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Abstract: The paper deals with the problem of modelling and analyzing the dynamic properties of a
Junction Field Effect Transistor (JFET) made of silicon carbide. An examination of the usefulness of the
built-in JFET Simulation Program with Integrated Circuit Emphasis (SPICE) model was performed.
A modified model of silicon carbide JFET was proposed to increase modelling accuracy. An evaluation
of the accuracy of the modified model was performed by comparison of the measured and calculated
capacitance–voltage characteristics as well as the switching characteristics of JFETs.
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1. Introduction

Nowadays, the dynamic development of high-power electronic systems requires modern electronic
components and devices that are characterized by improved electrical and thermal properties [1–4].
A new generation of junction field-effect transistors made of silicon carbide (SiC-JFETs) has appeared
on the market as a result of technological progress in the construction of semiconductor devices [1,3,5].
SiC-JFETs are characterized by better static properties, i.e., higher values of absolute maximum ratings
of operating currents, terminal voltages and dissipated power as well as dynamic properties related to
short switching times [5–7].

The dynamic properties of a JFET depend on, among others, the values of diffusion and junction
capacitances of the internal gate-source and gate-drain p–n junctions of the transistor [8–10]. Both
capacitances are functions of the terminal voltage applied and play an important role in the forward
and the reverse polarization of the device. On the other hand, the dynamic properties of JFETs are
characterized by parasitic capacitances resulting from the non-zero size of the transistor structure [8–11].

In the design and analysis of power electronic devices and circuits, an appropriate computer tool
containing reliable models of semiconductor devices is needed. One of the most popular computer
programs used for the modeling and analysis of electronic devices and circuits is the Simulation
Program with Integrated Circuit Emphasis (SPICE) [12]. SPICE contains a large number of passive
and active device models. The accuracy of SPICE models for various semiconductor devices, such as
MOSFET, BJT, SJT and IGBT transistors, has already been studied [13–18].

In the case of JFET characteristics modelling, a Shichman–Hodges (S–H) model is used [12].
Recently, a successful attempt at modeling the static characteristics and parameters of SiC-JFETs using
the S–H model have been reported [19,20]. On the other hand, selected aspects of modelling dynamic
characteristics of JFETs were presented in [8–10,21–24].

The paper deals with the problem of modelling capacitance–voltage (C–V) as well as switching
characteristics of SiC-JFETs. Appropriate modifications of the Shichman–Hodges model were proposed
in order to improving its accuracy. The modified model was experimentally verified by comparison of
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the measured and calculated C–V characteristics of the transistor. Moreover, the results of measurements
and calculations of the switching characteristics of the transistor were compared.

2. The Shichman–Hodges Model Form

A network form of the built-in in SPICE Shichman–Hodges model of JFET is presented in
Figure 1 [12].
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Figure 1. Network form of the Shichman–Hodges (S–H) model of the junction field-effect transistor
(JFET) in Simulation Program with Integrated Circuit Emphasis (SPICE).

The main element of the presented model is the controlled source Idrain modeling static drain
current of the transistor for three operational regions, according to the equations [12,19]:

• in the cut-off region (for VGS−VTO(T) < 0):

Idrain = 0 (1)

• in the linear region (for VDS ≤ VGS−VTO(T)):

Idrain = BETA(T) · (1 + LAMBDA ·VDS) ·VDS · (2 · (VGS −VTO(T)) −VDS) (2)

• in the saturation region (for 0 < VGS−VTO(T) < VDS):

Idrain = BETA(T) · (1 + LAMBDA ·VDS) · (VGS −VTO(T))
2 (3)

where: VGS—gate-source voltage, VDS—drain-source voltage, LAMBDA—channel-length
modulation coefficient, BETA(T)—temperature dependence of transconductance coefficient,
VTO(T)—temperature dependence of the threshold voltage.

Resistors RG, RD and RS (Figure 1) represent series resistances of the gate, the drain and the
source of the transistor. Diodes D1 and D2 describe currents of the gate–source and the gate–drain p–n
junctions, respectively. An extended description of the static S–H model is given for instance in [20] or
is available in the SPICE user manual [12].

Capacitors Cgs and Cgd (Figure 1) represent nonlinear junction capacitances of p–n junctions,
according to equations [3,8]:

• for Vgs ≤ FC·PB

Cgs = CGS ·
(
1−

Vgs

PB

)−M

(4)
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• for Vgs > FC·PB

Cgs = CGS · (1− FC)−(1+M)
·

(
1− FC · (1 + M) + M ·

Vgs

PB

)
(5)

• for Vgd ≤ FC·PB

Cgd = CGD ·
(
1−

Vgd

PB

)−M

(6)

• for Vgd > FC·PB

Cgd = CGS · (1− FC)−(1+M)
·

(
1− FC · (1 + M) + M ·

Vgd

PB

)
(7)

where: FC—forward-bias depletion capacitance coefficient, PB—gate p–n potential,
CGS, CGD—zero-bias gate–source and gate–drain junction capacitances, M—gate p–n
grading coefficient.

3. Results of Simulations of the Shichman–Hodges Model

A normally-OFF trench silicon carbide power Junction Field-Effect Transistor of absolute maximum
drain-source voltage equal to 1700 V (SJEP170R550) fabricated by SemiSouth [25] was chosen for
investigations. Measurements of capacitance characteristics were performed using the measuring source
Keithley 2602. The JFET model parameters were calculated using an estimation method described
in [26]. Values of static model parameters for the considered transistor are: BETA = 2.308 A/V2,
LAMBDA = 0.0538 V−1, IS = 1·10−16 A, ISR = 4.51·10−9 A, M = 0.0164, N = 3.152, NR = 9.62,
PB = 6.832 V, RD = 0.4113 Ω, RS = 0.0346 Ω, VTO = 0.8576 V, XTI = 2, BETATCE =−0.0994 %/◦C,
VTOTC = 6.1494·10−4 V/◦C.

In addition, values of parameters describing the capacitance of the considered transistor model
are as follows: CGD = 2.57·10−10 F, CGS = 1.34·10−10 F, FC = 0.5.

Results of measurements and calculations of C–V characteristics using S–H model are
presented in Figure 2. Points and solid lines in Figure 2 denote the results of measurements and
calculations, respectively.
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Figure 2. (a,b) Measured and calculated (S–H model) capacitance–voltage characteristics of the SiC JFET.

As seen, for small VGS and VGD bias voltages of around 1 V a good agreement between
the simulation and measurement results can be observed. However, quantitative and qualitative
discrepancies reaching even one order of magnitude are observed in the case of CGS(V) and CGD(V)
characteristics (Figure 2a,b) for voltages greater than 1 V.
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The manufacturers of the JFET transistors present in datasheets [25] the characteristics of
capacitances Ciss, Coss and Crss as a function of specified terminal voltages. These capacitances
constitute an appropriate combination of transistor junction capacitances. Capacitances Ciss, Coss and
Crss are expressed with the following formulas [10]:

Ciss= Cgs+Cgd (8)

Coss= Cds+Cgd (9)

Crss= Cgd (10)

where Cgs—gate–source capacitance, Cgd—gate–drain capacitance, and Cds—drain–source capacitance.
Calculations of C–V characteristics of the transistor can be realized using specialized SPICE

simulation circuits [10]. The network forms of Ciss and Crss measurement fixtures are presented in
Figures 3 and 4, respectively.
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Capacitances CG, CD, CGD and inductances LG, LD from Figures 3 and 4 with non-physical large
values are used to separate appropriate currents and voltages in the fixtures. Voltage sources VGS and
VDS determine the operating point of the transistor. The voltage source eG(t) generates a sinusoidal
signal with an amplitude UM = 10 mV and a frequency f = 1 MHz. Capacitance values at a defined
operating point are determined by performing a transient analysis and are calculated according to
equations [10]:

Ciss =
ig

Vgs · 2 · π · f
(11)

Coss =
id

Vds · 2 · π · f
(12)

Crss =
ig

Vgd · 2 · π · f
(13)

where: ig, id, Vgs, Vgd, Vds—amplitude of alternating currents and voltages marked in Figures 3 and 4.
Calculated and measured characteristics Ciss and Crss versus drain–source voltage are

presented in Figure 5. Points and solid lines in Figure 5 denote the results of measurements and
calculations, respectively.
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Figure 5. Measured and calculated (S–H model) Ciss(VDS) and Crss(VDS) characteristics of the JFET.

As seen from Figure 5, there are discrepancies between the measurements and the calculations.
For example, the calculated values of capacitance Ciss for the drain–source voltage up to 500 V are
smaller than the values obtained from measurement by about 40%. In the range of relatively small
values of drain-source voltage VDS, capacitance values decrease rapidly with the increase of the
voltage VDS. However, in the range of drain-source voltage above 100 V capacitance changes are
barely noticeable.

Qualitative discrepancies between the measurements and S–H model simulations observed in
Figures 2 and 5 are a sufficient reason to introduce appropriate model modifications.

4. Modifications of the Shichman–Hodges Model

The original Shichman–Hodges model assumes [12] that the gate–source and the gate–drain
junctions appearing in the transistor structure are identical in terms of physical properties and electrical
parameters. Therefore, the model parameters such as M, PB and FC are used to describe properties of the
junctions in common (see Equations (4)–(7)). This means that an attempt to determine the values of these
parameters in order to achieve a good agreement between simulation and measurement results of the
gate–drain junction automatically changes the shape of calculated gate-source junction characteristics.

On the other hand, the structure of a real JFET contains p–n junctions of different electrical
properties [21], so a separate set of M, PB and FC parameters has to be used. In the proposed
model, independent descriptions of each junction were introduced to increase the modelling accuracy,
according to equations:

• for VGS ≤ FC1·PBCGS

CGS = CGS ·
(
1−

VGS

PBCGS

)−MGS
(14)

• for VGS > FC1·PBCGS

CGS = CGS · (1− FC1)−(1+MGS)
·

(
1− FC1 · (1 + MGS) + MGS ·

VGS

PBCGS

)
(15)

• for VGD ≤ FC2·PBCGD

CGD = CGS ·
(
1−

VGD

PBCGD

)−MGD
(16)

• for Vgd > FC2·PBCGD

CGD = CGS · (1− FC2)−(1+MGD)
·

(
1− FC2 · (1 + MGD) + MGD ·

VGD

PBCGD

)
(17)

where: FC1, PBCGS, MGS, FC2, PBCGD, MGD represent a new set of model parameters.
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The modified model was implemented to SPICE as a subcircuit with the use of the ABM (Analog
Behavioral Modeling) option (using controlled sources). The network form of the proposed model is
presented in Figure 6. Controlled-current sources GCGD and GCGS represent currents flowing through
CGD and CGS capacitances. An additional parameter estimation procedure was carried out. New
values of the model parameters describing the gate–source and the gate–drain junction are as follows:
FC1 = 0.975, PBCGS = 2.764 V, MGS = 0.305, FC2 = 0.826, PBCGD = 2.654 V, MGD = 0.679.
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Figure 6. Network form of the modified model of the JFET.

The results of the experimental verification of the modified model are presented in Figures 7 and 8.
Points and solid lines in Figures 7 and 8 denote the results of measurements and calculations, respectively.
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Figure 7. (a,b) Measured and calculated (modified model) C–V characteristics of the JFET.
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As seen, the results of modeling using the modified model provide much greater modelling
accuracy than the original S–H model.

5. Simulation Results of Dynamic Characteristics of JFET

Measurements and calculations of the dynamic characteristics of the transistor were carried out in
order to check the suitability of the modified JFET model. For this purpose, the simplest measurement
system was chosen—a switching circuit presented in Figure 9.
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Figure 9. Switching circuit of the transistor.

In the switching circuit, the source VDS is responsible for determining the operating point of the
transistor, whereas the source eG(t) with an amplitude equal to 2.5 V and frequency of 10 kHz forces
stimulation on the transistor gate.

Measurement and calculation results of VGS(t) and VDS(t) waveforms of the JFET are presented
in Figure 10. Points and solid lines in Figure 10 denote the results of measurements and
calculations, respectively.
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Figure 10. Calculated and measured time waveforms of the gate–source and drain–source voltage of
the JFET in the switching circuit.

A good agreement between the results of measurements and calculations of waveforms VGS(t)
and VDS(t) is observed, which confirms the correctness of the modified model. The turn-on (tON) and
turn-off (tOFF) delay times of the transistor are equal to about 0.3 and 0.8 µs, respectively.

6. Conclusions

In this paper, the usefulness of the Shichman–Hodges model of the JFET built-in in SPICE is
examined. The SJEP170R550 transistor offered by SemiSouth Inc. is considered in detail. Owing
to the observed discrepancies between the device’s simulated and measured characteristics some
modifications of the model to improve its accuracy are proposed. The modifications concern a change
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in the description of the capacitances of the transistor’s p–n junctions. A significant increase in the
modeling accuracy of SiC JFET characteristics is observed, which confirms the validity of the modified
model. The proposed model can be used for modelling other types of JFETs made of silicon carbide,
where performing an estimation procedure of transistor model parameters is only required.
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