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Abstract: A data-driven modeling method with feature selection capability is proposed for the
combustion process of a station boiler under multi-working conditions to derive a nonlinear
optimization model for the boiler combustion efficiency under various working conditions. In this
approach, the principal component analysis method is employed to reconstruct new variables as the
input of the predictive model, reduce the over-fitting of data and improve modeling accuracy. Then,
a k-nearest neighbors algorithm is used to classify the samples to distinguish the data by the different
operating conditions. Based on the classified data, a least square support vector machine optimized
by the differential evolution algorithm is established. Based on the boiler key parameter model,
the proposed model attempts to maximize the combustion efficiency under the boiler load constraints,
the nitrogen oxide (NOx) emissions constraints and the boundary constraints. The experimental
results based on the actual production data, as well as the comparative analysis demonstrate: (1)
The predictive model can accurately predict the boiler key parameters and meet the demands of
boiler combustion process control and optimization; (2) The model predictive control algorithm can
effectively control the boiler combustion efficiency, the average errors of simulation are less than 5%.
The proposed model predictive control method can improve the quality of production, reduce energy
consumption, and lay the foundation for enterprises to achieve high efficiency and low emission.

Keywords: Combustion efficiency; NOx emissions constraints; boiler load constraints; least square
support vector machine; differential evolution algorithm; model predictive control

1. Introduction

Large inertia and time delay of the coal-fired boiler burning process leads to a complicated
model for a power station boiler. This makes its direct control difficult [1]. The combustion situation
could be directly described with the boiler combustion efficiency. Thus, it could be considered as
an important feature for boiler control and optimization. On the other hand, nitrogen oxides (NOx)
generated from combustion emissions are known as significant environmental pollutants [2]. Thus,
combustion optimization should be considered due to the economy and safety necessities. A high
precision predictive model is required for combustion optimization.

Mechanism models, statistic models, and data-driven models are the three main models that
have been proposed in the literature for the estimation of boiler combustion efficiency. A variety of
mechanism models have been derived for the boiler combustion efficiency using the physical principles.
For example, the superiority of a gray-box system identification method to the computational
fluid dynamics (CFD) method for NOx emission modeling in a coal-fired power plant has been
demonstrated [3]. An energy balancing-based model has been employed in Reference [4] to propose

Energies 2019, 12, 1738; doi:10.3390/en12091738 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-4650-6870
http://www.mdpi.com/1996-1073/12/9/1738?type=check_update&version=1
http://dx.doi.org/10.3390/en12091738
http://www.mdpi.com/journal/energies


Energies 2019, 12, 1738 2 of 16

an effective method for the boiler combustion efficiency estimation. According to the experimental
results presented in these papers, a good approximation could be achieved through the proposed
models under certain constraints, however, their performance could be influenced by real operation
parameters. This limits their application in practical production. Accordingly, employing these models
in modern control methods is difficult. Several statistics-based models have been proposed for boiler
combustion efficiency prediction in the literature [5–7]. In Reference [5], an autoregressive integrated
moving average (ARIMA) model has been proposed, based on simulation data to predict the boiler
combustion efficiency. The thermodynamic principles have been employed to develop a dynamic
model for an ultra-supercritical coal-fired once-through boiler-turbine unit [6]. In Reference [7],
the prediction accuracy of the boiler combustion efficiency has been verified through a partial least
squares (PLS) model. Despite their simplicity and usefulness, these models are too sensitive to
measurement errors. This makes them unsuitable for designing a model-based controller. Various
data-driven models have been utilized in optimization-based controllers. Artificial neural networking
(ANN) [8], back-propagation (BP) [9], and multilayer perceptron (MLP) neural networks [10] have
been employed to predict the boiler combustion efficiency. Although the prediction accuracy of
these models is satisfactory, over-fitting phenomena could have occurred in them. Moreover, a least
square support vector machine (LSSVM) model has been extracted from the real data to obtain the
optimal combustion parameters [11,12]. Here, the LSSVM was employed to construct the boiler load,
the NOx emissions, and the boiler combustion efficiency models of the coal-fired boiler. Moreover,
the differential evolution (DE) algorithm has been utilized for online optimization of the LSSVM
parameters for different problems.

The experimental simulation data has been collected from the supervisor information system (SIS)
or distribution control system (DCS). To improve the prediction accuracy and reduce the computation
time, principal component analysis (PCA) has been selected to process the experimental data [13,14].
In addition, different operating conditions could be distinguished via the k-nearest neighbor (KNN)
classifier. Accordingly, the modeling prediction accuracy could be improved.

Various predictive model-based optimization methods have been utilized to control the boiler
combustion efficiency. In Reference [15], a new hybrid jump particle swarm optimization (PSO)
algorithm has been proposed to tune the proportional integral (PI) controller that has been designed for
the boiler-turbine unit control. Moreover, a genetic algorithm (GA) has been utilized to obtain
the optimal controller parameters of the low NOx emissions in the presence of the invariable
load [16]. The active disturbance rejection controller (ADRC) was proposed by Han, and it had
a large stability margin and bandwidth. However, the method required the control torque disturbance
to be set [17]. A new hybrid model-free control and virtual reference feedback tuning (MFC-VRFT)
method was ƒ proposed to solve the complex problem of traditional controllers. This method can
solve the controller optimization problem well. However, multiple PI controller parameters must be
considered [18]. To improve the boiler efficiency under the load constraint by finding the optimal
parameters, the DE algorithm has been employed too [19–22]. Due to its highly robust performance,
the model predictive control (MPC) has been employed in various control applications, such as civil
engineering control [19,20], machinery manufacturing control [21] and steel industry control [22].

Improving the boiler combustion efficiency under NOx emissions and load constraints by using
a nonlinear adaptive model predictive controller is the main goal of the current paper. A DE-based
LSSVM algorithm and the feature selection approach are employed to extract appropriate models
for the NOx emissions, the boiler load, and the boiler combustion efficiency for different operation
conditions. This predictive model is employed to present an optimization model for improving boiler
combustion efficiency under NOx emissions and boiler load constraints. Finally, a DE algorithm is
utilized for solving the optimization model or equivalently finding the optimal control parameters.

This paper is organized as follows. The boiler combustion process is illustrated in Section 2.
A nonlinear predictive model for the coal-fired boiler is extracted in Section 3 and its performance
is validated through appropriate comparative models. An optimized output control scheme for
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the coal-fired boiler is presented in Section 4. The effectiveness of the proposed control structure is
investigated through simulations. The concluding remarks are given in Section 5.

2. Background

A super-critical 600MW coal-fired boiler produced by the Harbin Boiler Plant Limited Liability
Company is considered. The coal preparation system, the burner, the heating surface, and the air
preheater are its main components. The boiler production process is shown in Figure 1. And the
relation variables measurement points are marked in the figure. The coal in the coal hopper is fed into
the coal mill via a belt conveyor, the pulverized coal and the primary air mixture via the milling system
are fed into the combustion chamber. The steam generator combustion releases energy to produce
saturated steam. Then, the superheated steam of a specific temperature is collected into main-pipe
steam via the superheater, the superheated steam with a certain pressure enters the turbine’s cylinder
to drive the generator to generate electricity. Meanwhile, the flue gas is generated in the combustion
process. In addition, to convert saturated steam into superheated steam, preheated air is preheated by
boiler feed water and the air preheater via the economizer.

Flue gas is extracted from the boiler through the appropriate exhaust fans. The flue dust is
separated from the electrostatic precipitate after exhausting flue gas into the atmosphere via an 80m
high stack. The bottom ash (slag) and the flue dust are disposed of via the hydraulic system and
transported through the pipelines to the landfill. When the furnace flame temperature rises above
900 ◦C in the boiler combustion process, the coal undergoes thermal decomposition and is further
oxidized into NOx, accompanied by the reduction reaction of NOx. The producing and reducing
NOx are not only related to the characteristics of coal, the state of NOx in coal, the distribution ratio
of nitrogen in volatile and coke during nitrogen thermal decomposition of coal and their respective
components, but is also related to the oxygen concentration and combustion temperature. The NOx
produced by the coal combustion in the boiler is discharged from the chimney into the surrounding
environment. It could be harmful to the atmosphere and the environment. Moreover, the boiler load
leads to unsafe boiler running and a low fuel utilization ratio. Therefore, the operation variables should
be controlled to achieve the optimal boiler combustion efficiency under the NOx emissions and boiler
load constraints. It leads to an interesting research area.
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3. Nonlinear Dynamic Prediction Model

The NOx emissions, the boiler load, and the boiler combustion efficiency could be described
through nonlinear dynamic prediction models. These models are described in this section. The PCA
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algorithm is employed to reconstruct new variables as the predictive model inputs (see Section 3.1).
This provides relevant information on the input parameters. The basic principles of the KNN classifier
are introduced in Section 3.2. The prediction model is constructed in Section 3.3. The evaluation indices
for model performance verification are defined in Section 3.4. Finally, the prediction performance of
the proposed model is verified in Section 3.4.

3.1. Data Selection

The boiler efficiency, boiler load and NOx emission depend on various parameters, such as the
coal feed, the main feed-water flow, the primary airflow, and the secondary airflow. The combustion
mechanism and empirical analysis give eighteen boiler parameters that are gathered from the DCS.
These parameters are defined in Table 1. The parameter name in the table is important related variables
of the boiler efficiency (B), boiler load (L) and NOx emissions (Nx). Since the mentioned parameters
have a different range, the data should be standardized. This improves the prediction accuracy. All the
data are scaled according to the following equation:

Sk
n =

Xk
n −

1
K
∑K

k=1 Xn
k√

1
K−1

∑K
k=1 (X

n
k −

1
K
∑K

k=1 Xn
k )

2
(1)

where Sn
k represents the n dimensional production parameters under data standardization, Xn

k represents
the meta-data with the dimension n for the kth sample, and K is the number of the data set.

Table 1. The main boiler parameters.

Name Nomenclature Symbol Unit Classical

Input variable

Controllable
variable

Coal feed Fc t/h B/L/Nx
Main feed-water flow M t/h B/L/Nx
Coal mill inlet airflow A A1 t/h B/L/Nx
Coal mill inlet airflow B A2 t/h B/L/Nx
Coal mill inlet airflow C A3 t/h B/L/Nx
Coal mill inlet airflow D A4 t/h B/L/Nx
Primary air flow Pa t/h B/L/Nx
Secondary air flow S t/h B/L/Nx

State variable

The flue gas oxygen content A O1 % B/Nx
The flue gas oxygen content B O2 % B/Nx
Coal mill inlet temperature A T1

◦C B
Coal mill inlet temperature B T2

◦C B/Nx
Coal mill inlet temperature C T3

◦C B
Coal mill inlet temperature D T4

◦C B/Nx
Furnace pressure P Pa B

Output variable
NOx emissions in flue gas Nx mg/m3

Boiler combustion efficiency B %
Boiler load L MW

Due to the interaction between these parameters, the obtained prediction accuracy is low. Thus,
the PCA method is employed for generating the required input for the prediction model and reducing
the input dimension. The input variables are composed of controllable variables and state variables.
Fc, M, A1, A2, A3, A4, Pa, S are the most representative control variables in Table 1.

3.2. Classification of Operating Conditions

The actual production process runs under several operating conditions, and their parameters may
change. Thus, a KNN algorithm is applied to separate different operating conditions. The K-value
selection, distance measurement and the classification rule are three main stages in the KNN
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classification method. Firstly, the KNN algorithm selects the K value of the fixed sample data
via cross-validation. Secondly, the distance measurement function is carried out for different operating
conditions. The Euclidean distance describing with the following equation is selected for the distance
measurement:

d1,2 =

√√ n∑
l=1

(S1l − S2l)
2 (2)

where d1,2 is the Euclidean distance between two actual production parameters with the dimension n,
and S1l and S2l are the lth components of their corresponding standard deviations.

The test set is input and compared with a training set, the corresponding feature when the data
and label in the training set are thus known. Corresponding features are determined by computing the
Euclidean distance between the objects as a non-similarity index objects. Finally, the majority voting
method is employed to classify the new sample data, and the corresponding model is utilized for the
prediction. The greedy algorithm is employed to distinguish different operating conditions from the
standard deviation distance of the clustering center. The sample data are divided into two groups.
In this study, the boiler combustion efficiency, the boiler load, and the NOx emissions are considered
as the operation conditions, respectively.

3.3. Construction of the Predictive Model

The LSSVM is adopted to construct the predictive model while the DE algorithm is utilized to
find the optimal parameters of the LSSVM. The boiler load, NOx emissions and boiler combustion
efficiency are divided into the H group data under the classified working conditions, then step 1 to
6 is executed, respectively. Each set of data represents a class of working conditions. The flowchart
of the DE-based LSSVM (DELSSVM) algorithm is shown in Figure 2. The measurement models
under corresponding working conditions are established by using the DE algorithm to the optimal
LSSVM method. A description of the relationship between the input parameters and the boiler major
parameters is given below:

Step 1: Divide data 1 (the NOx emissions samples set), data 2 (the boiler combustion efficiency
samples set), and data 3 (the boiler load samples set) into training and test data, in accordance with the
H groups operating conditions.

Step 2: Initialize the DE swarm randomly within the search space and adjust these parameters:
Np as the population size, D as the population dimension, g as the iteration number, G as the maximum
iterations, F and CR as the alternating and mutant probabilities, C and σ2 as the regularization and
kernel parameters (Np = 500, D = 2, G = 1000, F = 0.7, CR = 0.9 are considered in this paper).

Step 3: Construct the LSSVM model using each individual correspondent with the kernel
parameters value of the LSSVM and the model data of the hth working conditions, the predictive
model number of Np are obtained by training, radial based function (RBF) kernel function is used in
the LSSVM model:

f (x) =
K∑

k=1

ahK(xk, x) + b k = 1, 2, . . . , K (3)

K(xk, x) = exp

∣∣∣∣∣∣( ‖xk − x‖2

2σ2 )

∣∣∣∣∣∣ (4)

where f (x) is the predictive value, ah and b represent model parameters, xk is the hth input parameter of
the training sample, K is the number of training sets, K(xk, x) are the LSSVM kernel parameters, σ2 is
the width of the RBF function, and the DE algorithm is used to obtain σ2.

Step 4: Calculate the prediction root mean square error (ε(k)) for every particle ( f (k)) as:

ε(k) =

√√√
(

N∑
k=1

∣∣∣Yk − f (xk)
∣∣∣2)/N (5)
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where Yk is the kth true value and f (xk) is the kth prediction value, and N is the number of data sets.
Step 5: If g = G, stop the algorithm and go to Step 6. Otherwise, update the particles according to

Equations (6)–(8) and return to Step 3.

V j,g+1 = x j,g + F(xbest.g − x j,g) + F(xr1,g − xr2,g)

g = 1, . . . , G, j = 1, . . . , N
(6)

Ui
j,g+1 =


Vi

j,g, randi( j) ≤ CR, i = randn j

xi
j,g, randi( j) > CR, i , randn j

i = 1, 2, . . . , D, g = 1, . . . , G, j = 1, . . . , N

(7)

x j,g+1 =

 U j,g, f (U j,g) < f (x j,g)

x j,g, f (U j,g) ≥ f (x j,g)

g = 1, . . . , G, j = 1, . . . , N

(8)

where Vj,g+1 is the jth individual in the (g + 1)th iteration; xbest,g is the best individual in iteration
g; j, r1, r2 are different random integer numbers in the interval [1, Np]; F∈ [0, 2] is the alternating
probability;Ui

j,g+1 is the jth individual in the (g + 1)th iteration and the dimension parameter of the ith
individual; rand () means a random number witha uniform distribution in the interval [0, 1]; CR∈ [0, 1]
is the crossover probability and f (*) is the individual fitness function value.

Step 6: Calculate the optimal penalty factor C and the kernel function σ2 as well as the predictive
model output.Energies 2018, 11, x FOR PEER REVIEW  6 of 17 
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The model input variables are composed of state variables and controllable variables given in
Table 1. And the prediction models for the boiler combustion efficiency, the NOx emissions and boiler
load for different operating conditions are described as:

YB,h = f (Fc, M, A1, A2, A3, A4, Pa, S, O1, O2, T1, T2, T3, T4, P, σ2
B, wB, C, ei,B, ai,B, bB, B∗) (9)

YNx,h = f (Fc, M, A1, A2, A3, A4, Pa, S, O1, O2, T1, T2, σ2
Nx

, wNx , CNx , ei,Nx , ai,Nx , bNx , N∗x) (10)

YL,h = f (Fc, M, A1, A2, A3, A4, Pa, S, σ2
L, wL, CL, ei,L, ai.L, bL, L∗) (11)

where YB,h, YNx,h and YL,h are the predicted values for the boiler efficiency, the NOx emissions and the
boiler load under the hth operating condition, respectively; Fc, M, A1, A2, A3,A4, Pa, S, O1, O2,T1, T2,
T3, T4, P are the corresponding symbols for operating parameters given in Table 1; σB

2, σ2
Nx

and σ2
L are

the kernel parameters of boiler efficiency, NOx emissions and boiler load, respectively; wB, wNx and
wL are the weight vectors of boiler efficiency, NOx emissions and boiler load, respectively; ei,b, ei,Nx and
ei,L are the loss functions of the boiler efficiency, NOx emissions and boiler load, respectively; ai,B, ai,Nx
and ai,L are the lagrange multipliers of boiler efficiency, NOx emissions and boiler load, respectively;
bB, bNx and bL are the constants of boiler efficiency, NOx emissions and boiler load, respectively; Nx*,
B* and L* are the previous values for the boiler combustion efficiency, the NOx emissions and the boiler
load (at previous sample time), respectively.

3.4. Model Validation and Analysis

3.4.1. Experiment Setup

The experimental data collected from the distribution control system (DCS) in the power plant
are defined in Table 2. The positive balance method is adopted to calculate the boiler efficiency
according to the relevant factors (input variables) of boiler efficiency. The input variables of boiler
efficiency are shown in Table 1. The input variables of the predictive model are obtained according to
Equations (9–11) under two operating conditions. All of these simulations are performed through the
MATLAB R2014a environment on a PC with Intel Core TM i5 (2.50 GHz) processor, and 2.0 GB RAM,
and Windows 10 32bit operating system.

Table 2. Dataset1.

Parameter
Number (Condition 1) Number (Condition 2)

Nx B L Nx B L

Train data (samples) 800 800 800 600 600 600
Test data (samples) 300 300 300 270 270 270

Sample Interval (min) 1 1 1 1 1 1
Input variable 13 16 9 13 16 9

Output variable 1 1 1 1 1 1

3.4.2. The Model Performance Evaluation Indicators

To compare the performance of the proposed model with other models, three evaluation indicators
are defined in Table 3. These indicators could evaluate model prediction accuracy. These indicators
include mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error
(RMSE). These indicators can evaluate the average prediction ability of the model for each data point.
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Table 3. The indicators for the model performance evaluation.

Metric Definition Equation

MAE Mean absolute error MAE = (
∑K

k=1

∣∣∣Yk − Ŷk
∣∣∣)/K

MAPE Mean absolute percentage error MAPE = (
∑K

k=1

∣∣∣Yk − Ŷk
∣∣∣/Yk)/K

RMSE Root mean square error RMSE =

√
(
∑K

k=1

∣∣∣Yk − Ŷk
∣∣∣2/(K − 1))

3.4.3. Experimental Result Analysis

In this section, the approach DDMMF is proposed as the predictive model in this paper,
the prediction performance of the proposed model is compared with the ARIMA model in Reference [5],
the PLS model in Reference [7], and the MLP model in Reference [10]. In the first case, the predicted
results of the proposed model for operating condition 1 are compared with the corresponding ones
obtained from the MLP, ARIMA and PLS models. The predicted values for the boiler combustion
efficiency, the NOx emissions, and the boiler load for different prediction models are shown in Figure 3,
while their corresponding prediction errors are compared in Figure 4. The evaluation indicators
obtained for these predicted values are compared for various prediction models. These comparative
results are given in Table 4. The predicted values for operating condition 2 are compared in Figure 5,
while their corresponding prediction errors are given in Figure 6. Table 5 compares the prediction
evaluation indicators for operating condition 2.

For operating condition 1, the best fit to the real values was achieved by the DDMMF algorithm (see
Figures 3 and 4). Moreover, Table 4 demonstrates that the smallest evaluation values, or equivalently,
the best prediction capability could be obtained by the proposed method. The same results for operating
condition 2 could be derived from Figures 5 and 6 and Table 5. In summary, the following quantitative
results could be obtained from these simulations.Energies 2018, 11, x FOR PEER REVIEW  9 of 17 
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Figure 3. The predicted values obtained from different prediction models for operating condition 1.
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Figure 4. The prediction errors obtained from different prediction models for operating condition 1.
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Table 4. The prediction evaluation indicators of different objects for different models in operating
condition 1.

NOx Emissions Boiler Load Boiler Efficiency

Model MAE
(mg/m3)

RMSE
(mg/m3) MARE (%) MAE

(MW)
RMSE
(MW)

MARE
(%)

MAE
(%)

RMSE
(%) MARE (%)

DDMMF 1.697 13.466 4.9 × 10−4 0.001 4.244 0.001 0.010 0.162 7.3 × 10−5

MLP 1.766 14.138 9.4 × 10−4 0.029 11.567 0.011 0.058 0.184 2.0 × 10−4

ARIMA 2.559 28.249 1.9 × 10−3 3.520 21.563 0.789 0.040 0.712 5.1 × 10−4

PLS 2.321 15.844 3.0 × 10−3 0.963 35.940 0.631 0.118 1.628 2.8 × 10−4
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Figure 5. The predicted values obtained from different prediction models for operating condition 2.
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Figure 6. The prediction errors obtained from different prediction models for operating condition 2

Table 5. The prediction evaluation indicators of different objects for different models in operating
condition 2.

NOx Emissions Boiler Load Boiler Efficiency

Model MAE
(mg/m3)

RMSE
(mg/m3)

MARE
(%)

MAE
(MW)

RMSE
(MW)

MARE
(%)

MAE
(%)

RMSE
(%) MARE (%)

DDMMF 1.518 1.674 0.329 0.519 1.789 0.003 0.021 0.474 1.5 × 10−4

MLP 1.883 7.832 1.899 4.683 6.649 0.012 0.149 2.975 8.4 × 10−4

ARIMA 5.405 15.062 1.054 0.001 6.634 0.005 0.128 0.981 3.7 × 10−4

PLS 2.321 16.946 2.443 0.115 4.630 0.005 0.065 0.684 5.4 × 10−4

The prediction accuracy of the DDMMF model was better than the corresponding one obtained
with the MLP, ARIMA and PLS models. For example, in case of operating condition 1 compared
with the other predictive models, the MAE indicator of the DDMMF model for the NOx emissions
prediction reduced by 0.391%, 33.685% and 26.885%, respectively; the RMSE indicator was diminished
by 4.753%, 52.331% and 15.009%, respectively; and the MARE indicator decreased by 48.320%, 74.557%
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and 83.602%, respectively. The runtime of the comparison models was 46.426 s, 52.678 s and 38.124 s,
respectively. And the runtime of the DDMMF model was only 27.844 s. In this case, the MAE
indicator of the DDMMF model for the boiler load prediction decreased by 88.928%, 73.028% and
67.557%, respectively; the RMSE indicator reduced by 23.228%, 73.028% and 28.179%, respectively;
and the MARE indicator decreased by 51.754%, 61.357% and 19.373%, respectively. The runtimes
of the comparison models were 40.128 s, 43.324 s and 38.421 s, respectively. The runtime of the
DDMMF model was only 30.564 s. Similarly, for the boiler combustion efficiency, the MAE of the
DDMMF model reduced by 96.551%, 99.715% and 99.896%, respectively; the RMSE diminished by
63.318%, 40.707% and 35.653%, separately; and the MARE decreased by 62.630%, 94.816% and 93.517%,
respectively. The runtimes of the other models were 36.345 s, 32.157 s and 38.657 s, respectively.
The runtime of the DDMMF model was only 25.625 s. Similar results were obtained for operating
condition 2, the MAE indicator of DDMMF model for the NOx emissions prediction diminished
by 19.343%, 71.906% and 44.512%, respectively; the RMSE indicator reduced by 78.628%, 88.887%
and 90.123%, respectively; and the MARE indicator decreased by 82.696%, 68.832% and 86.545%,
respectively. The runtimes of other models were 36.175 s, 38.620 s and 32.265 s, respectively. The runtime
of the DDMMF model was only 28.658 s. For the same operating condition and boiler load prediction,
a 88.928%, 73.028% and 67.557% decrease in the MAE indicator of DDMMF model, a 23.228%, 73.028%
and 28.179% decrease in the RMSE indicator and a 51.754%, 61.357% and 19.373% decrease in the
MARE index was obtained, respectively. The runtimes of the comparison models were 34.659 s, 33.674 s
and 35.658 s, respectively. The runtime of the DDMMF model was only 29.467 s. Finally, the boiler
combustion efficiency prediction showed a 85.998%, 83.661% and 67.915% reduction in the MAE
indicator of the DDMMF model, 84.067%, 51.682% and 30.702% decrements in the RMSE index and
a 82.196%, 59.790% and 72.201% reduction in the MARE index, respectively. The runtimes of other
models were 48.554 s, 52.214 s and 43.248 s, respectively. The runtime of the DDMMF model was
only 19.248 s. The results of the present study indicate that the algorithm improved of the modeling
accuracy and counting efficiency.

4. Adaptive Nonlinear Model Predictive Control of the Boiler Combustion Efficiency

The model predictive control (MPC) of the boiler combustion efficiency is described in this section.
The overall control structure, including the prediction model, the rolling optimization, as well as the
feedback correction is illustrated in Section 4.1. The rolling optimization and feedback correction
are discussed in Sections 4.2 and 4.3, respectively. The validation of the designed model predictive
controller is performed in Section 4.4.

4.1. The Structure of the Proposed Model Predictive Controller

The MPC algorithm consists of the prediction model, rolling optimization and feedback correction
as shown in Figure 7. The LSSVM-based prediction model is optimized via the DE algorithm. Predictive
models are provided for the NOx emissions, the boiler load, and the boiler combustion efficiency to
predict the boiler combustion efficiency under the NOx emissions and the boiler load. Historical data
and current production information are employed to predict the relevant object values at the current
time. Then, the prediction information of the DDMMF is adopted to establish rolling optimization.
The optimal controller parameters are obtained by solving this rolling optimization problem. This gives
maximum boiler combustion efficiency under the NOx emissions and the boiler load constraints.
Feedback correction is utilized to improve the proposed model accuracy.
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4.2. Rolling Optimization

Rolling optimization is designed to obtain the optimal values of the controller parameters.
The minimum control errors between the control output and expected value of boiler efficiency is taken
as the control objective. The control constraints consist of three parts: (1) The error of NOx emission
control output and expected output must be within 5%; (2) the error of boiler load control output and
expected output must be within 5%; and (3) the control variables must satisfy the boundary constraints.
The control output value of the NOx emissions and boiler load, and the optimal control variables
are output when the control errors of the NOx emissions and boiler load meets the constraints and
minimum requirements of the control objectives. The maximum boiler efficiency can be obtained by
reasonably allocating control variables. The boiler load expected value is the actual operation value,
the boiler is in a stable operation state when the boiler load control output can better follow the expected
curve. As a result, the maximum boiler combustion efficiency is constructed by considering load
constraints, pollutant emission constraints and boundary constraints could be obtained. An appropriate
performance index is minimized to determine the control increment, such that p future output values
of boiler efficiency YB, track the desired value of the boiler combustion efficiency ωB. The boiler
combustion efficiency is considered as the performance index of the MPC controller for achieving the
rolling optimization. Thus, the following rolling optimization problem is defined:

min
(∑p

s=1

(
YB −ωs

B

))
s.t.YB,h = f (Fc, M, A1, A2, A3, A4, Pa, S, O1, O2, T1, T2, T3, T4, P, σ, wB, C, ei, ai, b, B∗)

YNx,h = f (Fc, M, A1, A2, A3, A4, Pa, S, O1, O2, T1, T2, σ, wNx , C, ei, ai, b, N∗x)
YL,h = f (Fc, M, A1, A2, A3, A4, Pa, S, σ, wL, C, ei, ai, b, L∗)

YMh
Nx,h ≤ YNx,h ≤ YUh

Nx ,h , YMh
L,h ≤ YL,h ≤ YUh

L,h , uMh
h ≤ uh ≤ uUh

h , s = 1, 2, . . . , p, h = 1, 2

(12)

where ωs
B is the desired output value of the boiler efficiency under the sth minimization function.

p denotes the horizon of the minimization. YB,h denotes the boiler combustion efficiency predicted value
in the presence of the controlincrement for the hth operating condition. YMh

Nx,h is the allowed minimum

value limit value of the NOx emissions under the hth operating condition; YUh
Nx,h is the upper limit value

of the NOx emissions under the hth operating condition. YMh
L,h is the lower bound of the load under the

hth operating condition; YUh
L,h is the upper bound of the load under the hth operating condition. uMh

h is

the allowed minimum value limit value of the control variables under the hth operating condition; uUh
h

is the upper bound of the control variables under the hth operating condition; u is the control variable.
To solve the rolling optimization problem and find the optimal controller parameters, a DE

algorithm is utilized (its flowchart is given in Figure 8). According to Figure 8, the algorithm is given
as follows.
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Step 1: The data is read. Then, the sampling time of the predictive model is determined to meet
the rolling optimization requirements.

Step 2: The DE algorithm is initialized. The control variable is calculated as:

u = um +
P∑

i=1

di(ωB − y(i)) (13)

Now, the particle denotes the mth control variable, including Fc, M, A1, A2, A3, A4, Pa, S.
Step 3: The Nx and the L for any particle are calculated according to Equation (5).
Step 4: If the Nx and the L requirements are satisfied, go to Step 5. Otherwise, set the relative

particle fitness to 1000 and go to Step 6.
Step 5: Compute the boiler combustion efficiency of each particle. Now, calculate the fitness

through the following equation:

ε(k) =

√√√√
(

p∑
k=1

∣∣∣YB −ωk
B

∣∣∣2/(p− 1)) (14)

where YB denotes the predicted boiler combustion efficiency of the kth predictive mode; ωk
B is the

desired boiler combustion efficiency at time k.
Step 6: Search the minimum fitness value.
Step 7: If the stopping condition is satisfied, stop the algorithm and show the optimal controller

parameters, as well as the optimal fitness value. Otherwise, go to Step 8.
Step 8: If g = G, show the optimal controller parameters and the fitness value and stop the

algorithm. Otherwise, go to Step 9.
Step 9: Update particles according to Equations (6)–(8). Set g = g + p and return to Step 3.Energies 2018, 11, x FOR PEER REVIEW  13 of 17 
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4.3. Feedback Correction

The NOx emissions and the boiler load are affected by serious factors, such as fuel combustion
and operating condition. Then, the model correction strategy is employed to guarantee the predictive
model accuracy. In other words, recent data is applied to reconstruct the predictive model when
the prediction errors of the actual NOx emissions, the actual boiler load and the boiler combustion
efficiency are larger than 5%. The predictive model inaccuracy could be corrected through the model
correction strategy. Therefore, the optimal results can be obtained via the model predictive control.

4.4. Validation of the Model Predictive Control Results

4.4.1. Experiment Setup

The model predictive control experimental data are shown in Table 6. The input variables of the
predictive control model are obtained according to Equation (12) under two operating conditions.

Table 6. Dataset2.

Parameter
Number (Condition 1) Number (Condition 2)

Nx B L Nx B L

Test data (samples) 300 300 300 270 270 270
Sample Interval (min) 1 1 1 1 1 1

Input variable 13 16 9 13 16 9
Output variable 1 1 1 1 1 1

4.4.2. Experimental Result Analysis

In this study, the model predictive control strategy is employed to maximize boiler
combustion efficiency under two operating conditions. To verify the proposed method performance,
some experiments were performed using the real production data. The data sets under the two
operating conditions are described in Table 7. The experimental results are given in Figures 9 and 10.
The obtained results under the first and the second operating conditions are shown in Figures 9
and 10, respectively. Figure 9, Figure 10, and Table 7 demonstrate the superiority of the proposed
model predictive controller (BMPC) to the proportion-integral-derivative (PID) controller. The as
seen in Figures 9 and 10, with the model predictive control algorithm using in the boiler, it could be
concluded that the NOx emissions control output values and boiler load control output values when
the control variables were reasonably matched, which could follow the trajectory of a given curve
better. In combination with Table 7, the boiler efficiency could be improved by adjusting the control
values, when the NOx emissions control output errors and the boiler load control output errors were
both within ±5% under the two different operating conditions. The control output error was between
the predicted value under the optimal variable and the expected value. The NOx emissions and boiler
load were the predicted output values of the test data using the DDMMF method. The expected values
of boiler efficiency were the actual values plus a 1.5% smoothing filter, the expected values of the NOx
emissions were the actual values minus 10, and the expected values of the boiler load were the actual
output values. We can see from Table 7, the proposed approach compared with the PID controller
could improve boiler efficiency by 1.613 percent and reduce NOx emissions by 1.887 percent for the
first operating condition. In addition, it could improve boiler efficiency by 1.136 percent and reduce
NOx emissions by 2.166 percent for the second condition, when the control variables satisfied the
boundary constraints and the NOx emissions control output error and boiler load control output error
were both within ±5%. Thus, based on the boiler key parameter model (NOx emissions, boiler load,
boiler efficiency), the boiler combustion efficiency rolling optimization model was constructed by
considering load constraints, pollutant emission constraints and boundary constraints, and the optimal
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controller parameters were calculated via an optimization model solved by the DE algorithm. Finally,
the proposed BMPC provided effective tools for the operators.

Energies 2018, 11, x FOR PEER REVIEW  14 of 17 

 

experiments were performed using the real production data. The data sets under the two operating 
conditions are described in Table 7. The experimental results are given in Figure 9 and Figure 10. The 
obtained results under the first and the second operating conditions are shown in Figure 9 and Figure 
10, respectively. Figure 9, Figure 10, and Table 7 demonstrate the superiority of the proposed model 
predictive controller (BMPC) to the proportion-integral-derivative (PID) controller. The as seen in 
Figure 9 and Figure 10, with the model predictive control algorithm using in the boiler, it could be 
concluded that the NOx emissions control output values and boiler load control output values when 
the control variables were reasonably matched, which could follow the trajectory of a given curve 
better. In combination with Table 7, the boiler efficiency could be improved by adjusting the control 
values, when the NOx emissions control output errors and the boiler load control output errors were 
both within ±5% under the two different operating conditions. The control output error was between 
the predicted value under the optimal variable and the expected value. The NOx emissions and boiler 
load were the predicted output values of the test data using the DDMMF method. The expected 
values of boiler efficiency were the actual values plus a 1.5% smoothing filter, the expected values of 
the NOx emissions were the actual values minus 10, and the expected values of the boiler load were 
the actual output values. We can see from Table 7, the proposed approach compared with the PID 
controller could improve boiler efficiency by 1.613 percent and reduce NOx emissions by 1.887 
percent for the first operating condition. In addition, it could improve boiler efficiency by 1.136 
percent and reduce NOx emissions by 2.166 percent for the second condition, when the control 
variables satisfied the boundary constraints and the NOx emissions control output error and boiler 
load control output error were both within ±5%. Thus, based on the boiler key parameter model (NOx 
emissions, boiler load, boiler efficiency), the boiler combustion efficiency rolling optimization model 
was constructed by considering load constraints, pollutant emission constraints and boundary 
constraints, and the optimal controller parameters were calculated via an optimization model solved 
by the DE algorithm. Finally, the proposed BMPC provided effective tools for the operators. 

 

Figure 9.Theresults obtained with the model predictive control under operating condition 1. 

 

Figure 10. The results obtained with the model predictive control under operating condition 2. 

0 50 100 150 200 250 300
420

440

460

480

500

520

540

560

580

600

Sample

N
O

x 
em

is
si

on
s(

m
g/

m
3)

 

 

Real value
Predictive value
Expectation value

0 50 100 150 200 250 300
380

385

390

395

400

405

410

Sample

B
oi

le
r 

lo
ad

(M
W

)

 

 
Real value
Predictive value
Expectation value

0 50 100 150 200 250 300
86

87

88

89

90

91

92

93

Sample

B
oi

le
r 

co
m

bu
st

io
n 

ef
fi

ci
en

cy
 (

%
)

 

 
PID
BMPC

0 50 100 150 200 250
410

420

430

440

450

460

470

480

490

Sample

N
O

x 
em

is
si

on
s(

m
g/

m
3)

 

 

Real value
Predictive value
Expectation value

0 50 100 150 200 250
385

390

395

400

405

410

415

Sample

B
oi

le
r 

lo
ad

(M
W

)

 

 

Real value
Predictive value
Expectation value

0 50 100 150 200 250
85.5

86

86.5

87

87.5

88

88.5

89

89.5

90

90.5

Sample

B
oi

le
r 

co
m

bu
st

io
n 

ef
fi

ci
en

cy
(%

)

 

 

PID
BMPC

Figure 9. Theresults obtained with the model predictive control under operating condition 1.
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Figure 10. The results obtained with the model predictive control under operating condition 2.

Table 7. Data description.

Description

The Predictive
Control Error of
NOx Emissions /
Boiler Load (%)

The Percentage of
NOx Emissions

Decline by BMPC

The Percentage of
Boiler Efficiency

Improvement by BMPC

Number of
Samples

the operation
condition 1 −4.911~4.969 1.887 1.613 300

the operation
condition 2 −4.989~4.995 2.166 1.136 270

5. Conclusions

In this paper, a nonlinear model predictive control approach for different operating conditions
was proposed to maximize the boiler combustion efficiency in the presence of the NOx emissions
and the boiler load variations. This approach had five distinctive features: (1) PCA was employed
to generate the required input for the prediction model and reduce the input dimension; (2) the
KNN classifier was utilized to deal with various working conditions; (3) the LSSVM parameters
were dynamically optimized by the DE algorithm, and additionally, the model output value was
compensated to improve the prediction accuracy; (4) the optimal values of the control variables were
obtained using the proposed adaptive nonlinear predictive control approach; (5) considering the boiler
combustion efficiency, the NOx emissions, and the boiler load, the DE algorithm was employed to
solve the rolling optimization problem. Experimental verification based on the practical data was
carried out to verify the performance of the proposed method. According to the obtained results,
both the modeling and controlling were effective. The DDMMF model could accurately predict the
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different objects under different operation conditions. The BMPC control strategy, based on DDMMF
model, was proposed to improve the quality of production and reduce energy consumption, and to
lay the foundation for a power enterprise to bring high efficiency and low emission. This provides
an appropriate method that could be employed in production applications.

Future research will be dedicated to selecting the appropriate kernel function of the LSSVM under
different conditions to meet the modeling requirement and improve the predictive performance of
the DDMMF.
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Acronyms

NOx Nitrogen Oxides CFD Computational fluid dynamics
ARIMA Autoregressive integrated moving average PLS Partial least squares
ANN Artificial neural networking BP Back-propagation
MLP Multilayer perceptron LSSVM Least square support vector machine;
DE Differential evolution SIS Supervisor information system
DCS Distribution control system PCA Principal component analysis
KNN Kth Nearest Neighbor PSO Particle swarm optimization
GA Genetic algorithm ADRC Active disturbance rejection controller

MFC-VRFT
Model-Free control and virtual reference
feedback tuning

MPC Model predictive control

B Boiler efficiency L Boiler load
Nx NOx emissions DELSSVM DE-based LSSVM
MAE Mean absolute error MAE Mean absolute error
RMSE Root mean square error MAPE Mean absolute percentage error

DDMMF
A data-driven modeling method with feature
selection capability

BMPC Model predictive controller

PID Proportion-integral-derivative RBF Radial based function
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