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Abstract: Residential microgrid is widely considered as a new paradigm of the home energy
management system. The complexity of Microgrid Energy Scheduling (MES) is increasing with the
integration of Electric Vehicles (EVs) and Renewable Generations (RGs). Moreover, it is challenging
to determine optimal scheduling strategies to guarantee the efficiency of the microgrid market and
to balance all market participants’ benefits. In this paper, a Multi-Agent Reinforcement Learning
(MARL) approach for residential MES is proposed to promote the autonomy and fairness of microgrid
market operation. First, a multi-agent based residential microgrid model including Vehicle-to-Grid
(V2G) and RGs is constructed and an auction-based microgrid market is built. Then, distinguish
from Single-Agent Reinforcement Learning (SARL), MARL can achieve distributed autonomous
learning for each agent and realize the equilibrium of all agents’ benefits, therefore, we formulate
an equilibrium-based MARL framework according to each participant’ market orientation. Finally,
to guarantee the fairness and privacy of the MARL process, we proposed an improved optimal
Equilibrium Selection-MARL (ES-MARL) algorithm based on two mechanisms, private negotiation
and maximum average reward. Simulation results demonstrate the overall performance and efficiency
of proposed MARL are superior to that of SARL. Besides, it is verified that the improved ES-MARL
can get higher average profit to balance all agents.

Keywords: residential microgrid; energy scheduling; vehicle-to-grid; multi-agent reinforcement
learning; game theory; equilibrium selection

1. Introduction

1.1. Motivation

In recent years, a microgrid-based family energy framework has increasingly attracted attention.
This emerging residential energy system contains distributed Renewable Generations (RGs), household
load appliances, and Energy Storage Units (ESUs). The application of residential microgrid reduces the
user’s dependence on the main grid and improves the autonomy and flexibility of the family power
system [1]. In the practical field, resident users, RGs and ESUs constitute a small and independent
microgrid market [2,3]. It’s essential to formulate an intelligent and effective residential Microgrid
Energy Scheduling (MES) mechanism for coordinating and balancing the benefits of all members,
meanwhile, guaranteeing the members’ self-decision ability and information security.
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Besides, Electric Vehicles (EVs) are becoming more and more widespread in resident life due
to its various advantages. EVs can effectively solve the pollution problem from traditional energy;
in addition, the energy consumption cost of EVs is cheaper than gasoline vehicles [4,5]. Moreover,
Vehicle-to-Grid (V2G) mode allows EVs to discharge energy to the power grid for participating in
market scheduling and earning profit [6,7].

Considering the integration of EVs and RGs, residential MES becomes more complicated due to
high uncertainties from EVs and RGs, such as RGs output and EVs’ usage attributes [8,9]. Therefore,
some challenges exist in residential MES for previous studies shown in Section 1.2. First, it’s difficult to
build a precise scheduling model that can attend to all the uncertain parameters. Second, the common
centralized dispatch methods need a completely open market environment and could be problematic
with a large system and multiple constraints. Third, most works are myopic solutions considering the
current objectives, instead of a long-term optimization.

As a solution to confront these challenges, a model-free machine learning method, Reinforcement
Learning (RL) has got a good effect on complicated decision-making problems. However, most RL
methods adopt Single-Agent RL (SARL) to obtain the optimal policy, some defects exist in SARL
whether the algorithm mode is centralized or decentralized. In centralized SARL, first, microgrid
control center gathers all participants’ information and implements RL tasks centrally, each participant
passively performs learning results from control center, rather than learning autonomously; second,
participants need to upload necessary information to control center, thus part of private information
may be at risk of leaking; third, the penetration of EVs and RGs will increase computational complexity
of SARL, even lead to the curse of dimensionality. On the other hand, in decentralized SARL, each
participant can learn and make decisions according to individual information and environment, but
SARL is a kind of selfish learning to maximize self-reward, instead of considering overall profit and
supply-demand balance of microgrid [10]; besides, the learning process of each participant is based on
itself’s available information, they can’t obtain other agents’ some confidential information such as
providers’ quotes and demand response behaviors of users, therefore, the agents’ learning processes
are imprecise and there are no interactions among agents.

To address all the above issues, this paper presents a Multi-Agent RL (MARL) approach for
residential MES. MARL is a distributed RL in multi-agent environment that can be seemed as a
combine of RL and game theory [11]. Although the MARL framework is applicable to residential
MES to construct a distributed microgrid RL architecture, some limitations restrict the application
of existing MARL methods in the microgrid field. First, most MARL algorithms require agents to
replicate other agents’ value functions and to calculate the equilibria for all joint-actions, which are
computationally expensive. Then, if agents’ information is not be fully shared (incomplete information
game), it’s difficult to obtain a definite equilibrium solution [12]. Finally, the solved equilibrium
solutions may not be unique, how to select the optimal equilibrium to balance all agents’ rewards and
to ensure the convergence of MARL are noteworthy [11,13]. In this paper, we present an Equilibrium
Selection-based MARL (ES-MARL) method, an optimal Equilibrium Selection (ES) is adopted according
to two mechanisms, that is private negotiation with each agent and maximum average benefit method.

1.2. Related Works

Several studies about residential MES considering EVs or RGs have been published using various
approaches [14–20]. For example, a virtual power plant based on linear programming was used
as a combination of wind generators and EVs to schedule the market in [14]. In [15], a dynamic
programming-based economic dispatch for community microgrid is formulated. The authors in [16]
proposed a hierarchical control method to achieve coordination scheduling integrating EVs and wind
power. In [17], an EV coordination management algorithm was presented to minimize the load variance
and to enhance the distribution network’s efficiency. A game theory-based retail microgrid market
was built and a Nikaido-Isoda Relaxation approach was adopted to get the optimal solution [18].
A hierarchical control framework for microgrid energy management system with RGs and an ESU is
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proposed [19]. Ref. [20] studies about a day-ahead scheduling of integrated home-type microgrid and
adopts a mixed-integer linear programming algorithm to achieve optimal energy management.

These previous studies cannot take all challenges in MES into account. Therefore, RL-based
method is adopted as solution. RL approach learns the optimal policies through trial-and-error
mechanism, that does not depend on the prior knowledge of system model information, and RL
has been widely used in energy scheduling of smart grid and EVs [12,21–23]. For instance, ref. [12]
focused on the smart grid market based on double auction, an adaptive RL was used to find the Nash
Equilibrium (NE) of energy trading game with incomplete information. The authors in [21] proposed
an RL-based dynamic pricing and energy consumption scheduling algorithm for the microgrid system.
In [22], a batch RL approach was adopted in residential demand response to make a day-ahead
consumption plan. In [23], authors raised RL-based real-time power management to solve the power
allocation for hybrid energy storage system in a plug-in hybrid EV.

Moreover, in this paper, a MARL method is used for sequential decision making in multi-agent
environment where traditional SARL is difficult to deal with. MARL has been adopted in some fields,
such as vehicle routing problem [24] and thermostatically loads modeling [25]. The most universal
MARL is equilibrium-based MARL, whose framework accords with Markov games and the evaluation
of the learning process is based on all agents’ joint behaviors, the equilibrium concept from game
theory is introduced to denote optimal joint action [26–30]. The earliest proposed equilibrium-based
MARL was the Minimax-Q algorithm which considered two agents’ zero-sum game, two agents try
to maximize and minimize one reward function [26]. Authors in [27] proposed Nash-Q algorithm
for non-cooperative general-sum Markov games, and the NE solution was adopted to define value
function. In [28], a friend-or-foe Q-learning algorithm was presented for obtaining different solutions
based on agents’ relationships. In [29], Correlated-Q learning was proposed base on correlated
equilibrium solution, which allows for the possibility of dependencies in the agents’ optimization.
In [30], authors introduced a “Win or Learn Fast" (WoLF) mechanism to form a variable learning rate
based MARL method.

These papers have made contributions on the domain of microgrid energy scheduling or RL
algorithm. Through the analysis and improvement of these studies, in this paper, a MARL approach is
adopted for management and decision of distributed microgrid market.

1.3. Contributions

To sum up, the principal contributions of this paper are summarized as follows.

• A framework for residential MES with V2G system is built. All participants in the microgrid and
the auction-based microgrid market mechanism are modeled.

• MARL algorithm is introduced for the first time into a residential microgrid. The RL model (states,
actions, and immediate reward) of each agent is formulated.

• An improved ES-MARL is proposed, the Equilibrium Selection Agent (ESA) calculates the
corresponding equilibrium solution by negotiating with agents and selects the optimal solution
based on maximum average reward.

1.4. Organization

The structure of this paper is as follows. In Section 2, we present the microgrid model and market
mechanism. In Section 3, we summarize the MARL theory and the microgrid agents’ design of MARL.
In Section 4, we propose the ES-based MARL method. Section 5 presents the simulation results and
analyses. We conclude the paper in Section 6.
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2. System Model

2.1. Residential Microgrid Description

With the development of RGs and EVs, the residential microgrid has been increasingly used.
For a urban residential area, the fluctuations of daily load curves are high and the distributions of
residents, RGs and EVs connecting are stochastic; moreover, participants have higher requests for
autonomy energy management from the perspective of economy and privacy protection; besides,
residential microgrid should consider more about environmental concerts and power safety. In this
paper, a distributed framework for residential microgrid which is more applicative to meet above
requirements is adopted. As depicted in Figure 1, the 9-node residential microgrid is built based on
multi-agent system [31,32], all participants are modeled as profit-aware intelligent agents with abilities
of autonomous learning and decision-making; agents in the market should comply with microgrid
market mechanism and follow market scheduling based on global optimization goal.
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Figure 1. System model of 9-node residential microgrid.

Based on the roles in the market, microgrid agents are divided into different clusters: RGs
are independent supplier agents; users are consumer agents and can join in microgrid scheduling
through demand response; a unified management for EVs acts as supplier agents or consumer agents
according to overall charging/discharging action; besides, manager agents (e.g., market operator and
equilibrium selector) are set to maintain market operation. The primary objective for the microgrid in
grid-connected mode is to achieve maximum autonomy, that is to provide the necessary load demand
with the minimum dependency on Utility Grid (UG). Besides, agents’ benefits should be considered to
realize a unanimously acceptable balance. All agents’ concrete models are described as follows.

2.2. Microgrid Components

2.2.1. Electric Vehicles

EVs are both power consumers and power suppliers in the microgrid market. Considering the
negative effects of V2G, extra battery degradation cost and the impact on subsequent travel should be
considered to evaluate the net profit of V2G. Distinct from stationary ESUs, EVs’ charging/discharging
actions will be affected by owners’ traveling habits and stochastic behaviors of EVs usage. Besides,
specific operational and technical constraints of EVs should be noticed.

(1) EV Travel Behaviors and Constraints: EVs charging/discharging scheduling should take travel
demand as premise. The customary travel habits (e.g., arrival time, departure time and travel distance)
follow a similar pattern based on the owner’s intentions, besides, the random characters of travel
behaviors are considerable [33].
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The State-Of-Charge (SOC) of EV i at slot t is defined as soci
t, ne is the current number of EVs,

i ∈ [1, 2, 3, · · · , ne]. The constraints of EVs SOC is:

socmin ≤ soci
t ≤ socmax (1)

where socmin and socmax are minimum and maximum limits of EV battery SOC, respectively.
The charging/discharging limitations are:

− vid
max ≤ vi

t ≤ vic
max (2)

where vi
t is EV i’ charging/discharging power at slot t, vi

t is positive when EV is charging and is
negative when EV is discharging. vid

max = ri
dt and vic

max = ri
ct, where ri

c and ri
d are EV i’ battery charging

and discharging rate. Then, we have:

soci
t+1 = soci

t +
vi

t
bi

m
(3)

where bi
m is EV i’ battery capacity. If EV i will leave at slot t, SOC should satisfy the travel demand as:

soci
t ≥ socmin + soci

dis (4)

where soci
dis is EV i’ minimum SOC for departure. Remarkably, only if EVs adopting slow-charge

can participate in the microgrid market; if EVs need urgent travel, the fast-charge will be chosen.
The EV owner’s travel habits are from data statistics, arrival time and departure time follow normal
distribution; and travel distance follows a log-normal distributed.

(2) EV Battery Degradation Cost: The life of EV battery declines along with repeating
charging/discharging cycles. For lithium iron phosphate battery adopted in this paper, low
temperature weaken performance and high temperature curtails battery life. The use of battery
in moist condition should be avoided. Besides, a prolonged period of overvoltage during long travel
may stress the battery [34]. In sum, we consider that EVs battery degradation depends on the number
of cycles. According to [35], the battery degradation cost function can be approximately expressed as:

Cvi
t =

k
100
|vi

t|
bi

m
Ci

b (5)

where Cvi
t is battery degradation cost of vi

t, Ci
b represents battery cost, k is the slope of the linear

approximation of the battery life as a function of the cycles.
(3) EV Aggregator and EV Secondary Scheduling: In our model, an EV Aggregator (EVA) is adopted to

manage all EVs’ participation in the market. The introduction of EVA facilitates the model extendibility
and adjustment when the number of EVs changes, besides, the reduction of agents number can improve
the convergence speed of learning algorithm.

Base on [33], all local EVs participating in the microgrid market (primary market) form a
secondary scheduling system of EVs, EVA is the manager of the secondary scheduling system. At the
beginning of each slot, EVA arranges each EV’s charging/discharging amount based on the optimal
global charging/discharging action from the primary market, besides, some rules should be obeyed
as follows.

• EVs’ travel demand should be satisfied, first of all, EVA considers EVs’ travel demand two hours
ahead of departure and guarantees SOC is more than soci

dis.
• EVA arranges EVs charging/discharging sequence according to SOC level, if soci

t < soccha
min, this EV

can’t discharge and should be arranged to charge, where soccha
min is charge warning limit.



Energies 2020, 13, 123 6 of 26

• The total charge/discharge amount from the primary market is the scheduling objective of the
secondary system, the sum of EVs’ charge/discharge should be equal to the total amount.

2.2.2. Users’ Loads

The residential appliances keep approximately steady in identical period during the same season,
therefore, users’ load demand can be predicted accurately. User i’s load demand at slot t is written as
di

t, di
t∈[di

t,min, di
t,max], di

t,min and di
t,max are minimal essential demand and maximal available demand,

respectively. nu is the number of users, i ∈ [1, 2, 3, · · · , nu]. According to operating profiles, the
household load can be categorized into three types as follows [36].

(1) fixed loads: this kind of load demand can’t be changed to guarantee the devices in working
order, such as web servers and medical instruments. User i’ critical loads profile is denoted as di, f

t .
(2) curtailable loads: the demand can be cut down for reducing consumption, such as heating or

cooling devices. di,c
t denotes the load profile of curtailable loads, and we denote the 0 ≤ li,c

t ≤ 1 as the
ratio of load curtailment. Then, we have:

di,c
t,min ≤ (1− li,c

t )di,c
t ≤ di,c

t (6)

where di,c
t,min is the fixed part of curtailable loads, if di,c

t,min = di,c
t , this kind of devices becomes fixed

loads; if di,c
t,min = 0, user can turn off these devices.

(3) shiftable loads: the operation period can be postponed to avoid the load peak, such as
the washing machine. The shiftable loads profile is di,s

t , if user postpones the loads demand
0 < li,s

t ≤ di,s
t + li,s

t−1, the shiftable part li,s
t will defer to the next time slot for consideration.

In sum, user i’ total load demand di
t = di, f

t + di,c
t + di,s

t + li,s
t−1. Therefore, after demand response,

user i’ actual load demand can be denoted as:

li
t = di, f

t + (1− li,c
t )di,c

t + di,s
t + li,s

t−1 − li,s
t (7)

Users can regulate the schedules of curtailable loads and shiftable loads to control the load
consumption; meanwhile, load curtailment and shift will reduce the user’s consumption satisfaction.
In this paper, a utility function U(lt

i ) which represents user’s satisfaction is adopted as:

U(lt
i ) =

{
ωlt

i −
β
2 (l

t
i )

2 0 ≤ lt
i ≤

ω
β

(ω)2/2β lt
i >

ω
β

(8)

where ω indicates users’ action (a larger ω implies a larger utility); β denotes the utility saturation.
The utility function should be non-decreasing and concave. Similarly, in the learning process of MARL,
a User Aggregator (UA) is introduced to centrally arrange the demand responses of all users.

2.2.3. Renewable Generations

RGs’ generation capacity can be derived from accurate short-term forecasts via historical data
and environmental data. The random characteristics of RGs’ generation are represented as stochastic
normal distribution based on forecast results.

From [37], the generation of PV gpv
t is closely affected by the weather factors, gpv

t is determined as:

gpv
t = η × Spv × It[1− 0.005(T − 25)] (9)

where η is conversion rate of PV array (%); Spv is area of PV array (m2); It is solar irradiance which is
from the Beta probability density function (kW/m2) [1]; T is the average temperature during t (◦C).
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The main element influencing the output of WT is wind speed Vt. The WT generation gwt
t is a

piecewise function of Vt denote as below [38]:

gwt
t =


0 Vt < Vin; Vt ≥ Vo f f
(Vt −Vin)/(Vr −Vin)× Pwt

r Vin ≤ Vt ≤ Vr

Pwt
r Vr ≤ Vt < Vo f f

(10)

where Vin and Vo f f are the cut-in wind speed and cut-off wind speed, respectively; Vr is the rated wind
speed; Pwt

r is the rated power of WT.

2.3. Transaction with Utility Grid

Microgrid keeps supply-demand balance through energy trade with UG, the transaction prices
between UG and microgrid are fixed by UG. Here, UG adopts a real-time price mode that the price is
variable at each time slot. The trade price between UG and microgrid market is summarized as a tuple
pu

t =(pu,p
t , pu,s

t ), pu,p
t is purchase price from UG, and pu,s

t is sell price to UG. To avoid energy arbitrage,
pu,s

t is perpetually lesser than pu,p
t , a factor ρ= pu,s

t /pu,p
t is defined as sell/purchase price ratio [39].

2.4. Microgrid Market

As suggested by [33,40], a real-time microgrid market is constructed based on a one-side dynamic
bidding model. In the microgrid market, supplier agents provide their quotes with bid price and
supply amount; consumer agents submit their energy demand which can be optimized by adjusting
their consumption behaviors. The above information of sellers and consumers aggregate in a non-profit
Market Operator Agent (MOA), whose duty is to make the market clearing price pm

t and to calculate
each agent’s energy sell/purchase amount. The microgrid market operates per time slot t, abiding the
following principles.

• In the market clearing process, MOA sorts sellers’ quotes in increasing order of prices, then the
demand will be matched according to the ranking and respective supply. The bid price of the last
adopted quote is defined as the marginal price, that is the market clearing price pm

t .
• If the energy supply is lacking to support the load demand, MOA will purchase energy from UG.

The purchase price from UG is higher than the sellers’ bids. The additional expenditure will be
charged averagely by all purchasers.

• If the supply exceeds the demand, the surplus energy will be sold to UG. If more than one seller
offers the market clearing price, their energy sold to microgrid and UG are arranged based on the
same proportion of their supply.

3. MARL Method for Microgrid Market

For a multi-agent based microgrid system, the most important task is to generate agents’
distributed strategies to schedule their behaviors in the market. Moreover, it’s significant to ensure all
agents’ benefits balance. In this section, a MARL method is introduced to solve this issue about how to
generate and coordinate the autonomous strategies for all agents.

3.1. Overview of MARL

RL algorithm is an unsupervised machine learning method for sequential decision problems.
In SARL, agents interact with the environment by executing actions, the environment then feeds back
an immediate reward to evaluate the selected action. Transfer to MARL, the relationships with both
cooperations and competitions exist among agents, and agents’ rewards are influenced by other agents’
states and actions. SARL is built on the framework of Markov Decision Process (MDP), but in MARL,
the framework is Markov game, which is the combination of MDP and game theory [41,42].
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Definition 1. Markov Game. An n-agent (n ≥ 2) Markov game is a tuple 〈S, A1, . . . , An, r1, . . . , rn, P〉,
where n is the number of autonomous agents; S is the state space of system and environment; Ai is the
action space of agent i, i ∈ [1, 2, . . . , n], then the joint-action space is defined as A= A1× . . .×An and a
joint-action~a = (a1, a2, . . . , an); ri is the immediate reward function of agent i; P is the transition function,
denotes the probability distribution when an action is executed, the current state transfers to a new state,
P : S× A× S→ [0, 1].

As shown in Figure 2, compared with SARL, the main distinction of MARL is that the reward
function and state transition for agents are based on the joint-action~a. In a pure strategy game, the
agents’ joint-action is defined as~a=(a1, a2, . . . , an), in MARL, when~a is applied and the state transfers
from s to s′, an action evaluation Q-function for agent i, Qi(s,~a) is defined as:

Qi(s,~a) = ri(s,~a) + γ ∑
s′∈S

Pss′(~a)V
i(s′) (11)

where Vi(s′) is the maximum discounted cumulative future reward starting from state s′; 0≤γ<1 is
the discount factor, which indicates the weight of future reward.

Agent-1

Perceptor

Agent-2

Perceptor

Agent-n

Perceptor

Agent-1

state s

action a1

action a2

action an

joint-action

 a=(a1,a2,…,an)

reward r1

reward r2

reward rn
Learner

Learner

Learner

Environment

Figure 2. Principle diagram of MARL.

In SARL, agent i’s goal is to find an optimal action policy ai
∗(s) to maximize Q-function, but the

goal in MARL is to find an optimal joint-action~a∗(s) to coordinate all the Q-functions {Qi(s,~a)}n
i=1 to

a global equilibrium. A concept of equilibrium solution from game theory is introduced into MARL.
The generally used equilibrium solution is NE [27].

Definition 2. Nash Equilibrium. In a pure strategy Markov game, a NE solution is defined as a joint-action
~a∗= (a1

∗, . . . , ai
∗, . . . , an

∗), satisfying the following criterion for all n-agents:

Qi(~a∗) ≥ max
ai∈ Ai

Qi(a1
∗, . . . , ai−1

∗ , ai, ai+1
∗ , . . . , an

∗) (12)

An intuitive comprehension about NE is that, for all agents, if other agents don’t change their
actions a−i, agent i can’t improve its utility function Qi(~a) by changing itself’s action ai, where a−i is
the joint-action of all agents except agent i. At time slot t, the iterative modified formula of Nash-Q
MARL is expressed as:

Qi
t+1(s,~a)=(1− α)Qi

t(s,~a) + α[ri
t(s,~a) +γNashQi

t(s
′)] (13)

where 0<α<1 is the learning rate, whose value decides convergence speed of MARL. NashQi
t(s
′) is

agent i’ Q-value with the selected NE in the next state s′.
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In general, the major structures of other equilibrium-based MARL algorithms are similar to
Nash-Q MARL, the main difference is various selected equilibrium in the learning process.

3.2. Agents Design for Microgrid MARL

The equilibrium-based MARL is applicable in a mixed task (competitions coexist with
cooperations) multi-agent system, in the residential microgrid market, there are both competitive
relations (e.g., suppliers’ quotes) and cooperative relations (e.g., sellers and purchasers collaborate to
achieve supply-demand balance and microgrid autonomy). Detailed formulations of MARL used in
residential MES are introduced in this section.

First of all, all agents’ MDP models are designed as follows.

3.2.1. EV Aggregator Agent

In the primary microgrid market, EVA agent participates in the market as a centralized agent of
all EVs. EVA decides the total charging/discharging in the market based on MARL results. In EVA’s
learning process, the current local EVs number, SOC and travel demand of EVs should be considered.

State: The state-base for EVA agent at slot t is defined as:

seva
t = (t, soct, nevt) (14)

where soct is the average SOC of local EVs; nevt is the number of local EVs, which connect with
microgrid. According to t, we can get the UG price pu

t .
Action: EVA’s actions include total charging/discharging power vt and EVA’s quote peva

t . vt >0,
EVA acts as a purchaser; vt < 0, EVA serves as a seller; vt = 0 means that there is no energy trade.
Only when vt <0, peva

t is existent. The action-base of EVA agent is denoted as:

aeva
t = (vt, peva

t ) (15)

Considering that only if the EV is connected to microgrid (non-movement state), the
charge/discharge action can be executed [43], so the action of EVA is constrained by average SOC soct,
local EVs’ number nevt and travel demand (denoted by socdis). The total charging/discharging power
vt is confined as:

min{vid
max}ne

i=1 ≤ vt ≤ min{vic
max}ne

i=1 (16)

Besides, when soct≤ socmin+min{vid
max/bi

m}ne
i=1, EVA can only select energy purchase actions;

when soct≥socmax−max{vic
max/bi

m}ne
i=1, EVA can only select energy sell actions.

Reward: According to statistics, more than 90% of EV users will charge the SOC up to 60%
before leaving. The user’s anxiety due to the worry about exhausting energy on the road aggravates
increasingly with the decline of SOC. Therefore, the immediate reward function of EVA should combine
economy, battery degradation, and user’s anxiety, which is defined as:{

reva
t =νc[(socmax − soct)bm + vt]2− pm

t vm
t − pu,p

t vu
t − Cvt

t vt ≥ 0, EV charges
reva

t = pm
t vm

t + pu,s
t vu

t − Cvt
t −νd[(socmax − soct)bm − vt]2 vt < 0, EV discharges

(17)

where νc and νd are the charging/discharging anxiety coefficients. bm is the average battery capacity
of all EVs. vm

t and vu
t are the energy trade with microgrid and with UG, respectively; when vt ≥ 0,

vm
t +vu

t =vt; when vt < 0, vm
t +vu

t =−vt.

3.2.2. User Aggregator Agent

From Section 2.2.2, users can control curtailable loads and shiftable loads to reduce cost;
meanwhile, the load adjustments depress users’ satisfaction. UA agent takes a uniform demand
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response action based on the results of MARL, then the demand response task is assigned averagely to
all users in the secondary scheduling.

State: The state-base of UA agent at slot t is defined as:

sua
t = (t, dt) (18)

where t is current time slot; dt is cumulative load demand of all users without demand response.
Action: The action-base of UA agent at slot t is defined as:

aua
t = (lc

t , ls
t ) (19)

where lc
t is the total ratio of load demand curtailment; ls

t is the cumulative shiftable load demand.
Then, dt = d f

t + dc
t + ds

t + ls
t−1, where d f

t , dc
t and ds

t are total demand of fixed load, curtailable loads
and shiftable loads, respectively.

Reward: Similar to Equation (7), the actual cumulative load demand is defined as

lt = d f
t + (1− lc

t )d
c
t + ds

t + ls
t−1 − ls

t (20)

UA agent’s immediate reward function rua
t is defined as the difference between users’ total utility

function and energy purchase expenses.

rua
t = U(lt)− pm

t lm
t − pu,p

t lu
t (21)

where lm
t + lu

t = lt, lm
t and lu

t are the energy purchase from microgrid market and UG, respectively.

3.2.3. RG Agents

There are two kinds of RGs, Photo-Voltaic (PV) and Wind Turbine (WT), the output of RGs is
based on the short-term forecasts, and random distributions with forecast values will be adopted to
embody the uncertainties of RGs’ generation. All of the RGs’ generation will be put into the market at
the current time slot.

State: The state of RG agents is current time slot t.

spv
t /swt

t = t (22)

Action: The actions of RG agents are denoted as:

apv
t = ppv

t (23)

awt
t = pwt

t (24)

where ppv
t /pwt

t are the quote prices of PV agent and WT agent.
Reward: The RG agents’ immediate reward functions are profit functions as:

rpv
t = pm

t gpv,m
t + pu,s

t gpv,u
t − Cpv(gpv

t ) (25)

rwt
t = pm

t gwt,m
t + pu,s

t gwt,u
t − Cwt(gwt

t ) (26)

where for the tuple rg=(pv/wt), grg,m
t is the portion sold to microgrid; grg,u

t is the portion sold to UG,
grg,m

t +grg,u
t =grg

t . Crg is the generation cost function, which is considered as a quadratic function as:

Crg(grg
t ) = c1(grg

t )2 + c2grg
t + c3 (27)

where c1, c2, c3 are pre-determined parameters which are different for PV and WT, and c1, c2, c3 ≥ 0.
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3.3. MARL Method for Residential MES

Based on agents’ MDP model designs, the equilibrium-based MARL is adopted. The general
framework of agents’ learning process for microgrid MARL is shown as Algorithm 1.

At line 3 of Algorithm 1, ε-greedy policy denotes that the agent selects a random action with a
probability of 1−ε and selects a joint action which makes system achieve equilibrium with a probability
of ε. Φi

t(s
i
t+1) is the expected value of the equilibrium in state si

t+1.

Algorithm 1 General Framework of Microgrid MARL

Input:
Agent set N; state space Si; action space Ai; learning rate αi; discount factor γi; joint action space
A.

1: Initialize Qi(si,~a)← 0; initialize state si
t ∈ Si, and t = 0;

2: repeat
3: For each time slot t, each agent selects ai

t ∈ Ai with ε-greedy policy to form a joint-action~at ∈ A;
4: MOA calculates the market clearing price pm

t and the energy should be traded of each agent;
5: Each agent obtains the experience (si

t,~at, ri
t, si

t+1);
6: Each agent updates the Q-matrix Qi

t(s
i
t,~at):

Qi
t(s

i
t,~at)← (1−αi)Qi

t(s
i
t,~at)+αi[ri

t(s
i
t,~at)+γiΦi

t(s
i
t+1)]

7: si
t ← si

t+1, t← t + 1;
8: until Q-matrix Qi(si,~a) converges.

Output:
The optimal Q-matrix Qi(si,~a) for each agent.

4. Improved Equilibrium-Selection-Based MARL

As mentioned in Section 1.1, some limitations existing in common MARL algorithms, are
summarized as follows.

• In the learning process of common MARL, agent updates and saves other agents’ value functions
in each iteration step, that will cause a huge computation work, even in a small scale environment
with two or three agents.

• In order to work out the equilibrium solution, MARL needs agents to share their states, actions
and value functions, including some privacy information, which is unrealistic in some situations.

• In each learning iteration step, there is perhaps more than one equilibrium solution, different
equilibria bring different updates of value functions, which may lead to non-convergence of the
algorithm. Besides, it’s hard to ensure fairness for selecting an equitable equilibrium because
agents’ rewards are different with different equilibria.

Therefore, we present an ES-MARL algorithm to address these issues. We set up an Equilibrium
Selection Agent (ESA), whose function is to separately negotiate with all agents to get the equilibria
solution set and to select the optimal equilibrium based on the maximum average benefit method.

4.1. Negotiation for Equilibrium Solution Set

In an incomplete information game, agent’s reward information is incompletely public to other
agents, agents can’t obtain other agents’ value functions to compute the equilibria. To solve this
problem, according to [11], ESA is adopted as a neutral negotiator to communicate with each agent
privately to obtain their potential equilibrium set following these steps:

1. At the beginning of slot t, agent i finds its potential NE set Zi
ne and sends it to ESA (concrete steps

for finding potential NE set are shown in Algorithm 2).
2. ESA selects the joint-action~aj∈A, which meets the criteria ∀Zi

ne,~aj∈Zi
ne, into the final equilibrium

set Ze, the selected~aj is the pure strategy NE solution of game Q1(st), . . . , Qn(st).
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3. If there is no joint-action satisfying NE, ESA selects~aj whose number of satisfying~aj ∈ Zi
ne kj, is

the most and kj >0.5n (more than half agents get to equilibrium), then adds~aj into Ze.

Now, the equilibria set Ze is the candidate set by negotiations, the element number of Ze may be
more than one.

Algorithm 2 Equilibrium Selection Process of MARL

Input:
Agent set N; current state si ∈ Si; joint-action space A; agent number n; weight factor β.

1: Potential NE set {Zi
ne}n

i=1←∅; final equilibrium set Ze←∅;
2: for each~a−i ∈ A−i do
3: ai ← arg max

ai
Qi(si, ai,~a−i);

4: Zi
ne ← Zi

ne ∪ {(ai,~a−i)};
5: end for
6: Each agent sends its Zi

ne to ESA;
7: Zsum

ne = Z1
ne ∪ Z2

ne . . . ∪ Zi
ne;

8: for each~aj ∈ Zsum
ne do

9: if ∀Zi
ne,~aj ∈ Zi

ne then
10: Ze ← Ze ∪ {~aj};
11: else
12: Calculate kj, which is the number of~aj ∈ Zi

ne;
13: end if
14: if Ze 6= ∅ then
15: Ze is the final pure strategy NE set;
16: else
17: if kj > 0.5n then
18: ~aj ← arg max

~aj
kj;

19: Ze←Ze∪{~aj}, Ze is the final suboptimal set;
20: else
21: Ze ← A;
22: end if
23: end if
24: end for
25: for each~aj ∈ Ze do
26: Calculate the value of joint benefit function:

J = 1
n

n
∑

i=1
Qi(si,~aj);

27: end for
28: ~a∗ ← arg max

~aj
J;

Output:
The optimal equilibrium~a∗.

4.2. Equilibrium Selection Based on Maximum Average Reward

If the element number of Ze is more than one, the update of Q-function shown as Equation (13)
will get different values based on different selected equilibria. In this paper, a maximum average
reward method is adopted to help ESA selecting the optimal equilibrium to guarantee algorithmic
efficiency and fairness.

Here, we introduce an average reward function J which denotes all agents’ average reward as:

J =
1
n

n

∑
i=1

Qi(si,~aj) (28)
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ESA selects the optimal equilibrium (joint action~a∗), whose corresponding value of J is maximum.
The selected optimal equilibrium is used in MARL to update Q-functions. The ES process is shown in
Algorithm 2.

Based on the optimal equilibrium joint-action~a∗, an improved ES-MARL algorithm is shown in
Algorithm 3. Private negotiations between ESA and other agents can avoid redundant updates of
Q-functions for each agent and protect the privacy information; meanwhile, the optimal ES process
can combine all agents’ benefit and promote global welfare. The fairness, safety, and efficiency of the
microgrid market are guaranteed with ES-MARL.

Algorithm 3 ES-Based MARL Algorithm

Input:
Agent set N; state space Si; action space Ai; learning rate αi; discount factor γi; joint action space
A.

1: Initialize Qi(si,~a)← 0; initialize state si
t ∈ Si, and t = 0;

2: repeat
3: For each time slot t, agents select random ai

t ∈ Ai with probability ε or adopt an optimal
equilibrium joint-action~a∗t based on Algorithm 2 with probability 1− ε;

4: MOA calculates the market clearing price pm
t and the energy should be traded of each agent;

5: Each agent obtains the experience (si
t,~at, ri

t, si
t+1);

6: ESA computes the optimal equilibrium of next slot~a∗t+1 based on Algorithm 2;
7: Each agent updates Qi

t(s
i
t,~a) (with ε-greedy policy):

Qi
t(s

i
t,~at)← (1− αi)Qi

t(s
i
t,~at) + αi[ri

t(s
i
t,~at) + γiQi

t(s
i
t+1,~a∗t+1)]

8: si
t ← si

t+1, t← t + 1;
9: until Q-matrix Qi(si,~a) converges.

Output:
The optimal Q-matrix Qi(si,~a) for each agent.

4.3. Overall Process of Proposed ES-MARL Approach

To sum up, we present a flowchart shown in Figure 3 about proposed ES-MARL approach for
microgrid energy scheduling, including the MARL training process and MARL application process.
From Figure 3, we can see in the training process of ES-MARL algorithm, the ES procedure (shown in
Section 4, Algorithm 3) is responsible to connect all agents and select optimal joint-action for agents;
then the learning process (show in Section 3) is based on agents’ MDP models and microgrid model to
perform the Q-function iteration of each agent; the learning result is each agent’s optimal Q-function.
Adopting the learning results into practical microgrid market operation (the market model is shown in
Section 2), each agent selects current optimal action to participate in the market based on respective
current state information and the optimal Q-function.



Energies 2020, 13, 123 14 of 26

Equilibrium 
selection 

agent 

Microgrid
participant 

agent i 

Market
operator 

agent 

Calculate transition:

(st, at, rt, st+1)

Select action: at
with ϵ-greedy 

Calculate potential 

NE set: Zne(st)

Time slot t

Time slot
 t+1

MARL 
results

PV 
agent 

Market
operator 

agent 

EVs 
aggregator 

agent 

Perform primary
auction market 

Trade with
Utility grid 

WT 
agent 

Users 
aggregator 

agent 

UG price: pt 

Trade volume: vt 

UG price: pt 

Trade volume: gt 

Offer quote: pt

 (based on Q
wt*

)

Demand response

 action: (lt, lt )
(based on Q

ua*
)

Users 
secondary
scheduling 

EVs 
secondary
scheduling 

MARL application process for microgrid market schedulingMARL training process for agent i

Time slot t

Time slot 
t+1

1.Charging/discharging: vt

 2.Offer quote: pt

 (based on Q
eva*

)

Optimal Q
i*
: 

st

t

i

i

i

St+1

Update Q-value:

Q
i
(st, at)

Calculate potential 

NE set: Zne(st+1)
i

Select optimal

equilibrium: a*t+1

Select optimal

Equilibrium: a*

(Q
pv*

,Q
wt*

,

Q
ua*

,Q
eva*

)

Offer quote: pt

 (based on Q
pv*

)

pv

wt

 at
pv

 at
wt

 at
ua

 at
eva

st

c s

eva

MCP:  pt 
Trade volume: gt 

m

wt,m
MCP:  pt 

Trade volume: lt 

m

m

MCP:  pt 
Trade volume: gt 

m

pv,m
MCP:  pt 

Trade volume: vt 

m

m

UG price: pt  

Trade volume: gt 

u

pv,u
UG price: pt  

Trade volume: lt 

u

u

u

u

St+1

u

pv,u

Equilibrium selection 

(Section 4) 

MARL algorithm 

(Section 3) 

Microgrid market model 

(Section 2) 

Figure 3. Flowchart of ES-MARL training process and application process for microgrid.

5. Simulation Results and Analysis

In this section, three parts of simulations are conducted to evaluate the proposed MARL algorithm
for residential MES. First, the performances of MARL and SARL for MES are compared; then, the effect
of proposed ES-MARL is verified and Nash-Q algorithm is used as comparison; finally, the secondary
scheduling system of EVs is simulated.

In our microgrid model, an urban residential district is considered. The RGs in the microgrid
include one PV and one WT. RGs’ daily forecast outputs are extracted from the historical data of a
certain area. In microgrid market operation simulations, stochastic models of RGs’ generation are
used, RGs’ actual generation values are generated from probability distributions based on the forecast
outputs, the probability distributions of PV and WT are based on [44]; the generation cost functions
for PV and WT are Cpv

t = 0.1g2
t + gt and Cwt

t = 0.1g2
t + 0.5gt. Figure 4a shows the real-time energy

purchase price from UG; fiducial forecast values of PV output, WT output; and users’ total daily load
demand. The number of users is 3; user utility function is U(dt

i), where the interval of ω is [1, 4], and
the value of ω is high or low correspond to load peak period or load trough period, and β = 0.5.

In our microgrid, there are 10 EVs, EVs’ parameters are shown in Table 1. Besides, from [45],
the number of arriving EVs or departing EVs at slot t follows normal distribution N (narr

t , 12) and
N (ndep

t , 12), narr
t and ndep

t are standard values shown as Figure 4b. EVs battery SOC bound is between
0.2 and 0.9; the SOC of arrivals is sampled from N (0.5, 0.1772); the travel distance of EV D follow a
log-normal distribution ln D ∼ N (1.79, 1.092). All simulations are conducted using Matlab 2018a on
the personal computer with Inter Core i7-6700 CPU @3.40GHz. ε-greedy strategy is adopted in MARL
for action selection strategy, ε=1/ ln t; other learning parameters in RL are shown in Table 2.
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Figure 4. RGs’ forecast outputs, total demand forecast, purchase price from UG, fiducial numbers of
arrival/departure EVs.

Table 1. EVs’ parameters.

Parameter
EV Type Nissan Leaf Buick Velite6 BYD Yuan

Number 4 3 3
Battery capacity 38 kWh 35 kWh 42 kWh

Slow-charge/discharge rating 5 kWh 5.83 kWh 6 kWh
Battery cost 500 $/kWh 500 $/kWh 500 $/kWh

Table 2. Parameters of RL process.

Parameter PV Agent WT Agent UA Agent EVA Agent

learning rate α 0.7 0.7 0.8 0.8
discount factor γ 0.5 0.5 0.9 0.9

5.1. Performance Comparison of MARL and SARL

5.1.1. Each Agent’s Benefit in Different RL Methods

To verify that MARL structure is more applicable than SARL structure in the microgrid market,
we simulate the operation of the adopted microgrid model based on the learning results of proposed
ES-MARL and various SARL configurations. In SARL, agents can only use public information and
their information to learn optimal strategies, and they estimate other agents’ privacy information
according to experience knowledge. Besides, the agent’s learning objective in SARL aims to maximize
individual benefit. As contrasts, five SARL configurations are used: in the former four systems, only
one kind of agent has learning ability (SARL-PV only, SARL-WT only, SARL-UA only and SARL-EVA
only), microgrid market operates with the optimal strategy of learning ability agent, other agents
adopt fixed action based on current time slots; in the last SARL, all agents have individual learning
ability (SARL-all agents), the market works with selfish optimal strategies from each agent’s SARL.
We separately evaluate four agent’s daily profit in different configurations, the results of stochastic
microgrid operation lasting for 30 days are shown in Figures 5–8. In Figures 5 and 6, daily profits of
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RGs Prorg =
24
∑

t=0
rrg

t ; in Figure 7, daily welfare of UA Wua =
24
∑

t=0

nu
∑

i=1
rua

t ; in Figure 8, daily total expense

of EVA agent is the difference between total electricity purchase cost and total sale income.

Figure 5. PV agent’s daily profit in different RL configurations.

From Figures 5–8, we can see if only one agent has RL ability, the profit of this agent is always
highest (or expense is lowest), agent with RL ability can make the optimal decisions based on current
market state, but other agents’ fixed actions are not optimal for increasing their profit. Moreover, the
effects of the proposed ES-MARL method keep in second place for all the four agents. Considering the
benefit balance of all agents, it is reasonable that the result of MARL is not as good as selfish SARL for
only one agent. However, the global performance of MARL for all agents is optimal. Besides, there
are some other notable results. The profits for all agents in SARL-all agents case are the worst, the
reason is that in this case, all agents make actions based on their selfish learning results which only
care about the self-benefit, this will lead to the imbalance of market and reduce global benefits. We also
can find that the curves of SARL-PV only, SARL-WT only and SARL-UA only are more stable (EVA
without learning ability), a reasonable explanation is that the randomness of EVs is far more than other
members, with RL learning ability, EVA performs actions with the random states of EVs, so the market
scheduling results will fluctuate.

Figure 6. WT agent’s daily profit in different RL configurations.
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Figure 7. UA agent’s daily welfare in different RL configurations.

Figure 8. EVA agent’s daily expense in different RL configurations.

5.1.2. Overall Performance in Different Microgrid Configurations

For an MES, market fairness and microgrid independence are the two most important indicators.
Fairness is to guarantee all participants’ benefits achieving equilibrium; microgrid independence
aims to realize the supple-demand balance and reduce dependency on UG. Therefore, two global
indexes, agents’ average profit and daily energy purchase from UG, are introduced to evaluate
overall performance. Agents’ average profit indicates the overall benefit of microgrid operation; daily
energy purchase from UG indicates the dependence level of microgrid on UG. Moreover, to verify the
algorithm validity in general cases, two different microgrid configurations are adopted for operation
with different RL methods. Microgrid configuration 1: one PV, one WT, 3 users and 10 EVs; microgrid
configuration 2: 3 PV, 2 WT, 8 users and 20 EVs. The results are shown in Figures 9–11.

As depicted in Figure 9, agents’ average profit is highest with ES-MARL in the two configurations,
the value keeps between 30 and 40 for microgrid 1 and 50 to 70 for microgrid 2. This result indicates
that ES-MARL produces the best performance to maximize global benefit comparing to other SARL
methods. In addition, we can see that the average profits in SARL-PV only, SARL-WT only and
SARL-UA only are almost close to zero, the reason is that the demand of EVs’ charge is higher than
RGs’ supply, if EVA has no learning ability to make optimal decisions, the charging cost of EVs is
expensive, therefore, the average benefit is offset by EVs’ charge expense in these three cases.
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Figure 9. Agents’ average profits different RL configurations and different microgrid configurations.

Figure 10. Daily energy purchase from UG in different RL configurations for microgrid configuration 1.

Figure 11. Daily energy purchase from UG in different RL configurations for microgrid configuration 2.

Figures 10 and 11 illustrate the microgrid has the best independence with ES-MARL, the energy
purchases from UG in the two configurations are both minimal. The learning process of MARL is
based on joint learning, sellers and buyers can reach to appropriate equilibrium to balance the market,
agents learn from each other to decrease the supply-demand gap, the microgrid doesn’t need to buy
more expensive energy from UG. The lower half of Figures 10 and 11 (energy purchase from UG are
higher in these cases) also show the importance of EVA agent’s learning ability. Combined Figures 10
and 11, the ES-MARL method has the best performance in energy trade with UG; besides, different
microgrid models don’t affect the final performance of our approach.



Energies 2020, 13, 123 19 of 26

5.2. Performance of Improved ES-Based MARL

In this section, several simulations are conducted to evaluate our improved ES-based MARL
algorithm. Here, we use Nash-Q MARL algorithm as a comparison, Nash-Q algorithm is the
most commonly used MARL. The main difference between Nash-Q and proposed ES-MARL is the
equilibrium selection in value function update. We study the algorithm performance from two aspects:
performance in the learning process and application effect in residential MES. The RL parameters in
two algorithms are set as same as Table 2.

First, four agents’ learning performances of the iterative process are shown in Figures 12 and 13.
In Figures 12 and 13, the label of the x-axis is episode, which denotes one state transition period from
initial state to terminate state, in this paper, one episode is equal to one day (0:00–23:00). The label of
the y-axis is Q-value, which is the updated value of Q-function in the current slot. From the results of
four agents’ Q-values, we can see, the Q-values of ES-MARL is higher than that of Nash-Q throughout
the learning process. A bigger Q-value means that the agent’s current reward is higher, so ES-MARL
can gain a better strategy to increase reward than Nash-Q. Besides, from the curves’ trends of four the
agents, there is a clear gap in the convergence rates between two algorithms. The state-spaces of the
four agents are different (PV’s and WT’s are smallest, EVA’s is biggest), therefore, convergence speeds
are accordingly different. For PV and WT, ES-MARL reaches a stable value when episode=1.5×104,
however, Nash-Q reaches a stable value when episode= 2×104. For UA and EVA, the convergence
episode of ES-MARL is about 2×104 and 3×104, but when episode> 3.5×104, the curve of Nash-Q
trends to a stable value. The above results show that the convergence speed of ES-MARL is faster.

Figure 12. MARL learning process of PV agent and WT agent.

Figure 13. MARL learning process of UA agent and EVA agent.

Then, the results shown in Figures 14–17 illustrate the application performances of the two
algorithms when their learning results are adopted in the microgrid market operation. In Figures 14–16,
we simulate a one-day microgrid operation with ES-MARL and Nash-Q. The data points of all
simulations are calculated by the average value of 100 Monte Carlo experiments. Figure 14 shows
the hourly profit of PV and WT. The profits of PV and WT with ES-MARL are superior than with
Nash-Q in most hours. The total profits are higher for ES-MARL. Figure 15 depicts the results for UA
agent, including two indicators, total energy purchase expense and total welfare (difference between
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users’ total utility function and total expense), the results show that with ES-MARL, the expense
is lower and welfare is higher for UA agent. EVs are both seller and purchaser in the market, the
total charge expense and discharge profit of EVA agent are shown in Figure 16. The performance of
ES-MARL is better than Nash-Q for less expense and higher profit. To summarize the above analysis,
the application performance of ES-MARL is overall better than Nash-Q for all agents. Finally, turn to
energy trade between microgrid and UG, consider that energy trade is not the same in the specific hour
for different days due to random parameters, we simulate microgrid operation for 30 days as shown in
Figure 17. The amount of energy purchase from UG of ES-MARL is less than that of Nash-Q, ES-MARL
can reduce microgrid’s dependency on UG compared with Nash-Q. Meanwhile, the microgrid will sell
back more energy to UG after adopting ES-MARL.

Figure 14. Profit of PV agent and WT agent with ES-MARL and Nash-Q.

Figure 15. Expense and welfare of UA agent with ES-MARL and Nash-Q.
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Figure 16. Charge expense and discharge profit of EVA agent with ES-MARL and Nash-Q.

Figure 17. Energy trade with UG (purchase/sell) of ES-MARL and Nash-Q.

5.3. A Simulation Case of EVs Secondary Scheduling System

EVs are important components of a residential microgrid, V2G system plays a crucial role to keep
the balance of the microgrid market and enhance microgrid independence. In primary microgrid
market, EVA agent represents all EVs to participate in the market, and a secondary scheduling system
is set to manager each EV. In this section, we simulate a random secondary scheduling process of EVs
for one-day. According to specific EVs’ parameters, the primary microgrid market operates to obtain
optimal actions for EVA agent in each slot, then EVA arranges each EV’s charging/discharging action.

The ten EVs are from different types as shown in Table 1. The set is as follows: Nissan Leaf:
EV1-EV4; Buick Velite6: EV5-EV7; BYD Yuan: EV8-EV10. Table 3 shows the EVs’ existence state and
departure plan. The label “in” denotes that the EV is at home connecting with microgrid in current
time; the label “out” means the EV will depart in the next hour (1: “yes”; 0: “no”). The initial time
of this case is 0:00. The simulation result of EVs secondary scheduling is shown in Table 4. “Total
charge/discharge of EVA” is the optimal decision result from the primary microgrid market. soc is
EV’s SOC state at the beginning of this hour; vt is the charge/discharge amount, vt > 0 means charge,
vt < 0 means discharge, the unit of vt is kWh. The minimum SOC for departure is 0.8 a.m. and 0.6 p.m.
The charge warning limit soccha

min = 0.3.
From Tables 3 and 4, the following conclusions can be drawn. First, at each hour, the sum of

EV’s vt is equal to the total charge/discharge amount of EVA, which means the secondary scheduling
conforms to optimal action from the primary microgrid market. Then, the charging/discharging
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sequence is according to the SOC level state, when soc < 0.3, the EV is charged immediately. Besides,
when EV will depart in current hour, the soc is almost high than the minimum SOC for departure,
for example, EV2 will leave at 7:00, so EV2’s soc at 7:00 reach to 0.846 (here, the value of vt is “-” that
denotes EV departs at this hour); moreover, EV2 is arranged to deeply charge at 5:00 (two hours ahead).
These results can verify the efficiency of EVs’ secondary scheduling system.

Table 3. EVs’ states parameters.

Hour
EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10

In Out In Out In Out In Out In Out In Out In Out In Out In Out In Out

0:00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1:00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
2:00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
3:00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
4:00 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0
5:00 1 1 1 0 1 0 1 0 1 0 0 - 1 0 1 0 1 0 1 0
6:00 0 - 1 1 1 0 1 1 1 1 0 - 1 0 1 0 1 0 1 0
7:00 0 - 0 - 1 1 0 - 0 - 0 - 1 1 1 1 1 0 1 1
8:00 0 - 0 - 0 - 0 - 0 - 1 0 0 - 0 - 1 1 0 -
9:00 0 - 0 - 0 - 0 - 0 - 1 0 0 - 0 - 0 - 0 -

10:00 1 0 0 - 0 - 0 - 0 - 1 0 0 - 0 - 0 - 0 -
11:00 1 0 1 0 0 - 0 - 0 - 1 0 0 - 1 0 0 - 0 -
12:00 1 1 1 0 1 0 1 0 0 - 1 1 0 - 1 0 0 - 0 -
13:00 0 - 1 1 1 0 1 1 1 1 0 - 0 - 1 1 0 - 0 -
14:00 0 - 0 - 1 1 0 - 0 - 0 - 0 - 0 - 0 - 0 -
15:00 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 1 0 0 -
16:00 0 - 1 0 0 - 0 - 0 - 0 - 0 - 0 - 1 1 0 -
17:00 0 - 1 0 1 0 1 0 0 - 0 - 0 - 0 - 0 - 1 0
18:00 1 1 1 0 1 0 1 0 1 0 0 - 1 0 0 - 0 - 1 0
19:00 0 - 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 - 1 0
20:00 1 0 1 0 1 0 1 0 1 0 0 - 1 1 1 0 0 - 1 0
21:00 1 1 1 0 1 0 1 0 1 0 1 0 0 - 1 0 0 - 1 0
22:00 0 - 1 0 1 0 1 0 1 0 1 0 0 - 1 0 0 - 1 0
23:00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 - 1 0
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Table 4. A case of EVs secondary scheduling system.

Hour Total Charge/
Discharge of EVA

EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10

soc(%) vt soc(%) vt soc(%) vt soc(%) vt soc(%) vt soc(%) vt soc(%) vt soc vt soc(%) vt soc(%) vt

0:00 5 22 5 27 5 73 −3.41 54 −1.51 23 5 82 −3.41 35 1.74 44 0 61 −3.41 45 0
1:00 10 35.2 3 40.2 0.5 64 0.5 50 0.5 39.7 3 72.3 0.5 40 0.5 44 0.5 52.9 0.5 45 0.5
2:00 20 43.2 2 41.5 2 65.3 2 51.3 2 48.3 2 74.7 2 41.4 2 45.2 2 54.1 2 46.2 2
3:00 20 48.5 2 46.8 2 70.6 2 56.6 2 54 2 80.4 2 47.1 2 50 2 58.9 2 51 2
4:00 25 53.8 5 52.1 2.33 75.9 2.33 61.9 2.33 59.7 2.33 86.1 2.33 52.8 2.33 54.8 2.33 63.7 2.33 55.8 2.33
5:00 15 67 5 58.2 5 82 0 68 5 66.4 5 90 - 59.5 0 60.3 0 69.2 −4.45 61.3 −0.55
6:00 20 80.1 - 71.4 5 82 0 81.2 0 80.7 0 - - 59.5 5 60.3 5 58.6 0 60 5
7:00 15 - - 84.6 - 82 0 81.2 - 80.7 - - - 71.8 3.3 72.2 3.3 58.6 5 71.9 3.4
8:00 10 - - - - - - - - - - 61 5 83.2 - 80 - 70.5 5 80 -
9:00 5 - - - - - - - - - - 75.3 5 - - - - 82.4 - - -

10:00 −5 63 −2.5 - - - - - - - - 89.6 −2.5 - - - - - - - -
11:00 −10 56.4 3.9 64 −5 - - - - - - 82.5 −5 - - 59.3 −3.9 - - - -
12:00 15 66.7 5 50.8 1.96 53 0 42 1.96 - - 68.2 4.13 - - 50 1.96 - - - -
13:00 20 79.9 - 56 5 53 5 47.6 5 - - 80 - - - 54.7 5 - - - -
14:00 5 - - 69.2 - 66.2 5 61.9 - - - - - - - 66.7 - - - - -
15:00 0 - - - - 79.3 - - - - - - - - - - - - - - -
16:00 −5 - - 53 −5 - - - - - - - - - - - - - - - -
17:00 −10 - - 39.8 0 71.2 −5 47.5 −2.5 - - - - - - - - - - 52.1 -2.5
18:00 −15 37.5 0 39.8 0 58 −5 40.9 −4.14 28 4.14 - - 61 −5 - - - - 46.1 −5
19:00 −5 37.5 −1.67 39.8 −1.67 44.8 −1.67 30 0 39.8 −1.67 - - 46.7 5 42.1 −1.67 - - 34.2 −1.67
20:00 −5 33.1 −0.83 35.4 −0.83 40.4 −0.83 30 0 35 −0.83 - - 61 - 38.1 −0.83 - - 30.2 −0.83
21:00 −5 30.9 0 33.2 0 38.2 0 30 0 32.6 0 71 −5 - - 36.1 0 - - 28.2 0
22:00 10 30.9 1.43 33.2 1.43 38.2 1.43 30 1.43 32.6 1.43 56.7 0 - - 36.1 1.43 - - 28.2 1.43
23:00 10 34.6 1.43 37 1.43 42 1.43 34.1 1.43 36.7 1.43 56.7 0 54 0 39.5 1.43 - - 31.6 1.43
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6. Conclusions

In this paper, we concentrate on the energy scheduling of residential microgrid. The integrated
residential microgrid system including RGs, power users and EVs V2G is constructed on the
multi-agent structure and an auction-based microgrid market mechanism is built to adapt microgrid
participants’ demands for distributed management and independent decision.

In order to generate the optimal market strategy for each participant and to guarantee the balance
of all participants’ benefit and microgrid supply-demand, we introduce a model-free MARL approach
for each agent. Through MARL, agents can consider both farsighted self-interest and the actions of
other agents to make decision in a dynamic and stochastic market environment. Moreover, we present
a novel ES-MARL algorithm to improve the privacy security, fairness, and efficiency of MARL. There
are two cardinal mechanisms in ES-MARL, one is private negotiation between ESA and each agent,
which can protect private information and reduce computational complexity; another is the maximum
average reward method to select a global optimal equilibrium solution.

Three parts of simulations have been carried out: (1) the comparison results between MARL
and SARL verify that MARL is more appropriate for distributed microgrid scheduling to ensure
agents individual benefits and overall operation objective; (2) the simulations with proposed ES-MARL
and classic Nash-Q MARL are conducted, the results show that our proposed approach can achieve
better performance of learning process and microgrid application; (3) a case study about 10 EVs
charging/discharging scheduling demonstrates the effectiveness of secondary EVs scheduling system.

In conclusion, this work adopts an improved MARL approach for residential microgrid market
scheduling. The learning results can enable agents to autonomously select strategy for promoting
benefit; meanwhile, the microgrid system can coordinate all participant’s demands and achieve a high
autonomy under the equilibrium-based learning process.
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