthermore, rice cookers had multiple states of ‘on’. For the households that 
usually use the keep-warm mode of the rice cooker, a certain level of power was always in use and a 
large portion of cooker data was labeled as on. In contrast, some households hardly used the keep-
warm mode, and the rice cooker was measured to be off most of the time. This on-time variation is 
shown in Figure 5. The resulting imbalance in the class label ratio makes the training of the model 
more difficult.  

 
Figure 5. On ratio of appliances in the ENERTALK dataset. 

As can be seen in Figure 2, the ENERTALK dataset contains 58 houses measured at 10 Hz 
sampling rate. Compared to the existing public datasets, this dataset has a relatively higher sampling 
rate and a larger number of houses. Dataset BLUED offers higher frequency, but contains only one 
house. REDD and part of UK-DALE also offer higher frequency data, but are applicable only for 
aggregate data, not appliance data. The HES offers data from 251 houses, but the sampling rate is 
only one sample every two minutes, and thus 1200 times slower than 10 Hz. 

4. NILM Algorithms Considered in This Study 

As discussed in the introduction, all regression, classification, detection, and recommendation 
algorithms are relevant to utilizing NILM for real-world services. In this study, we focused on the 
most basic modeling frameworks—a binary classification framework and a power usage regression 
framework. The binary classification framework can be the simplest choice for the sensitivity study, 
but it is closely related to many fundamental NILM services and thus an important one to consider. 
Power usage regression framework is the traditional framework for studying NILM algorithms [6,11–
22].  

For the classification framework, the raw measurements are used to construct 90-second blocks, 
as shown in Figure 6. Each block contains 900 samples of aggregate electricity measurements and 
three labels on whether TVs, washers, and rice cookers were on. Here, the block size of 90 seconds 
was chosen because it is long enough to accommodate the inherent patterns that were found in the 
feature engineering study in the binary classification framework. Per-appliance measurements were 
used for creating the on-off labels and calculating the sum of power consumption. Because the data 
collection periods vary over the houses and each appliance’s chance of being on or off varies (see 
Figure 5), we balanced the training dataset to have all houses contribute with equal importance and 
to have each of the on and off samples occupy 50% of the training samples. At the end, we randomly 

Figure 5. On ratio of appliances in the ENERTALK dataset.

4. NILM Algorithms Considered in This Study

As discussed in the introduction, all regression, classification, detection, and recommendation
algorithms are relevant to utilizing NILM for real-world services. In this study, we focused on the
most basic modeling frameworks—a binary classification framework and a power usage regression
framework. The binary classification framework can be the simplest choice for the sensitivity study, but it
is closely related to many fundamental NILM services and thus an important one to consider. Power
usage regression framework is the traditional framework for studying NILM algorithms [6,11–22].

For the classification framework, the raw measurements are used to construct 90-second blocks,
as shown in Figure 6. Each block contains 900 samples of aggregate electricity measurements and
three labels on whether TVs, washers, and rice cookers were on. Here, the block size of 90 s was
chosen because it is long enough to accommodate the inherent patterns that were found in the feature
engineering study in the binary classification framework. Per-appliance measurements were used for
creating the on-off labels and calculating the sum of power consumption. Because the data collection
periods vary over the houses and each appliance’s chance of being on or off varies (see Figure 5),
we balanced the training dataset to have all houses contribute with equal importance and to have each
of the on and off samples occupy 50% of the training samples. At the end, we randomly selected 1000
on blocks and 1000 off blocks from the dataset of each house and constructed the training data for
each appliance. For the 58 houses, a total of 116,000 blocks were used as the training dataset. We have
confirmed that the equal on/off ratio in the training data is very helpful for improving the classification
performance. For validation and testing, we used the true on/off ratio in the raw data instead of the
balanced on-off ratio in order that our evaluations would represent realistic scenarios.

For the regression framework, the input’s window size was fixed to 90 s as in the classification
framework, and the target to estimate was chosen as the appliance’s power usage over the entire 90 s.
This was necessary because our dataset contained only the 90 s aggregate power usage value for each
appliance’s power usage. For the services that utilize NILM regression results, one estimation every
90 s can be slower than what is ideally desired but most of the services, including the most important
energy-saving service, can be reliably offered anyway. As in the classification, the training dataset was
balanced over the houses, and the on-off states and validation and testing data were not balanced.
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4.1. Classification Algorithms

4.1.1. Vanilla DNN

Vanilla CNN and LSTM (Long Short-Term Memory) [30], the two representative models of deep
neural networks, were used as the basic benchmark. In the case of CNN, one-layer CNN was applied
instead of the usual two-layer CNN, where active-power (AP) 900 points and reactive-power (RP) 900
points were placed side by side in a block. The architecture of CNN was adopted from LeNet-5 [31]
that uses two convolutional layers with successive pooling layers, and two fully connected layers at
the end. Filters moved in one dimension from left to right to perform convolution with the signals.
The number of convolution filters was 32 for the first layer and 64 for the second layer, and the size of
pooling was two. Dropout was used in the fully connected layer. In LSTM, AP and RP were used
to create a 2 × 900 matrix data as the input to the hidden layer, and a total of 900 steps were passed.
The output of the last step was then used to decide whether an appliance was on or off for the block.
As a preprocessing step, we standardized the input data (AP and RP) house by house. For each house,
every single data point was subtracted by the average of the full data from the house, and divided by
the standard deviation.

4.1.2. Machine Learning with Feature Engineering

Electricity data contains a large number of signatures that are closely related to the underlying
components within the appliance. Therefore, feature engineering, especially based on signal processing
techniques, is a natural way to approach NILM. For this group of algorithms, we applied two traditional
ML algorithms, Logistic Regression, and Random Forest, after creating 59 features from the 90-s raw
data blocks. The number of trees was 100, the minimum leaf size was 1, and the number of predictors
to sample was 8 for Random Forest, which was selected through a simple grid search. For feature
engineering that created 59 features, we carefully selected features from many more features that were
investigated in an in-depth study. While it is not possible to explain these features in detail, we have
provided an explanation of a set of features that were finally included and we hope to provide a general
ideas on how feature engineering was performed in this work. In Figure 7, an exemplary aggregate
data of a house over a 10-s period is shown. The 0–2 s period is flat, and suddenly there is an event
a little after 2 s. It becomes flat again at ~3 s, and then another event is observed between 4 and 5 s.
Clearly, there are ‘flat’ regions and varying ‘edge’ regions, and one can create attributes based on these
characteristics. In Table 3, eight of such attributes are listed. Once the attributes are defined, actual
features can be defined as functions that use attribute values as the inputs. Eight of such features are
listed in Table 4. These handcrafted features exploit the signatures of each appliance’s signal.
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Table 3. List of edge attributes.

Attribute Name Description

Type Edge type
firstIdx Final index of edge
lastIdx Last index of edge

lastFirstDiff Difference between first point last point
maxFirstDiff Difference between maximum point and first point
minFirstDiff Difference between minimum point and first point

maxSlope Slope between maximum point and first point
minSlope Slope between minimum point and first point

Table 4. List of Features.

Feature Name Description

edgeCount Number of edges in 90 secs box
maxSlopeMean Mean value of maxSlope attributes of edges
edgeLengthMax Maximum length of edges

smallRisingCount Number of rising edges with maxFirstDiff ≤ 40
smallFallingCount Number of falling edges with minFirstDiff ≥ −40

flatCount Number of flat regions
flatLengthMax Maximum length of flat regions

betweenFlatMax Maximum length between pairs of flat regions

4.1.3. CNN Optimized by HPO

DNN is an efficient solution for avoiding feature engineering, which is time-consuming and
difficult. However, as will be seen in Section 5, using vanilla DNN does not guarantee good
performance partly because, typically, DNN performance is heavily dependent on the values of the
hyperparameters [32]. We can conduct a grid search as for Random Forest, but DNN has a huge search
space and the optimization can take a long time. To overcome this problem, we adopted an automatic
hyperparameter optimization (HPO) method that was described in [33] and is based on a Bayesian
optimization method to optimize the architecture of DNN. Rather than attempting to try multiple
points in the hyperparameter space randomly, it assumes a Gaussian process prior and updates the
prior based on the points the HPO algorithm have measured, evaluating the next points that maximize
the expected improvement. HPO is effective when evaluating performance is expensive in terms
of time consumption and computation. Training a deep neural network undoubtedly fits into this
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category. Bayesian optimization has shown many promising results in the HPO field. It even surpasses
the expert human model on image classification in 2012 [34].

Because CNN tends to perform better than LSTM for our tasks, we limited the scope of this
study to CNN only and optimized the hyperparameters, including the number of layers, neurons,
and epochs. Before running HPO, the list of hyperparameters and range of each hyperparameter need
to be determined. We ran HPO on three different CNN models as shown in Figure 8, where each
model’s number of convolution (with pooling) layers was 1–3. The maximum step size of Bayesian
optimization was chosen to be 20 for all three models. Hence, we used CNN architectures shown
in Table 5.Energies 2019, 1, 15 FOR PEER REVIEW 12 of 19 
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Table 5. CNN with hyperparameter optimization (HPO): Range setting and optimized parameters.

Range Setting Optimized Parameters

TV Washer Cooker

1 layer HPO

E : 1~10 E : 4 E : 7 E : 8
F1, size : 2~50 F1, size : 2 F1, size : 27 F1, size : 35
F1,num : 5~30 F1,num : 30 F1,num : 21 F1,num : 5
P1,size : 2~50 P1,size : 19 P1,size : 42 P1,size : 38

2 layer HPO

E : 1~10 E : 5 E : 9 E : 10
F1, size : 2~12 F1, size : 2 F1, size : 10 F1, size : 12
F1,num : 5~30 F1,num : 5 F1,num : 7 F1,num : 5
P1,size : 2~20 P1,size : 19 P1,size : 19 P1,size : 20
F2, size : 2~12 F2, size : 2 F2, size : 8 F2, size : 4
F2,num : 5~40 F2,num : 40 F2,num : 36 F2,num : 5
P2,size : 2~20 P2,size : 10 P2,size : 12 P2,size : 2

3 layer HPO

E : 1~10 E : 1 E : 10 E : 10
F1, size : 2~12 F1, size : 2 F1, size : 12 F1, size : 10
F1,num : 5~30 F1,num : 24 F1,num : 30 F1,num : 13
P1,size : 2~20 P1,size : 7 P1,size : 11 P1,size : 3
F2, size : 2~12 F2, size : 9 F2, size : 10 F2, size : 8
F2,num : 5~40 F2,num : 5 F2,num : 24 F2,num : 27
P2,size : 2~20 P2,size : 20 P2,size : 4 P2,size : 10
F3, size : 2~12 F3, size : 2 F3, size : 9 F3, size : 6
F3,num : 5~40 F3,num : 5 F3,num : 14 F3,num : 40

P3,size : 2 P3,size : 2 P3,size : 2 P3,size : 2

4.2. Regression Algorithm

For the regression algorithm, a state-of-the-art NILM algorithm called subtask gated networks
(SGN) was used [8]. It is a sequence-to-point algorithm, and Figure 9 shows the architecture of SGN,
in which the output of the regression subnetwork is gated by the output of the classification subnetwork.
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Details of the algorithm can be found in [8], and we too used the exact same algorithm, except for
applying it to the ENERTALK dataset.
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As with the Vanilla DNN in the binary classification task, the active power and reactive power
of aggregated power consumption were used to create a 2 × 900 matrix data as the input. We used
the per-appliance measurements of the true regression outputs, and the same labels as used in the
classification task for calculating the loss function during training and evaluating performance during
testing. As a preprocessing step, we standardized the input data (AP and RP) as in the previous
research [8].

5. Basic Performance Results

In this section, the basic performance results of running the algorithms introduced in Section 4
over the ENERTALK dataset are provided. These results serve as the baseline performance for the
sensitivity study of data sampling rate and the number of houses in Section 6.

5.1. Performance Metric

For evaluation, a five-fold cross-validation was used. Unlike how training data were generated
(1000 on blocks and 1000 off blocks sampled from each house in the training folds), all blocks were
available for the test houses so that the test result would be as realistic as possible. After testing five-fold
in this manner, the average area under receiver operating characteristic curve (AUROC) over five-fold
results were calculated as the final performance metric of classification. For the regression, we calculated
the average mean absolute error (MAE) over the five-fold results as the performance metric.

5.2. Experimental Results

The results of binary classification experiments are shown in Table 6. In the case of TVs, ML with
feature engineering performed so poorly that even vanilla DNN achieved better performance. Both ML
algorithms with feature engineering showed AUROC values that were too low for practical use. This
result implies that handcrafted features failed to be sufficiently related to TVs. This can be explained by
the characteristics of TV signatures. Most of the TV models show a fast fluctuation in electricity usage
depending on what colors are dominantly displayed at each moment. When the screen scene is dark,
less power is used. When the screen scene is bright, more power is used. Therefore, the patterns of TV
are not very regular, making it difficult for handcrafted feature engineering to work well. Vanilla DNN
and CNN with HPO, however, performed better. After a deep dive to investigate how they did better,
it was found that the two algorithms utilized the correlation where TV tends to be on when many other
appliances are on (e.g., evening time). There was a sufficient correlation between the usages of TV
and all the other appliances together, and deep learning framework was able to exploit it. The best
performing algorithm was one-layer CNN with HPO, and the result is consistent with our hypothesis
that TV signals are irregular and using more layers would not be very helpful.
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Table 6. Summary of classification performance (area under receiver operating characteristic curve
(AUROC) values).

Vanilla DNN ML with Feature Engineering CNN with HPO

Model LeNet-5 LSTM Logistic Regression Random Forest 1 layer 2 layer 3 layer

TV 0.8219 0.8341 0.6924 0.6910 0.8427 0.8354 0.8391
Washer 0.8438 0.7514 0.8974 0.9121 0.8658 0.8909 0.9017
Cooker 0.7653 0.6689 0.7734 0.7871 0.8487 0.8529 0.8826

In the case of washers, an opposite result was obtained, and Random Forest with feature
engineering performed the best. The AUROC value was 0.9121, which is very high for a real-world
scenario. As can be seen in Figure 3, signals from washers have very strong and distinguishable
shapes, and they were well captured by feature engineering. CNN with HPO also worked well, and it
outperformed vanilla DNN by a large margin. As for the number of layers, CNN with HPO worked the
best when three layers were used. It can be speculated that the structures of the washers’ signatures were
complicated enough to cause the three-layer model to work the best. Perhaps even better performance
would have been obtained by stacking more layers. In the case of rice cookers, CNN with HPO
performed well. The AUROC value was very high at 0.8826, indicating that real-world services can be
reliably built over the NILM algorithm. For washers and cookers, ML with feature engineering worked
better for one (washers), and CNN with HPO worked better for the other (cookers). The performance
difference, however, was sometimes marginal and the results could have been different with extra
effort in either of the algorithm groups. While there is enough room for improving the performance,
the performance results showed enough diversity for us to continue with the sensitivity analysis.

The results of the regression experiments are shown in Table 7. Note that the MAE metric
was calculated based on power usage (Wh), unlike the Watt-based calculations as in the previous
research [8]. From these results, it is evident that regression of TVs is much more difficult than for
washers or cookers. As TV signatures are known to be irregular, their regression tends to perform
poorly even with the 10 Hz sampling that provides a better resolution on the raw data patterns. As we
will see in Section 6, this fundamental aspect makes the performance of TVs less dependent on the
sampling rate.

Table 7. Summary of regression performance (mean absolute error (MAE) values).

Appliances

Model TV Washer Cooker

SGN 1.1476 0.3704 0.2668

6. Sensitivity Analysis Results for Sampling Rate and Number of Houses

The key requirements of datasets are the sampling rate and number of houses, as we have
discussed in the Introduction and Section 2. In this section, we describe the NILM’s performance
sensitivity to the data sampling rate and the number of houses.

6.1. Sensitivity to Sampling Rate

When generating energy IoT data, the sampling rate is an important parameter for design.
Apparently, hardware cost can go up if a certain threshold is passed and high-end components need
to be integrated in the data collection device. Furthermore, the cost of the data platform, where
storage, analytics, and other functions need to be performed, is obviously affected by the sampling rate
because the data size is closely related. Therefore, understanding the performance and cost trade-off of
the sampling rate is important. The sampling rate of many of the public datasets given in Figure 2,
however, might have been determined without such a trade-off consideration. As can be seen in
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Figure 3, the signatures are significantly distorted as the sampling rate decreases. These plots indicate
that NILM performance can be significantly affected, and we attempted to confirm this hypothesis in
this study.

In Figure 10, binary classification performance is shown as the sampling rate is reduced from 10 Hz
to 0.03 Hz. To be precise, the data blocks with 900 samples were downsampled such that 3, 9, 30, 45, 90,
300, 450, and 900 samples existed in the 90-s period. Three samples per 90-s corresponds to a single
sample in 30 s. For each sampling rate, Random Forest and an optimized one-layer CNN was trained
to find the AUROC value. Here, one layer was used because a very small sample size cannot be tested
for CNNs with more layers that utilize pooling multiple times. In Figure 10a, the NILM performance
for TV is affected by the sampling rate for Random Forest, but there is hardly any performance loss for
CNN. As discussed in 5.3, the TV signatures are very simple and weak, and that must have resulted
in the insensitivity of CNN. In Figure 10b,c, it can be clearly observed that the performances of the
washers and cookers were seriously impaired as the sampling rate was reduced. In fact, a sampling
rate of at least 1–10 Hz is desired to prevent performance loss, and a sampling rate higher than 10 Hz
might be helpful as well. This observation is consistent with Figure 3, where original signatures can be
barely identified at 0.1 Hz sampling rate.
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Figure 10. Sensitivity of classification algorithms to sampling rate. Sensitivities of CNN and Random
Forest are shown where a larger value is desired for AUROC.

In Figure 11, the regression performance is shown. Note that the sampling frequency starts with
0.17 Hz because of the minimal number of samples required for SGN architecture. In the regression task,
the data blocks with 900 samples were down-sampled such that 15, 30, 45, 90, 300, 450, and 900 samples
existed in the 90-s period. The regression results followed similar trends to those of classification
performance. In Figure 11a, NILM regression performance for TVs was relatively less affected by the
sampling rate than the other appliances. For washers and cookers, the MAE curves dropped sharply as
the sampling rate increased to 3 Hz or above. After the sampling rate reached 3 Hz, the performance
curves tended to improve minimally.
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In summary, we have found that both classification and regression suffer as the sampling rate
decreases, except for TVs, for which the algorithms generally perform poorly. Therefore, it is crucial to
use datasets with a proper sampling rate when running or developing NILM algorithms. For the simple
tasks that we have investigated, at least 1 Hz and 3 Hz sampling rates are required for classification
and regression, respectively.

6.2. Sensitivity to Number of Houses

Another important aspect of data quality is the number of individual houses that are used for
training. We conducted experiments to find out how the performance of the NILM algorithm changed
with the changes in the number of houses.

For the binary classification task, we used the leave-one-out evaluation method to use the data
maximally, where the data of one house was left out for testing while the rest were used for training for
each fold. We used the same method as in the previous section to check the change in AUROC as a
function of the number of distinct houses in the training dataset. We first trained NILM algorithms
using the maximum number of houses (as described in Section 5), and then gradually reduced the
number of distinct houses. House selection for inclusion in the training dataset was conducted
randomly. Since the performance was dependent on the actual selection of the individual houses in
the training set, we repeated these experiments 20 times, for which the houses selected for training
were randomly shuffled, and averaged the results.

The classification results are shown in Figure 12. In general, AUROC improved as the number
of houses increased. For the Random Forest algorithm, all TVs, washers, and rice cookers showed a
monotonic improvement as the number of houses increased. The main improvements, however, were
observed to occur as the number of houses increased to 10–30. Among the three, rice cookers showed
the fastest ramp up, and the additional gain after 5–10 houses was small. For TVs, the improvement
was slow and steady, and continued all the way to 30–40 houses. For one-layer CNN, the general trend
of improved performance for a larger number of houses was the same, but the shape of the curves
was different. The performance of TVs did not improve much for a larger number of houses. Washers
showed improvement all the way up to 40–50 houses. The performance of rice cookers improved
sharply as the number of houses increased to 5–10, as in the Random Forest algorithm.Energies 2019, 1, 15 FOR PEER REVIEW 16 of 19 
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data. As the number of houses increases, the test performance tends to improve. Owing to the
limitation in the dataset, up to 39, 49, and 21 houses were investigated for TVs, washers, and rice
cookers, respectively.

The regression results are shown in Figure 13. For the regression task, experiment conditions were
the same as in the binary classification task except that we used five-fold cross validation instead of
leave-one-out. For an obvious reason, the houses selected for the test were excluded from the training
dataset, as in the classification experiments. Further, the averaging over 20 repeated experiments was
performed for regression as well. These results are shown in Figure 13. Overall, similar trends as in the
classification were observed. For the three appliances, the figures showed a sharp drop of MAE when
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the number of houses was increased to 3–5. For washers, a steady improvement continued until the
maximum number of 40 houses were included in the training. The signatures of washers are known to
be quite recognizable, but they vary over different manufacturers and models. Therefore, including
more houses in training implies a higher chance of having the signatures of the target washer being
included in the training data.

Energies 2019, 1, 15 FOR PEER REVIEW 16 of 19 

 

 
Figure 12. Sensitivity of classification algorithms to the number of distinct houses used in the training 
data. As the number of houses increases, the test performance tends to improve. Owing to the 
limitation in the dataset, up to 39, 49, and 21 houses were investigated for TVs, washers, and rice 
cookers, respectively. 

The regression results are shown in Figure 13. For the regression task, experiment conditions 
were the same as in the binary classification task except that we used five-fold cross validation instead 
of leave-one-out. For an obvious reason, the houses selected for the test were excluded from the 
training dataset, as in the classification experiments. Further, the averaging over 20 repeated 
experiments was performed for regression as well. These results are shown in Figure 13. Overall, 
similar trends as in the classification were observed. For the three appliances, the figures showed a 
sharp drop of MAE when the number of houses was increased to 3–5. For washers, a steady 
improvement continued until the maximum number of 40 houses were included in the training. The 
signatures of washers are known to be quite recognizable, but they vary over different manufacturers 
and models. Therefore, including more houses in training implies a higher chance of having the 
signatures of the target washer being included in the training data.  
 

 

 

Figure 13. Sensitivity of the regression algorithm to the number of distinct houses used in the training 
data. As the number of houses increases, the test performance tends to improve. Owing to the 
limitation in the dataset and five-fold cross validation setup, up to 32, 40, and 17 houses were 
investigated for TVs, washers, and rice cookers, respectively. 

The experiment results of the two tasks show that it is very important to include data from a 
sufficiently large number of distinct houses as in the case of sampling rate. Overall, it can be 
concluded that the number of houses needs to be at least in the range of five to ten for TVs and 
cookers, and at least tens of houses for washers. For a general study where many appliance types are 
studied, it would be best to include at least tens of houses. In Figure 2, note that the UK-DALE and 
REDD datasets have only five and six houses each.  

7. Limitations of this study 

Nowadays, uncountably many types of appliances exist. Furthermore, each type of appliance 
(e.g., TV) can be manufactured with a variety of base technologies, where the characteristic of the 

Figure 13. Sensitivity of the regression algorithm to the number of distinct houses used in the training
data. As the number of houses increases, the test performance tends to improve. Owing to the limitation
in the dataset and five-fold cross validation setup, up to 32, 40, and 17 houses were investigated for
TVs, washers, and rice cookers, respectively.

The experiment results of the two tasks show that it is very important to include data from a
sufficiently large number of distinct houses as in the case of sampling rate. Overall, it can be concluded
that the number of houses needs to be at least in the range of five to ten for TVs and cookers, and at
least tens of houses for washers. For a general study where many appliance types are studied, it would
be best to include at least tens of houses. In Figure 2, note that the UK-DALE and REDD datasets have
only five and six houses each.

7. Limitations of this Study

Nowadays, uncountably many types of appliances exist. Furthermore, each type of appliance
(e.g., TV) can be manufactured with a variety of base technologies, where the characteristic of the
electric signature is significantly affected by the choice of the base technology. The increasing diversity
is making NILM an increasingly challenging problem. In our work, we have investigated the data
requirements in terms of sampling rate and number of houses using the ENERTALK dataset. Compared
to the traditionally popular datasets, the ENERTALK dataset is undoubtedly much richer in information
thanks to its higher sampling rate and larger number of houses. Nonetheless, the ENERTALK dataset
is still limited in size, information, and labeling, and thus our study ends up with its own limitations.

First, we were able to study only three types of appliances. The characteristics of signatures can
widely vary for other appliance types, and a further study is needed if a more general conclusion
on the sampling rate and number of house requirements is desired. Secondly, the three types of
appliances happen to have signatures that can be recognized by a human when a 90-s block of data is
presented. This might not be true for other appliance types, and a longer block size might need to be
used for studying such appliance types. Thirdly, the dataset was collected only from Japan. For another
country or a region, the popular appliances will be different and furthermore the usage patterns of
the local population will be different, too. Therefore, a minimum requirement for drawing a general
conclusion is to study datasets collected from at least a few or possibly several different countries.
The last limitation that we would like to address is the set of algorithms that we have used in this study.
We have done our best to cover the most representative categories of the NILM algorithms. However,
the NILM algorithm is continuously evolving, especially with the recent developments based on deep
learning, and the data requirements can be dependent on the choice of algorithm.

Despite the limitations discussed above, our case study based on the ENERTALK dataset clearly
points out a few important insights. The sensitivity study results clearly indicate that many of the
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existing studies could have produced much better performance results if better datasets had been
used. In fact, it is unclear which algorithms would be the best performing ones when a higher quality
dataset is used. Therefore, we believe it would be prudent for the research community to establish
a common understanding on what the exact data requirements for studying NILM algorithms are,
and to create several datasets that meet the requirements. Ideally, the datasets would be collected
from different continents. Our study cannot pinpoint the data requirements, but we believe it is one
of the first attempts, if not the first, for establishing sound guidelines on the data requirements for
studying NILM.

8. Conclusions

The potential and benefit of a real-world NILM service are known, but its real-world deployment
has been limited so far. We first summarized the possible NILM services that were compiled by
interacting with business experts and users of an energy IoT platform. The wide spectrum of real-world
services indicates that NILM research should not be limited to the original regression framework,
and other frameworks such as classification, detection, and recommendation should be considered
as well. It is widely known that NILM is a very difficult problem, but some of the real-world
services can be much easier to provide because the underlying algorithms and performance goals
are less challenging. Then, using a new dataset called ENERTALK, we investigated the data quality
requirements for developing NILM algorithms. For the case we have investigated, our study on data
sampling rate showed that at least 1–3 Hz sampling rate is required to prevent NILM performance from
deteriorating significantly in the case of the ENERTALK dataset. This is because of how signatures
of real-world appliances appear—when the sampling rate is too low, the signatures are destroyed.
The study conducted on the number of distinct houses in the training data set indicated that at least
tens of distinct houses need to be included in the training dataset in the case of the ENERTALK dataset.
Otherwise, the NILM performance started to deteriorate substantially. This might be natural, because
there are many manufacturers and product models for each appliance type (e.g., TV), and our goal is
to find common traits or an exhaustive list of traits of all within an appliance category. The sensitivity
studies indicate that the existing public NILM datasets might need to be used with caution because of
the limited sampling rate and house counts.
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