

Supplementary Materials

CO₂ Electrochemical Reduction by Exohedral N-Pyridine Decorated Metal-Free Carbon Nanotubes

Figure S1. Home-made 3D-printed *ABS* [1] three-electrode cell operating in a 0.1 M KHCO₃ solution, equipped with an [Ag][AgCl][KCl_{sat}] reference electrode, a Pt counter electrode and a gas collector cone on the top for the sampling of the produced volatiles. These photos are reproduced from Ref. [2] with permission from The Royal Society of Chemistry.

Figure S2. Total current density values (J_{tot}) and their stability vs. time, measured for each electrocatalytic material MW@N₁₋₆ at the potential value where they present the highest FEco.

Figure S3. H₂ faradaic efficiency as a function of the applied potential ($-1.0 \div -1.5$ V range).

Figure S4. N 1s core regions and relative fits for the high resolution XPS spectrum of MW@N₂ before (A) and after (B) CO₂RR. Sample B has been recovered from MW@N₂/Cc after 90 min of electrocatalytic run.

Table S1. *J*_{tot}, *J*_{co}, CO and H₂ faradaic efficiency (FE) and productivity as obtained with MW@N₁₋₆/Cc and MWCNT/Cc as electrodes at different potential values: (a) -1.1 V, (b) the V value where each electrocatalyst offers the highest FEco (ranging from -1.05 to -1.2 V) and (c) the highest potential values (up to -1.5 V) applied to the electrochemical cell. Electrolysis time were comprised between 1.5–2 h and 0.5 h, for tests in (a–b) and (c) respectively, using a 0.1 M KHCO₃ solution as electrolyte.

Entry	Electrode	Е (V)	N‰ª	J _{tot} (mA cm⁻²)	FEco (%)	lJcol (mA cm⁻²)	Prod. NL ^{CO} gN ⁻¹ h ⁻¹	FEн2 (%)	Prod. NL ^{H2} gN ⁻¹ h ⁻¹
1	MWCNT/Cc	-1.10	-	0.01	-	-	-	100	0.05^{b}
2	"	-1.20	-	0.02	-	-	-	100	0.1^{b}
3	"	-1.50	-	4.15	-	-	-	100	1.2^{b}
4	MW@N1/Cc	-1.10	1.49	0.04	21.4	0.009	0.18	78.6	0.65
5	"	-1.50	"	3.27	1.7	0.055	1.25	98.3	271.0
6	MW@N ₂ /Cc	-1.10	1.28	0.04	38.7	0.015	0.48	61.3	0.76
7	"	-1.20	"	0.05	52.2	0.026	0.70	47.8	0.64
8	"	-1.50	"	6.00	0.1	0.006	0.11	99.9	168.7
9	MW@N ₃ /Cc	-1.05	1.09	0.05	23.3	0.012	0.48	76.7	1.57
10	"	-1.10	"	0.06	18.1	0.011	0.47	81.9	2.13
11	"	-1.45	"	2.54	1.1	0.028	1.25	98.9	112.4
12	MW@N4/Cc	-1.10	1.75	0.05	13.8	0.007	0.15	86.2	0.93
13	"	-1.15	"	0.09	15.5	0.014	0.27	84.5	1.49
14	"	-1.40	"	1.02	3.7	0.037	0.75	96.3	19.4
15	MW@N5/Cc	-1.10	1.24	0.08	36.3	0.029	0.68	63.7	1.19
16	"	-1.15	"	0.09	44.2	0.040	0.96	55.8	1.21
17	"	-1.30	"	0.35	4.4	0.015	0.37	95.6	8.04
18	MW@N6/Cc	-1.10	2.69	0.03	2.4	0.001	0.01	97.6	0.38
19	"	-1.20	"	0.10	7.3	0.007	0.08	92.7	1.04
20	"	-1.50	"	2.08	0.3	0.006	0.08	99.7	26.1

^{*a*} Average value determined from elemental analysis and acid-base titrations (if applicable) on each material (see Table 1 on the manuscript). ^{*b*} Expressed as NL^{H2} *per* g of catalyst *per* h; no N is present in pristine MWCNTs.

References

- 1. ABS (Acrylonitrile-Butadiene-Styrene) is a common base-resistant thermoplastic polymer for 3D-printing.
- Tuci, G.; Filippi, J.; Ba, H.; Rossin, A.; Luconi, L.; Pham-Huu, C.; Vizza, F.; Giambastiani, G.; How to Teach an Old Dog New (Electrochemical) Tricks: Aziridine-Functionalized CNTs as Efficient Electrocatalysts for the Selective CO₂ Reduction to CO. *J. Mater. Chem. A* 2018, *6*, 16383–16389.