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Abstract: The main objective of this work is to analyze and configure appropriately the input vectors
to enhance the performance of NARX models to forecast solar radiation one hour ahead. For this study,
Engle–Granger causality tests were implemented. Additionally, collinearity among the meteorological
variables of the databases was examined. Different databases were used to test the contribution of
these analyses in the improvement of the input vectors. For that, databases from three cities of Mexico
with different climates were obtained, namely: Chihuahua, Temixco, and Zacatecas. These databases
consisted of hourly measurements of the following variables: solar radiation (SR), wind speed (WS),
relative humidity (RH), pressure (P), and temperature (T). Results showed that, in all three cases,
proper NARX models were produced even when using input vectors formed only with solar radiation
and temperature data. Consequently, it was inferred that pressure, wind speed, and relative humidity
could be excluded from the input vectors of the forecasting models since, according to the causality
tests, they did not provide relevant information to improve the solar radiation forecast in the studied
cases. Conversely, these variables could generate spurious results. Forecasting results obtained with
the NARX model were compared to the smart persistence model, commonly used to validate SR
prediction. Error measures, such as mean absolute error (MAE) and root mean squared error (RMSE),
were used to compare prediction results obtained from different models. In all cases, results obtained
from the enhanced NARX model surpassed the results of the smart persistence, namely: in Chihuahua
up to 11.5%, in Temixco up to 15.7%, and in Zacatecas up to 27.2%.

Keywords: NARX model; collinearity tests; Engle–Granger causality technique; solar radiation forecasting

1. Introduction

Solar radiation (SR) is the driving force behind several solar energy devices, such as photovoltaic
systems for generating electricity and solar collectors for water heating [1]. Therefore, SR prediction
models are essential for different applications, from the operation of energy systems (PV and thermal
systems) to meteorological applications [2,3].

Several research works’ scope was to develop models that allowed predicting SR with acceptable
precision. The techniques used in the forecast models varied according to the place and the available
data, so it was difficult to classify them adequately. However, they could be divided into three main
groups: clarity index models, hybrid models, and artificial neural network (ANN) models. In the
first, the variable to model is the atmospheric transmittance or clarity index [4–8]. Hybrid models
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include those that combine a prediction model with data grouping techniques, such as the model
used by Azimi et al. [9], which is a combination of a grouping technique and multilayer perceptron
k-means ANN. Other authors have proposed hybrid models that use different types of ANN [10,11].
Recently, new hybrid models were developed, for example of the ARMA/ANN type, where different
order ARMA models and several kinds of ANN have been used. In those cases, it is important
to note that the ARMA model was used to deal with the linear part, while the ANN model was
employed to forecast the non-linear part of the time series [10,12]. In some hybrid cases, the clarity
index was also considered, like in the approach used by Voyant et al. [13]. Currently, ANN techniques
are widely used in SR forecasting models. Sfetsos and Coonick [1] compared traditional linear
methods against several artificial intelligence (AI) based techniques and found that AI models
predicted the time series of solar radiation more effectively compared to conventional procedures;
the feed-forward neural network (FFNN), Elman recurrent neural network, and diverse training
functions were applied. Other examples of the use of FFNN to predict SR can be consulted in the
bibliography [3,14,15]. In some research works, dividing the annual time series into seasonal time
series was proposed [4,13,16]. Less conventional models were proposed by Pandey and Soupir [17]
and Yang et al. [18], which included the use of polynomial expressions for the decomposition of the
time series, the zenith angle, and the transmission function. An ARMA-time delay neural network
(TDNN) hybrid model, based on data segmentation and a grouping algorithm, was developed for the
hourly forecast of global solar radiation by Wu and Chan [19]. Huang et al. [20] used a coupled model
of autoregressive and dynamic systems, obtaining a hybrid model, which they compared with the
Lucheroni model.

Hocaoglu and Karanfil [21] proposed the use of causality tests to find the bidirectional relationship
between the meteorological variables. In their study, wind speed, pressure, and temperature were
used; however, the authors did not implement any forecast model. Ahmad et al. [22] used the Pearson
correlation coefficient as a measure of the linear correlation between two variables to select the inputs
of a prediction model, then the authors decided to try several combinations of inputs to obtain the
global horizontal irradiation (GHI). Meanwhile, Aguiar et al. [23] proposed an ANN to forecast the
GHI using the Pearson correlation to find the relationship between the satellite and terrestrial data to
obtain the best input data to the ANN models.

The literature review showed that, in most cases, the entries of forecast models were intuitively selected.
Furthermore, from the study on the state-of-the-art concerning hourly prediction of SR, the importance of
the architecture and the performance of forecast models were evident. However, there was little information
on the selection of the input variables of these models, and there was not a clear proposal on how these
input variables should be chosen, with only a few works dealing with this topic.

The present research work focuses on the use of causality tests to find the proper inputs of
multi-variable models for SR prediction, with a horizon of one hour; this implies that for the model to
trace a synthetic time series, it always needs previous actual data of the input variables. Several NARX
models were developed for three sites. In the first instance, the models included all variables in
the input vector. Later, new models with input vectors built using the collinearity and causality tests
were produced. All results were compared with the smart persistence model. The analysis of the results
suggested that it was necessary to apply co-integration tests to the meteorological variables of each site
database. The reason was that, in some cases, it was not necessary to include all variables as inputs for
the forecast models. Therefore, these tests ensured avoiding spurious forecasts generated by a mistaken
conformation of the multi-variable models of any kind: NARX, autoregressive vectors, ANN, etc.
The structure of this document is the following: Section 2 presents a description of the studied sites’
datasets and the type of available meteorological variables. Afterwards, the theoretical bases for smart
persistence, NARX models, Engle–Granger tests, and performance tests used to evaluate the forecast
models are described in Section 3. In Section 4, the selection of input variables and the structure of
the nonlinear autoregressive exogenous model (NARX) are presented and explained. Section 5 shows
the results and the corresponding discussion.
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2. Meteorological Variables’ Databases

Data from three sites were analyzed, and at each site, there was an available weather station
with specific characteristics. The studied sites were chosen based on their solar radiation potential,
weather characteristics, and data availability. These meteorological stations were located in different
cities of Mexico, namely: Chihuahua, Temixco, and Zacatecas. Figure 1 shows an approximate climate
map of Mexico. This figure also shows the locations of the studied sites. Furthermore, Table 1 shows
the precise location of the sites and their corresponding weather type. The main characteristics of
measurement equipment of the meteorological stations are shown in Table 2.

Figure 1. Weather map of Mexico (source: Instituto Nacional de Estadística, Geografía e Informática).

Table 1. Location of meteorological stations and the weather type of the sites.

Site Latitude Longitude Elevation Weather
(North) (West) (m.a.s.l.) Type

Chihuahua 28.6◦ 106.0◦ 1415 Very dry
Temixco 18.8◦ 99.2◦ 1313 Warm-sub humid

Zacatecas 22.8◦ 102.6◦ 2460 Dry

Three databases containing 17,520 hourly measurements of each variable, that is two full years
of data, were consulted; however, due to the databases’ restrictions, different years were employed.
In the case of Chihuahua, four meteorological variables were monitored: solar radiation, temperature,
relative humidity, and pressure (SR, T, RH, and P); from January 2014 to December 2015. In the case
of Temixco, five meteorological variables were measured: SR, T, RH, P, and wind speed (WS); from
January 2013 to December 2014. Finally, for the case of Zacatecas, four meteorological variables were
monitored: SR, T, RH, and WS; from January 2006 to December 2007.
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Table 2. Sensor characteristics.

Probe Sensor Range Accuracy

Eppley B&W Pyranometer – – –
CS500 Temperature Probe 1000 Ω platinum resistance −40.0 ◦C to +60.0 ◦C ±0.5 ◦C

thermometer, DIN43760B
CS500 Relative Humidity Probe Vaisala INTERCAP 0 to 100% ±3%
R.M. Young Wind Sentry Anemometer Cups Wheel Assembly 0.0 to 50.0 m/s ±0.5 m/s
PTB110 Barometer Vaisala BAROCAP 500.0–1100.0 hPa ±0.3 hPa
WXT510 Weather Transmitter Ultrasonic Signal 0 to 60 m/s 3%

BAROCAP 600 to 1100 hPa ±0.5 hPa
THERMOCAP Sensor −52.0 ◦C to 60.0 ◦C ±0.3 ◦C

HUMICAP Sensor 0 to 100% RH ±3% RH

3. Techniques and Methods Used in the Analysis

This section describes the applied techniques to select the data that formed the input vectors of
the NARX models to forecast SR.

3.1. Collinearity Tests

Two variables are defined as collinear if the data vectors that represent them are on the same line
(i.e., subspace of dimension one). Generally, the k variables are collinear if the vectors that represent
them are in a subspace of dimension smaller than k, that is if one of the vectors is a linear combination of
the other vectors. In practice, such “exact collinearity” rarely occurs, but this is certainly not necessary
to consider that a collinearity problem exists [24].

Usually, an analysis of the principal components of the independent variables is performed to
detect the collinearity. The principal components of a set of variables to other variables are referred to
as the linear combination of the original variables. The principal components have three properties:
(a) they are mutually independent (they are not correlated with each other); (b) they maintain the same
information as the original variables; (c) they have the maximum variance with the above limitations.
The variance of each principal component is an eigenvalue of the variance-covariance matrix of the
original variables.

The number of null eigenvalues indicates the number of variables that are a linear combination of
others (the number of exact collinearities). The eigenvalues near zero indicate serious collinearity problems.

3.2. Engle–Granger Causality Test

The fundamental aim of the co-integration tests is to know how much useful information the
input variables provide to the model. This information is used to decide which variables should
be part of the forecasting model. One of the most popular co-integration tests is the Engle–Granger
causality method.

The causality test avoids the generation of spurious results, with a certain level of precision (in this
study, a confidence level of 1% was used). By eliminating unnecessary variables from the forecast
model, the inclusion of meteorological variables that do not provide any significant information
could be avoided; such variables may affect the model performance in unexpected or unwanted
ways. These results are the spurious phenomenon of the nonsense regression explained by Yule [25].
Yule proved that spurious correlation could persist in non-stationary time-series, even if the sample is
very large.

The Engle–Granger causality tests propose a hypothesis diagnostic, where the null hypothesis
rejects the causality approach of one variable against another variable, that is the independent variable
does not have useful information to predict the dependent variable. The Engle–Granger causality
tests first assumes that the variable X does not cause the variable Y. If this null hypothesis is rejected,
then the variable X causes the variable Y, that is the variable X contains relevant information to predict
the variable Y. The causality tests were carried out by solving Equations (1) and (2).
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Yt =
n

∑
i=1

αiXt−i +
n

∑
j=1

β jYt−j + u1t, (1)

Xt =
n

∑
i=1

λiYt−i +
n

∑
j=1

δjXt−j + u2t, (2)

where X is, for example, the solar radiation, Y is the air temperature, u1t is the uncorrelated white
noise, and n is the number of lags. αi, β j, λi, and δj are parameters to be determined.

Similarly, using the auto-regressive vector technique, it is possible to elaborate tests for several
variables [25]; such as wind speed, relative humidity, etc.

Since the results of the causality test depend on the number of lags, these tests were conducted
using 2, 3, ..., and 24 lags. The results were considered acceptable when some of the unnecessary
variables were rejected after modifying the number of lags, due to the main objective of this work
being fulfilled: to develop SR forecasting models with a reduced number of input variables.

3.3. Augmented Dickey–Fuller Test

Many statistical tests that help to determine if a time-series is or is not stationary exist.
The augmented Dickey–Fuller (ADF) test was implemented in this work to identify the stationarity of
the time-series. This test is based on the null hypothesis, which supposes that an analyzed time-series
is non-stationary. Still, if this first hypothesis is rejected, then the time-series is considered stationary.

On the other hand, unit root tests are based on the study of stochastic time-series; in this
case: pure random walk, random walk with drift, and random walk with drift and deterministic
trend. Furthermore, the random walk with drift and deterministic trend model was proposed with
an additional term, which considered whether the term ut was correlated or not [25], as can be seen in
Equation (3).

∆Yt = β1 + β2t + δYt−1 +
m

∑
i=1

αj∆Yt−j + εt, (3)

where β1 is the drift, β2 is the deterministic trend term, δ is the term that indicates if the time-series is
stationary, εt is a pure error term, and ∆Yt−i = (Yt−1 −Yt−2), ∆Yt−2 = (Yt−2 −Yt−3), etc.

3.4. Non-Linear Auto-Regressive Model with Exogenous Inputs

Consider a recurrent neural network with only one input and one output, whose behavior is
described by Equations (4) and (5). Given this state-space model, modifying it into an input-output
model as an equivalent representation of the neural network is necessary.

x(n + 1) = φ [Wax(n) + wbu(n)] , (4)

y(n) = cTx(n). (5)

Using Equations (4) and (5), it can be easily demonstrated that the output y(n + q) could be
expressed in terms of the state x(n) and the input vector uq(n) as follows:

y(n + q) = Φ
[
x(n), uq(n)

]
, (6)

where q is the dimensional form of the state-space model and Φ : <2q → <. Provided that the recurrent
network is observable, the local observability theorem can be used to write:

x(n) = Ψ[yp(n), uq−1(n)], (7)

where Ψ : <2q−1 → <q. Hence, substituting Equation (7) in Equation (6), it is obtained:
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y(n + q) = Φ
[
Ψ
(
yp(n), uq−1(n)

)
, uq(n)

]
= F

[
yq(n), uq(n)

]
, (8)

where uq−1(n) is contained in uq(n) as its first elements (q− 1), and the nonlinear mapping F : <2q → <
takes care of both φ and ψ.

uq−1(n) = [u(n), u(n + 1), · · · , u(n + q− 2)]T , (9)

yp(n) = [y(n), y(n + 1), · · · , y(n + q− 1)]T . (10)

Using the definitions of yp(n) and uq(n) given in Equations (9) and (10), we may rewrite
Equation (8) as the expanded form:

y(n + q) = F [y(n + q− 1), · · · , y(n), u(n + q− 1), · · · , u(n)] . (11)

Replacing n with n− q + 1, then:

y(n + 1) = F [y(n), · · · , y(n− q + 1), u(n), · · · , u(n− q + 1)] . (12)

Expressed in words, some non-linear mapping F : <2q → < exists whereby the present value
of the output y(n + 1) is uniquely defined in terms of its past values y(n), · · · , y(n− q + 1) and the
present and past values of the input u(n), · · · , u(n− q + 1). For this input-output representation
to be equivalent to the state-space model of Equations (4) and (5), the recurrent network must be
observable. The practical representation of this equivalence is that the NARX model (see Figure 2a,
with its limited feedback towards the output neuron, is in fact able to simulate the corresponding fully
recurrent state-space model of Figure 2b (assuming that m = 1 and p = 1), with no difference between
their input-output behavior [26].

(a)

Figure 2. Cont.
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(b)

Figure 2. Proposed NARX model: (a) Nonlinear autoregressive neural network with exogenous inputs.
(b) Multilayer perceptron with one hidden layer [26].

3.5. Smart Persistence Model

The smart persistence model was used as a benchmark. Despite the simplicity of this model,
it can be very accurate for low variability periods. Therefore, the smart persistence model is useful to
compare to other models. This model is defined as [27]:

SR(t + ∆t) =
SRclr(t + ∆t)

SRclr(t)
SR(t). (13)

It is well known that solar radiation suffers losses due to dispersion and atmospheric absorption
when it passes through the atmosphere [28]. After the atmospheric absorption phenomenon, the normal
solar flow rate (solar radiation/normal irradiance) that reaches the Earth’s surface is calculated with
Equation (14), found in the Handbook of Solar Energy [28], where it is also mentioned that SR can be
another form of normal irradiance.

SRclr = Iext · exp
[
− TR

(0.9 + 9.4 · cos θz)

]
, (14)

and:
cos θz = cos φ cos δ cos ω + sin δ sin φ, (15)

where θz is the solar zenith angle defined as the angle between the vertical and the line connecting to
the Sun, Iext is the extraterrestrial irradiance per hour, TR is the turbidity factor, φ is the latitude of the
site, δ is the declination angle of the Earth, and ω is the hour angle.

The extraterrestrial hourly mean irradiance (W/m2) is calculated by the following equation [29]:

Iext = IscE0(sin δ sin φ + 0.9972 · cos δ cos φ cos ω0.5), (16)

where E0 is the eccentricity correction factor, Isc = 1367 W/m2 is the solar constant, and ω0.5 is the
hour angle at the half hour.

3.6. Solar Radiation Estimation under Clear Sky Conditions, SRclr

To have a reference and a constraint for the calculation of smart persistence, a monthly ideal
turbidity factor was calculated for each site by solving Equation (14) for TR:

TR = − log
[
(SR)month
(Iext)month

]
· [0.9 + 9.4 · (cos θz)month] , (17)

where (SR)month is the maximum value of the month of solar irradiance measured at each site,
(Iext)month is the maximum value of solar extraterrestrial radiation for each month at each site,
and (cos θz)month is the monthly value used to calculate (Iext)month according to [28]. Tables 3–5 show
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the obtained results from Equation (17) of the turbidity factor, TR, corresponding to Chihuahua, Temixco,
and Zacatecas, respectively.

Table 3. Turbidity factor, TR, in Chihuahua, Chih.

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sept. Oct. Nov. Dec.

(Iext)month, (W/m2) 986 1128 1267 1337 1352 1352 1349 1337 1285 1172 1018 904
(SR)month, (W/m2) 784 946 1037 1068 1100 1087 1051 1046 1013 909 778 767
(cos θz)month, (−) 0.680 0.786 0.897 0.962 0.986 0.986 0.988 0.975 0.926 0.831 0.710 0.623
TR, (−) 1.672 1.464 1.869 2.236 2.099 2.225 2.545 2.468 2.283 2.213 2.035 1.111

Table 4. Turbidity factor, TR, in Temixco, Mor.

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sept. Oct. Nov. Dec.

(Iext)month, (W/m2) 1153 1261 1351 1375 1374 1359 1360 1362 1351 1287 1175 1085
(SR)month, (W/m2) 864 950 1011 1039 1017 1043 1056 1026 1103 950 840 816
(cos θz)month, (−) 0.795 0.879 0.957 0.989 0.990 0.991 0.992 0.990 0.973 0.912 0.811 0.748
TR, (−) 2.412 2.597 2.867 2.851 3.074 2.706 2.588 2.890 2.040 2.875 2.882 2.261

Table 5. Turbidity factor, TR, in Zacatecas, Zac.

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sept. Oct. Nov. Dec.

(Iext)month, (W/m2) 1091 1213 1323 1365 1366 1361 1356 1356 1330 1246 1117 1017
(SR)month, (W/m2) 642 720 798 888 834 985 897 860 867 795 575 584
(cos θz)month, (−) 0.752 0.845 0.937 0.982 0.988 0.993 0.991 0.989 0.958 0.883 0.779 0.701
TR, (−) 4.228 4.617 4.905 4.356 5.034 3.311 4.230 4.648 4.237 4.140 5.461 4.155

It is worth mentioning that it was only necessary to calculate TR once for each month since the
maximum value measured in each month of both SR and Iext was used. The maximum ideal SR could
be calculated using a single TR under optimal conditions at each site per month. The goal was to use
that SR calculated value as a constraint for the smart persistence model so that it never exceeded such
a value.

Note that the results for the turbidity factor were obtained under the following hypotheses:

• at least one day of each month had clear sky conditions.
• SR obtained under clear sky conditions was calculated by considering the maximum irradiance of

every month.

Figure 3 presents the synthetic series of maximum ideal SRclr generated using Equation (14)
for a typical year, where the monthly TR presented in Tables 3–5 was used. It should be noticed
that 8760 computed data of SRclr were plotted from hourly known values of Iext and θz for each
site, which were adjusted by TR for each month at each site, specifically. This figure also shows the
first 744 h corresponding to January, where 31 peaks can be easily observed, one for a day. Several
interesting phenomena were observed when reviewing the entire synthetic series: first, it seemed that
a relatively continuous area was drawn; however, it was not: it was a line graph that, being a series of
hourly SRclr, had a cyclical shape with very close waves; second, 12 steps appeared, due to the effect
of TR, which scaled the results and changed every month; and finally, a trend was observed in the data
that corresponded to the annual seasonal cycle where the summer months received more SRclr. It is
important to highlight that TR produced a peculiar behavior in Zacatecas since there was a significant
gap from June to August compared to the rest of the year.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Solar radiation under clear sky conditions (SRclr): (a) Chihuahua: 1 January to 31 December
2015; (b) Chihuahua: 1–31 January 2015; (c) Temixco: 1 January to 31 December 2014; (d) Temixco: 1–31
January 2014; (e) Zacatecas: 1 January to 31 December 2007; and (f) Zacatecas: 1–31 January 2007.
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3.7. Performance Tests

Two standard error metrics widely used in the solar prediction area were implemented: the root
mean squared error (RMSE) and the mean absolute error (MAE).

RMSE =

√
1
n

n

∑
i=1

(
(SR) f − (SR)m

)2
, (18)

MAE =
1
n

n

∑
i=1

∣∣∣(SR) f − (SR)m

∣∣∣ , (19)

where (SR) f is the forecasted solar radiation and (SR)m is the measured solar radiation.
Additionally, to compare the relative improvement of the different models with respect to

the smart persistence model, the forecast skill parameter was calculated as defined in [23].

Forecastskill(%) =

(
1− RMSENARX

RMSESP

)
· 100, (20)

where the subscripts NARX and SP denote the NARX model and the smart persistence model, respectively.

4. Selection of Input Variables and the Structure of the NARX Model

This section explains how the collinearity and co-integration tests were applied to assemble
the input vectors of the prediction model. Afterwards, the general architecture of a trained NARX
model is presented.

4.1. Collinearity Tests

When a variable has a linear combination with another one, it means that both variables are related
through a linear expression. When the linear correlation coefficient between the variables is equal to
unity, the variables have a simple collinearity. In the case of multiple variables, collinearity occurs when
some independent variables are correlated with each other. One way to detect collinearity between
multiple variables is through principal component analysis of the independent variables. The variance
of each principal component is an eigenvalue of the variance-covariance matrix of the original
variables. The null eigenvalues indicate the number of variables that are linear combinations of
others (exact collinearities). Once the presence and number of collinearities are determined in
a multivariate time-series, it is convenient to find the involved variables through the calculation
of their variance-decomposition proportion for each component; Belsley et al. [24] proposed using
a proportion threshold of about 0.5.

Collinearity tests were used to assemble the input vectors of the NARX models correctly. Figure 4
shows the collinearity tests performed on the multivariate time series of the three studied sites, with the
available variables in each site, namely:

• In the case of Chihuahua, the temperature and the pressure were above the threshold of the
variance-decomposition proportion; see Figure 4a. Thus, in the next stage, the collinearity tests
were performed omitting one of these variables, obtaining two new combinations of input vectors.
The first input vector was assembled using SR, RH, and T. The second vector was constructed
using SR, RH, and P.

• In the case of Temixco, temperature, relative humidity, and pressure showed collinearity;
see Figure 4b. Therefore, three new input vectors were obtained formed as follows: SR, WS,
and T variables for the first vector; SR, WS, and RH variables for the second vector; and SR, WS,
and P variables for the third vector.

• In the case of Zacatecas, the temperature significantly exceeded the threshold of 0.5; see Figure 4c.
Therefore, two new input vectors were obtained in combination with the temperature, i.e., SR,
RH, and T; and SR, WS, and T.
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(a) (b)

(c)

Figure 4. Results of the collinearity tests: (a) Chihuahua, (b) Temixco, and (c) Zacatecas.

Tables 6–8 show the proposed input vectors for Chihuahua, Temixco, and Zacatecas, respectively.
In all cases, Vector 1 was formed using all available meteorological variables. Vectors 2 and 3 (and 4 for
Temixco) were obtained from the results of the collinearity tests. Finally, Vector 4 (5 for Temixco)
was the result of the application of collinearity and integration tests.

Table 6. Input vectors of Chihuahua, Chih.

Vector Input Variables Output Variable Tests

1 SR, RH, T, P SR –
2 SR, RH, T SR Collinearity
3 SR, RH, P SR Collinearity
4 SR, T SR Collinearity and cointegration

Table 7. Input vectors of Temixco, Mor.

Vector Input Variables Output Variable Tests

1 SR, WS, T, RH, P SR –
2 SR, WS, T SR Collinearity
3 SR, WS, RH SR Collinearity
4 SR, WS, P SR Collinearity
5 SR, T SR Collinearity and cointegration

Table 8. Input vectors of Zacatecas, Zac.

Vector Input Variables Output Variable Tests

1 SR, RH, WS, T SR –
2 SR, RH, T SR Collinearity
3 SR, WS, T SR Collinearity
4 SR, T SR Collinearity and cointegration
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4.2. Engle–Granger Causality Tests

Cointegration tests to identify redundant variables of the input vector built from collinearity test
were applied. In the case of Chihuahua, the collinearity test determined two different combinations of
input vectors: V2 = [SR, RH, T] and V3 = [SR, RH, P]; which were formed using separately the variables
that presented collinearity. Then, the causality test was applied to V2, identifying the RH as a redundant
variable, so the RH was eliminated from the this input vector, obtaining V4 = [SR, T] of Table 6. For V3,
the test did not register any redundant variable, so the input variables remained the same.

In the case of Temixco, the causality tests were applied to three groups of input variables:
V2 = [SR, WS, T], V3 = [SR, WS, RH], and V4 = [RS, WS, P]. The tests indicated that there would
only be a change in the case of V2, where it was determined that the WS was a redundant variable.
Therefore, the new vector V5 = [SR, T] of Table 7 was defined.

Finally, in the city of Zacatecas, it was found that only T showed collinearity, and two input
vectors were formed:

V2 = [SR, T, RH], V3 = [SR, T, WS]. The causality tests determined the relative humidity as a
redundant variable in V2. Therefore, the new input vector V4 = [SR, T] was formed; see Table 8.

4.3. NARX Models Including Collinearity Tests

Once the input vectors were determined, the NARX models were developed for each of the cases
shown in Tables 6–8. When all the meteorological variables were used (i.e., vectors V1), as well as
vectors obtained from the causality tests, the NARX models were performed using the diagram of
Figure 5. The flowchart initiated when input variables were entered. Then, the NARX model was
trained, and finally, the performance tests were calculated. The variables were normalized with values
from zero to one, before the NARX model was trained. To normalize the variables, the subroutine
shown in Figure 5b was used.

Start

Input
variables

Variables normalization

NARX model

Performance test

End

Start

Input, Target
ymin, ymax

[rows, cols] = size(Input)

maxi = max(Input);
mini = min(Input);

Mmaxi = repma(maxi, rows, 1);
Mmini = repma(mini, rows, 1);

maxt = max(Target);
mint = min(Target);

Mmaxt = repma(maxt, rows, 1);
Mmint = repma(mint, rows, 1);

X = ymin + ((Input−Mmini)/(Mmaxi −Mmini)) ∗ (ymax − ymin);
T = ymin + ((Target−Mmint)/(Mmaxt−Mmint)) ∗ (ymax− ymin);

End

(a) (b)

Figure 5. Nonlinear autoregressive exogenous model: (a) Main flow chart. (b) Variables’ normalization
subprocess.

4.4. NARX Models Including Collinearity and Engle–Granger Causality Tests

The main objective of this research work was to build the best NARX model, based on the
proper input vectors. The flowchart of Figure 6 shows the steps that were followed to define the
relevant variables in the solar radiation prediction using collinearity and causality tests. In the case of
Chihuahua, V1 included all the variables. Then, V2 and V3 were obtained, applying the collinearity
test. Finally, the causality test was applied on both input vectors, showing a difference only in V2.
This test indicated that the RH did not cause SR. Therefore, the new input vector was formed as



Energies 2020, 13, 2576 13 of 22

V4 = [SR, T]. In the case of Temixco, the causality test was used to build V2, V3, and V4. The causality
test determined that the WS did not cause SR in V2, while in V3 and V4, there was no change, that is
the input vectors remained the same. Therefore, the new input vector was formed as V5 = [SR, T].
For Zacatecas, the causality test was implemented in V2 and V3. From the application of this test,
only V2 determined that the HR did not cause SR, while in Case 3, no change was registered in the
input variables, resulting in V4 = [SR, T].

According to the obtained results from the collinearity and causality tests’ application, the proper
input vector for each site only included SR and T, that is one non-collinear variable and one
collinear variable.

Although preliminary results indicated that the best input vector only included SR and T, NARX
models were trained for each of the cases from Tables 6–8 to compare all NARX models through the
performance tests, in which it was expected that those NARX models with the best input vector would
obtain the best forecast performance. The first year of the available data was used as the training data.
For the performance tests, the SR forecast horizon was one hour ahead. These results were compared
with the second year of the data measured in each of the sites, i.e., a blind forecast was calculated.

Start

Collinearity

Input variables

Augmented
Dickey–Fuller

test
Difference

Causality testExclude variables
from model

Variables normalization

NARX model

Performance test

End

no

yes

Figure 6. NARX model including collinearity and the Engle–Granger test.

4.5. Number of Time Lags of the NARX Model

First, the variance and the mean were stabilized through the cubic root of the solar radiation,
i.e., Yt = SR1/3. Then, it was differentiated using 24 lags, as dYt = (1− B24)Yt. Figure 7a shows the
transformation of the solar radiation time-series resulting from the application of these operations.
After that, the autocorrelation function (ACF) and the partial autocorrelation function (PACF) were
obtained from the stabilized solar radiation time-series. Figure 7b shows the sinusoidal behavior of the
ACF, which was a clear sign of the presence of seasonality in the SR times-series. At the same time,
the PACF displayed peaks every 24 h, which indicated that the time-series presented daily evolution;
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see Figure 7c. Therefore, the NARX models were tested with different numbers of time lags until
reaching 24 lags. The results showed that the best predictions were obtained when 24 lags were used.

(a)

(b)

(c)

Figure 7. Autocorrelation functions analysis: (a) Transformation of the original time-series.
(b) Autocorrelation function. (c) Partial autocorrelation function.

4.6. Artificial Neural Network Setup

Figure 8 shows the general flowchart of the input variables’ combinations of the NARX models
proposed for the SR forecast at each site; see Tables 6–8. For Chihuahua, the architecture of the artificial
neural network with all available input variables, i.e., x(t) = [SR, T, RH, P] and y(t) = [SR] as the
output variable, is presented in Figure 8a. Figure 8b,c shows how the input variables were previously
treated with the collinearity test, resulting in two input vectors built with three variables each. Because
the temperature and the pressure were defined as collinear, both variables were separated from
the original model, and two new input vectors were generated: in the first one, the temperature was
combined with solar radiation and relative humidity, x(t) = [SR, RH, T]; while in the second one,
the pressure was combined with solar radiation and relative humidity, x(t) = [SR, RH, P]. In this
case, Figure 8d was not used; it was only applicable in the case of Temixco. Finally, Figure 8e shows
the performed procedure on the input variables, before applying the NARX model. The four original
meteorological variables were treated with the collinearity and the causality tests. Therefore, the inlet
vector was reduced from four variables to two variables, namely x(t) = [SR, T].
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(a)

(b)

(c)

(d)

(e)

Figure 8. General architecture of the NARX models: (a) V1 using all available variables, (b) V2 obtained
from the collinearity test application, (c) V3 obtained from the collinearity test application, (d) V4

obtained from the collinearity test application (only for the case of Temixco), and (e) V4 or V5 (only for
the case of Temixco) obtained from the collinearity and causality tests’ application.

Similarly to the Chihuahua case, the NARX model that included all meteorological variables
available in the site as inputs is presented in Figure 8a, where x(t) = [SR, WS, RH, T, P].
According to the collinearity tests, the temperature, the relative humidity, and the pressure
showed collinearity. Consequently, these variables could not be combined to build the input
vectors. Figure 8b–d shows how the input vectors were generated using the collinearity
tests, namely x(t) = [SR, WS, T], x(t) = [SR, WS, RH], and x(t) = [SR, WS, P], respectively.
Finally, in Figure 8e, the solar radiation and temperature were considered as input variables to
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the NARX model. This vector was obtained from the application in the collinearity and causality tests.
As can be seen, the results of the collinearity and the causality tests were not included for the cases
V3 = [SR, WS, RH] and V4 = [SR, WS, P]; this was because, when applying the causality test to these
cases, the results did not suggested any change. Nevertheless, the only change observed occurred
when the causality test was applied to V2 = [SR, WS, T]; where, according to the causality test, WS did
not cause SR. Therefore, in this particular case, the input vector was composed as x(t) = [SR, T].

According to the collinearity test, the only variable that presented collinearity was the temperature.
Therefore, there was no restriction in combining T with another variable. Figure 8a shows the NARX
architecture using all available variables for the site of Zacatecas, that is x(t) = [SR, T, RH, WS].
Figure 8b,c shows the inlet vectors resulting from the collinearity tests, namely x(y) = [SR, T, RH]

and x(y) = [SR, T, WS], respectively. When applying the causality tests to the combination of
variables [SR, T, RH], the results indicated that the three variables should be used for the SR prediction.
Nevertheless, when applying the causality test to [SR, T, WS], the results indicated that WS did not
cause SR, that is WS should not be used for the SR forecast. In Figure 8d, the architecture used for the
forecast of solar radiation can be seen, which only had SR and T as input variables.

In all cases, the number of neurons used in the hidden layer of the NARX models was 10.
The number of lags was obtained using the autocorrelation function and the partial autocorrelation
function. The Levenberg–Marquardt algorithm was used as the training algorithm.

5. Results and Discussions

The results were obtained using two specialized software packages: EViews 9.0 [30] and MATLAB
2015a [31]. The first was used to perform the cointegration tests thanks to its versatility and the
graphical user interface. The second was used for the normalization of the inlet vectors, the NARX
models’ generation, and the collinearity tests.

The forecast results were compared to each other using forecast error measures to verify which
configuration of the NARX model had the best performance. Additionally, to have a different
comparison pattern, a solar radiation forecast based on the smart persistence model was generated.

5.1. Performance Tests

The results of the performance tests obtained from Equations (18)–(20) are shown in Tables 9–11.
Table 9 shows the results obtained for Chihuahua. In the first case, all the available variables in the site
were included, this case being where the most significant errors were observed. Once the collinearity
and causality techniques were applied, the input vector was reduced to only two variables: SR and
T. The collinearity and causality tests restricted the inclusion of every variable that was correlated in
the system; for example HR was correlated with T and P; therefore, in our study, only one variable
should be incorporated to avoid using redundant information. Finally, it is highlighted that the
NARX model that included the collinearity and causality tests showed a better fit than the intelligent
persistence model.

Tables 10 and 11 show the obtained results for Temixco and Zacatecas, respectively. In both
cases, the best forecast result was obtained when only SR and T were used to form the input
vectors. Therefore, it can be concluded that solar radiation forecasting improved when the collinearity
and causality tests were applied to determine the input vector of the NARX model.

It should be noted that, since three study cases were a limited sample to have a conclusive result,
the input vectors obtained with the procedure described in this work for other cases could not be
SR and T. Thus, the results obtained in this work, concerning the delimitation of the input variables
of the NARX models, did not represent a general rule. Furthermore, another determining factor in
the conformation of the input vector, other than collinearity and causality tests, was the historical data,
on which the training of the forecasting model depended.
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Tables 9–11 also show the calculation of the forecast skill from Equation (20). It can be observed
that the best result was obtained for Zacatecas, then for Temixco, and finally, for Chihuahua.
They showed the forecast skill intervals of 27.2%, 15.7%, and 11.5%, respectively.

Table 9. Performance tests for Chihuahua.

Case Input Output Lags Hidden MAE RMSE Forecastskill
Neurons (W/m2) (W/m2) (%)

1 SR, T, RH, P SR 24 10 44.1 84.2 −0.4
2 SR, RH, T SR 24 10 38.2 74.4 11.4
3 SR, RH, P SR 24 10 39.5 78.2 6.8
4 SR, T SR 24 10 36.5 74.2 11.5

Smart Persistence 43.9 83.9 -

Table 10. Performance tests for Temixco.

Case Input Output Lags Hidden MAE RMSE Forecastskill
Neurons (W/m2) (W/m2) (%)

1 SR, WS, RH, T, P SR 24 10 39.5 79.6 −14.5
2 SR, WS, T SR 24 10 28.9 58.7 15.5
3 SR, WS, RH SR 24 10 31.6 61.6 11.3
4 SR, WS, P SR 24 10 29.7 60.0 13.6
5 SR, T SR 24 10 29.1 58.6 15.7

Smart Persistence 32.9 69.5 -

Table 11. Performance tests for Zacatecas.

Case Input Output Lags Hidden MAE RMSE Forecastskill
Neurons (W/m2) (W/m2) (%)

1 SR, T, RH, WS SR 24 10 50.5 85.7 24.9
2 SR, T, RH SR 24 10 49.7 84.8 25.6
3 SR, T, WS SR 24 10 49.6 84.4 26.0
4 SR, T SR 24 10 46.8 83.0 27.2

Smart Persistence 67.2 114 -

5.2. Linear Regression Analysis

Linear regression analysis was applied to better visualize forecast accuracy. The results of this
analysis are shown in Figure 9, where the x-axis represents the solar radiation forecasting, the y-axis
represents the real data, and the blue line is the regression line. This figure shows that the correlation
between the real and the predicted data was between 0.94 and 0.97, which indicated that the models
were very competitive.

For the first two sites, Chihuahua and Temixco, the regression line was almost 45◦, while the third
site had a slightly more pronounced slope. These results indicated that there was a concordance between
the SR forecast and the real data. Furthermore, in this figure, it can be appreciated that the data were not
very dispersed in any of the graphs, another indication that the forecast results were good.
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(a) (b)

(c)

Figure 9. Linear regression analysis: (a) Chihuahua, (b) Temixco, and (c) Zacatecas.

5.3. NARX Models versus the Smart Persistence Model

Figure 10 shows a comparison between the solar radiation measured data and the forecasting
results obtained from the NARX model and the smart persistence model. Figure 10a presents the results
for Chihuahua from 1 January 2015 to 7 January 2015. The RMSE for the NARX model for these seven
days was 5.3 W/m2, while it was 7.3 W/m2 for the smart persistence model. This chart shows a better
fit of the NARX model, especially when the curves did not present a sudden change of direction.
When this occurred, both models showed problems fitting to real data; therefore, it was necessary to
calculate the prediction error to identify the best-fitting forecast model.

Figure 10b shows the comparison of the last seven days of December 2014 of the solar radiation
measured data, NARX model, and smart persistence model for Temixco. The RMSE of the NARX
model was 4.5 W/m2, while 6.1 W/m2 for the smart persistence model. In this case, both models
presented a good performance, with the NARX model being slightly better.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 10. Comparison between the forecasting models and measured data: (a) Chihuahua: one week,
(b) Chihuahua: two days, (c) Temixco: one week, (d) Temixco: two days, (e) Zacatecas: one week,
and (f) Zacatecas: two days.

Figure 10c shows the comparison between real and prediction data for 6 May 2007, to 12 May 2007,
for the city of Zacatecas. In this case, the RMSE of the NARX model was 7.02 W/m2, while 10.16 W/m2

for the smart persistence model. The measured data had an irregular behavior, which caused the
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NARX model to underestimate the values of SR. In contrast, the smart persistence model overestimated
it. Consequently, once again, it was necessary to know the measurement of the prediction error to
determine which was the best fit.

Although the graphs did not show much difference between the NARX model and the smart
persistence model, the performance tests that were performed for the seven days analyzed in each case
indicated that the NARX model was better than the smart persistence model in all cases.

6. Conclusions

Solar radiation is the driving force behind several solar energy devices, such as photovoltaic
systems for generating electricity and solar collectors for water heating [1]. Many researchers are
interested in proposing and improving forecasting results through new techniques of ANN. In this
paper, two tests were applied to three databases to achieve the best variable selection of the input
vector of NARX models to improve the SR prediction: the collinearity and causality tests.

In the Chihuahua and Zacatecas cases, there was a clear improvement when applying both
tests, nevertheless, in Temixco, there was quite similar performance when the NARX model with
V2 = [SR, T, WS] and the NARX model with V4 = [SR, T] were compared. However, the best model
used fewer data by eliminating one variable to achieve similar results as the NARX model with
vector V2. According to the obtained results, the NARX models that showed the best performance
for the solar radiation forecasting one hour ahead were those in which the collinearity and causality
tests were applied to determine the proper variables to form the input vectors. Additionally, the input
vectors were reduced to use only the significant variables in the forecasting models. The results
indicated that, in all studied cases, the solar radiation and temperature were the best combinations of
the input variables, which provided better prediction results by using the NARX models.

The prediction results obtained from the NARX models were compared to a benchmark model,
the smart persistence model. This model was used to forecast the solar radiation one hour ahead,
establishing a relationship between the global solar radiation and solar radiation under clear sky
conditions. The solar radiation calculation under clear sky conditions was obtained employing
the monthly maximum solar radiation and the monthly maximum extraterrestrial solar radiation.
The turbidity coefficient was determined with these monthly values, which is usually obtained through
specialized measurement instruments. The solar radiation forecast skill, %Forecastskill , was calculated
from the results of the NARX model and the smart persistence model, obtaining 11.5%, 15.7%,
and 27.2% for Chihuahua, Temixco, and Zacatecas, respectively.

The next steps that this research envisages include the expansion of the forecast horizon,
i.e., models capable of forecast solar radiation with the least uncertainty for 6, 12, 24, and 48 h
ahead. Besides that, numerical models such as the Weather Research and Forecasting (WRF) model
could be explored. Additionally, hybrid models involving this kind of numerical model with artificial
intelligence and statistical models could be employed, which provide the numerical forecast with the
linear and non-linear characteristics of the phenomenon.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial neural network
ARMA Autoregressive moving average
MAE Mean absolute error
NARX Nonlinear autoregressive model with exogenous inputs
P Pressure
RH Relative humidity
RMSE Root mean squared error
SR Solar radiation
T Temperature
WS Wind speed
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