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Abstract: Yearly generation maintenance scheduling (GMS) of generation units is important in each
system such as combined heat and power (CHP)-based systems to decrease sudden failures and
premature degradation of units. Imposing repair costs and reliability deterioration of system are the
consequences of ignoring the GMS program. In this regard, this research accomplishes GMS inside
CHP-based systems in order to determine the optimal intervals for predetermined maintenance
required duration of CHPs and other units. In this paper, cost minimization is targeted, and violation
of units’ technical constraints like feasible operation region of CHPs and power/heat demand balances
are avoided by considering related constraints. Demand-response-based short-term generation
scheduling is accomplished in this paper considering the maintenance intervals obtained in the
long-term plan. Numerical simulation is performed and discussed in detail to evaluate the application
of the suggested mixed-integer quadratic programming model that implemented in the General
Algebraic Modeling System software package for optimization. Numerical simulation is performed to
justify the model effectiveness. The results reveal that long-term maintenance scheduling considerably
impacts short-term generation scheduling and total operation cost. Additionally, it is found that the
demand response is effective from the cost perspective and changes the generation schedule.

Keywords: CHP-based systems; combined heat and power (CHP); generation maintenance scheduling
(GMS); maintenance scheduling; feasible operation region (FOR) of CHP; demand response (DR)

1. Introduction

Combined heat and power (CHP) generation units have high efficiency for simultaneous generation
of electricity and heat compared to conventional generators such as power-only generators and heat-only
boilers Salgado and Pedrero [1]. Although a CHP unit supplies the power and heat demands efficiently,
continuous operation of this element in a long-term horizon without periodic maintenance leads to
enhanced probability of unexpected failures. Additionally, premature degradation is unavoidable
for CHP and other units in the case of ignoring yearly maintenance. If the units are randomly
under maintenance in typical weeks, the system reliability may deteriorate, resulting from a lack of
reserve, and even deterioration in system stability arising from the simultaneous maintenance of units.
Furthermore, ignoring maintenance services imposes additional costs for repairing the generation
units, which have faced sudden failures.

The generation maintenance scheduling (GMS) program is the solution of the proposed issue and
is used by researchers to handle the mentioned challenge by taking into account the duration of the
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maintenance required of each unit for the coordination of maintenance scheduling. This program can
optimally schedule the planned outage of existence units in CHP-integrated systems with simultaneous
optimization of the maintenance intervals for all existence generation units.

In addition to GMS, demand response programs can also impact the short-term generation
scheduling of CHP-based systems. Demand response is one of the methods used to enhance power
system flexibility Mirzaei et al. [2] and is mainly adopted for cost reduction Sadeghian et al. [3] and
reliability improvement Sadeghian et al. [4]. A shift-based demand response model has been adopted
by researchers for economic dispatch of CHP-based microgrids Nazari-Heris et al. [5]. In Ahmadi and
Rezaei [6], a step-wise demand response program based on demand reduction has been used for cost
improvement in isolated microgrids. In reference Rafinia et al. [7], demand response resources are
considered in the load shedding program. In another attempt Majidi et al. [8], demand response is used
for improving the cost and emission of energy hub systems. Furthermore, in references Oshnoei and
Khezri et al. [9,10], researchers have used demand response for the frequency control of a power system.
In the current research, a shift-based demand response program has been used for cost reduction.

In the following paragraphs, first, the studies related to generation scheduling in CHP-based
systems are reviewed. Afterwards, the previous studies related to GMS optimization problem are
discussed, none of which has considered the CHP-based systems.

Optimal generation scheduling in CHP-integrated systems has been widely investigated in
the literature. A literature review on the optimal scheduling of CHP units economic dispatch
by heuristic algorithms from an economic and environmental point of views is accomplished in
Nazari-heris et al. [11]. The authors in Mohammadi-Ivatloo et al. [12] have solved the cost-based
CHP economic dispatch problem using the particle swarm optimization algorithm, in which the
acceleration coefficients are changed respect to the iterations to improve the application of the algorithm.
In another study, the CHP units economic dispatch problem using the real coded genetic algorithm
is studied Haghrah et al. [13]. This research has adapted the improved Mühlenbein mutation to
speed up the algorithm in solving the resulted problem. In Zou et al. [14], an improved genetic
algorithm is employed to solve the economic dispatch problem in CHP-based systems. A cost-based
economic dispatch problem in large-scale CHP-based systems is introduced in Nazari-heris et al. [15].
Some researchers have presented linearization techniques to change the mixed-integer non-linear
programming model into more simple models for the day-ahead stochastic scheduling of CHP
integrated systems aims to minimizing the total cost Kia et al. [16]. Researchers have also investigated
the generation scheduling of heat and power based microgrids in the presence of renewable energy
sources in Mazidi et al. [17]. In some research Lyu and Zhang et al. [18,19], flexible CHP units with
energy storage systems are adopted to meet the intermittence nature of renewable energy sources.
In Yuan et al. [20], economic dispatch of CHP units is performed in the presence of electrical and
thermal energy storage. Furthermore, in Merkert et al. [21], a unit commitment model is presented
for optimal operation of CHP units considering the thermal inertia of connected district heating grid.
Researchers in references Li and Wang et al. [22,23] have investigated an environmental cost-based
model for economic dispatch of CHP units. In another attempt Dinh et al. [24], a modified bat algorithm
is employed for economic dispatch of CHP units. Optimal operation of CHP units for real cases has
been investigated in references Amber and Waqar et al. [25,26]. Although the optimal generation of
CHP-based systems have been investigated by researchers, the maintenance scheduling of generation
units in a CHP-based system has not been investigated so far.

The GMS problem in different environments and systems has been investigated in the literature.
Researchers have investigated risk-constrained stochastic GMS problem in virtual power plants
Sadeghian et al. [3]. In Conejo et al. [27], the authors studied the maintenance scheduling in restructured
power systems. In another study, the maintenance management of generation units in oligopolistic
electricity markets is presented Sadeghian et al. [28]. The maintenance scheduling in deregulated
electricity markets has been developed in Dahal et al. [29]. The GMS problem for hydro-power
generators is investigated in literature Rodriguez et al. [30]. In another attempt, GMS optimization is
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accomplished in smart distribution systems Fotouhi Ghazvini et al. [31]. A comprehensive review on
maintenance scheduling in power systems is accomplished in Froger et al. [32]. Various methods are
employed in the literature for optimizing the GMS problem [33–37]. The authors in Eygelaar et al. [33]
have developed a risk-constrained GMS criterion based on unexpected failures of generation units.
Optimal generation and maintenance management adopting the discrete integer cuckoo search
optimization algorithm is investigated in Lakshminarayanan and Kaur [34] in order to maximize and
distribute the reserve power across the weeks of the year evenly. Moreover, in Parhizkar et al. [35],
a methodology for co-scheduling of generation and maintenance considering the aging of power
plants in long-term with the aim of maximizing the total profit is introduced. In Wang et al. [36],
the authors have suggested reliability-based maintenance scheduling of generation units using an MIP
model. Furthermore, in Balaji et al. [37], the GMS with the objective of operation cost minimization is
investigated, in which the differential evolution algorithm is used to optimize the model. Although the
above-mentioned papers have studied GMS optimization, maintenance scheduling in a CHP-based
system has not been investigated.

Based on the literature review of GMS as well as literature review of CHP-based systems, it is
observed that GMS in CHP-based systems has not been studied so far. In the other words, although the
GMS problem has been widely investigated in the literature, the GMS problem has not been investigated
in CHP-based systems until now. In this paper, the GMS program in CHP-integrated systems is
accomplished and aims at cost minimization. Short-term generation scheduling is also performed
considering the yearly maintenance schedule that is obtained in the long-term plan. Demand response
is also considered in the model to evaluate the maintenance schedule and cost results in the presence
of load response. The resulted problem is formulated as a mixed integer quadratic programming
(MIQP) model and implemented in the general algebraic modelling system (GAMS) package software.
Related operational and security constraints such as feasible operation region (FOR) of CHP units is
taken into account. Numerical results are adapted and discussed to verify the effectiveness of the
proposed model.

The paper is structured as follows: the problem formulation related to GMS in a CHP-based
system is explained in Section 2. Section 3 presents the numerical simulation to justify the effectiveness
of the offered model for GMS in CHP-based systems. Finally, the paper is concluded in Section 4.

2. Problem Formulation

A diagram of the CHP-based system and its elements for preventive GMS is depicted in
Figure 1. The network power and heat demands can be predicted by different methods, such as
principal component analysis Moradzadeh and Garcia Marquez et al. [38,39], neural networks
Moradzadeh et al. [40], deep learning Moradzadeh and Pourhossein [41], support vector machines
Moradzadeh and Pourhossein [42], or other methods Moradzadeh and Khaffafi [43], and supplied
by CHP units and the other units, including power-only and heat-only units. The electricity demand
is supplied by power-only and CHP units, while the heat demand is supplied by heat-only and
CHP units. CHP units can supply both the power and heat demands simultaneously, and while
they can be the only source of power, they cannot be the sole heat source. In order to accomplish
maintenance management, the system operator considers the maintenance required durations of all
units in a unit problem for coordinating the planned outage. The maintenance intervals are determined
through a long-term plan Marquez [44]. Afterward, in short-term generation scheduling, the units
that are under yearly maintenance do not participate in power generation. The operator optimizes
the maintenance schedule and announces it to the units for implementation. In short-term horizons,
GMS decreases the units’ failure, which results in lower repair cost and higher system reliability and
stability Chacon Munoz et al. [45]. Additionally, in long-term horizons, GMS delays the degradation of
units, which results in a delay in the need for constructing new power plants.
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Figure 1. Diagram of the system under study. 

The feasible region of the CHP and the other units is illustrated in Figure 2. Their different 
functions in the generation of power/heat for load supply is observed in this figure. As seen, the 
feasible regions of the units are not similar. The feasible region of the power-only unit has a minimum 
and a maximum value, while the heat-only unit has a value between zero and a maximum value. On 
the other hand, the feasible region of CHP is considerably different with the feasible region of the 
two other units, which complicates the optimization of the problem. 
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Figure 2. Feasible region of different units in the combined heat and power (CHP)-based system. 

The objective function in this research is the overall cost of the CHP-integrated system using 
Equation (1). The first, second, and third terms show the cost of power-only, CHP, and heat-only 
units, respectively. The units’ costs consist of the polynomial cost function and the maintenance cost. 
It is worth mentioning that for the long-term plan (for maintenance scheduling), the time horizon is 
52 weeks, and hence, the range of t is (1, 52), while in the short-term plan (for generation scheduling), 

Figure 1. Diagram of the system under study.

The feasible region of the CHP and the other units is illustrated in Figure 2. Their different
functions in the generation of power/heat for load supply is observed in this figure. As seen, the feasible
regions of the units are not similar. The feasible region of the power-only unit has a minimum and a
maximum value, while the heat-only unit has a value between zero and a maximum value. On the
other hand, the feasible region of CHP is considerably different with the feasible region of the two
other units, which complicates the optimization of the problem.
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The objective function in this research is the overall cost of the CHP-integrated system using
Equation (1). The first, second, and third terms show the cost of power-only, CHP, and heat-only
units, respectively. The units’ costs consist of the polynomial cost function and the maintenance cost.
It is worth mentioning that for the long-term plan (for maintenance scheduling), the time horizon is
52 weeks, and hence, the range of t is (1, 52), while in the short-term plan (for generation scheduling),
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the time horizon is 24 h and hence, the range of t is (1, 24). Additionally, the time accuracy (TA) is
7 × 24 h and 1 h, respectively, for the long-term and short-term plans. All the symbols have been
specified in the nomenclature.

TC =
∑

t

TA



(
αi(Pi,t

P )
2
+ βiPi,t

P + γi + MCi
Pxi,t

P PMax,i
P

)
+


a j(P j,t

CHP)
2
+ b jP j,t

CHP + c j

+d j(H j,t
CHP)

2
+ e jH j,t

CHP + f jH j,t
CHPP j,t

CHP
+MC j

CHPx j,t
CHPPMax, j

CHP


+

(
τk(Hk,t

H )
2
+ µkHk,t

H + σk + MCk
Hxk,t

H PMax,k
H

)


(1)

The maintenance variables in the proposed optimization model is determined by x binary variable
in which 1 shows the maintenance state and 0 represents the normal operation of units. It is clear that
when a unit is under maintenance, it does not contribute to demand supply. This variable is only used
in the long-term plan. In the short-term plan, when a unit is under maintenance (obtained by the
long-term plan), the variable x is fixed to 1.

The power and heat generated by power-only and heat-only units are limited as
Equations (2) and (3), respectively.

Pi
P,minsi,t

P < Pi,t
P < Pi

P,maxsi,t
P (2)

Hk
H,minsk,t

H < Hk,t
H < Hk

H,maxsk,t
H (3)

For the limitation of power and heat generated by CHP units, the parametric feasible operation
region (FOR) of Figure 3 is considered. This figure is a detailed FOR of the typical CHP presented in
Figure 2 to form the FOR constraints. It demonstrates that the power and heat generated by a CHP
unit are related to each other. As mentioned, a CHP cannot generate heat solely, while the power can
be generated solely by such units.
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The heat generated by CHP units is limited as

H j
CHP,maxs j,t

CHP < H j,t
CHP < H j

CHP,maxs j,t
CHP (4)

To limit the power generated by CHP units, Equations (5)–(8) are used to ensure that the solutions
will be in the FOR of each CHP unit. The variable s j,t

CHP in these equations is used for this aim that
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validates both the states of off and on, such that, in case of the on state, the FOR must be satisfied.
In the other word, a CHP is off or operates in its FOR.

P j,t
CHP < [

P j
CHP,B − P j

CHP,A

H j
CHP,B −H j

CHP,A

(H j,t
CHP −H j

CHP,B) + P j
CHP,B]s

j,t
CHP (5)

P j,t
CHP < [

P j
CHP,C − P j

CHP,B

H j
CHP,C −H j

CHP,B

(H j,t
CHP −H j

CHP,B) + P j
CHP,B]s

j,t
CHP (6)

P j,t
CHP > [

P j
CHP,D − P j

CHP,E

H j
CHP,D −H j

CHP,E

(H j,t
CHP −H j

CHP,D) + P j
CHP,D]s

j,t
CHP (7)

P j,t
CHP > [

P j
CHP,C − P j

CHP,D

H j
CHP,C −H j

CHP,D

(H j,t
CHP −H j

CHP,D) + P j
CHP,D]s

j,t
CHP (8)

It is clear that the needed maintenance duration for different units is not identical. The needed
maintenance duration for power-only, CHP, and heat-only units is taken into account as
Sadeghian et al. [46], ∑

t

xi,t
P = Ni

P (9)

∑
t

x j,t
CHP = N j

CHP (10)

∑
t

xk,t
H = Nk

H (11)

The maintenance period of each unit must be in consecutive intervals so that the maintenance
service can be completed by crews. The continuity of maintenance interval can be taken into account by,

xi,t
P − xi,t−1

P ≤ x
i,t−1+Ni

P
P (12)

x j,t
CHP − x j,t−1

CHP ≤ x
j,t−1+N j

CHP
CHP (13)

xk,t
H − xk,t−1

H ≤ x
k,t−1+Nk

H
H (14)

Each unit in each time interval can have only one state of maintenance (x = 1) or normal operation
(s = 1). If none of them happens, the unit is off but both of them cannot be happen simultaneously.
This constraint is expressed as,

si,t
P + xi,t

P ≤ 1 (15)

s j,t
CHP + x j,t

CHP ≤ 1 (16)

sk,t
H + xk,t

H ≤ 1 (17)

In this research, the following constraints are adopted to limit the total number of simultaneous
under-maintenance units as much as possible. For instance, when total number of needed weeks for
maintenance of units is 53, at least one week has two under-maintenance units, and hence, the total
number of simultaneous under-maintenance units in each week is lower than 2. This constraint is
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separately considered for power-producing units (power-only and CHP units) and heat-producing
units (CHP and heat-only units) as,

∑
i

xi,t
P +

∑
j

x j,t
CHP ≤

 1
52

(
∑

i

Ni
P +

∑
j

N j
CHP)

 (18)

∑
j

x j,t
CHP +

∑
k

xk,t
H ≤

 1
52

(
∑

j

N j
CHP +

∑
k

Nk
H)

 (19)

where d e shows the ceiling function.
Constraints regarding the power and heat balances are calculated using Equations (23) and (24),

respectively. Based on Equation (20), the power-only and CHP units participate in power generation
to supply the power demand. On the other hand, the CHP and heat-only units participate in heat
generation to meet the heat load of the system.∑

i

Pi,t
P +

∑
j

P j,t
CHP = Dt

P (20)

∑
j

H j,t
CHP +

∑
k

Hk,t
H = Dt

H (21)

In this research, demand response is implemented to evaluate its impact on overall cost of the
system. The time of use demand response program is implemented as follows:

Dt
P,DR = Dt

P + Dt
Sh (22)

The movable load in each period is obtained as

Dt
Sh =

Ft
DR

100
Dt

P (23)

The movable load in each period is limited as∣∣∣Ft
DR

∣∣∣ ≤ FDR,max (24)

The following constraint illustrates that the total amount of shifted loads over a daily period is
equal to zero. ∑

t

Dt
Sh = 0 (25)

A flowchart of the suggested model for GMS in CHP-based systems is presented in Figure 4.
The security and operational constraints are considered in the proposed mixed integer quadratic
programming (MIQP) model Lazimy [47] for minimizing the overall cost of the system. As mentioned,
MIQP stands for mixed integer quadratic programming. This optimization model stands for a model
that includes both the continuous and integer variables and also has quadratic terms such as the
proposed model (the objective function and its constraints). The resulted MIQP model is implemented
in the GAMS software package Brooke et al. [48] version 27.3 and optimized using solving constraint
integer programs (SCIP) solver Achterberg [49]. This solver performs total control of the solution
process by access to the detailed information of the process. The problem is executed in a system with
an Intel core i5 (Quad Core 5th Generation) @ 2.5 GHz and 6-GB of RAM.
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,max
t
DR DRF F≤  (24) 

The following constraint illustrates that the total amount of shifted loads over a daily period is 
equal to zero. 

0t
Sh

t
D =  (25) 

A flowchart of the suggested model for GMS in CHP-based systems is presented in Figure 4. 
The security and operational constraints are considered in the proposed mixed integer quadratic 
programming (MIQP) model Lazimy [47] for minimizing the overall cost of the system. As 
mentioned, MIQP stands for mixed integer quadratic programming. This optimization model stands 
for a model that includes both the continuous and integer variables and also has quadratic terms such 
as the proposed model (the objective function and its constraints). The resulted MIQP model is 
implemented in the GAMS software package Brooke et al. [48] version 27.3 and optimized using 
solving constraint integer programs (SCIP) solver Achterberg [49]. This solver performs total control 
of the solution process by access to the detailed information of the process. The problem is executed 
in a system with an Intel core i5 (Quad Core 5th Generation) @ 2.5 GHz and 6-GB of RAM.  
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3. Numerical Results

In this section, numerical simulation is accomplished to confirm the effectiveness of the suggested
MIQP model using the SCIP solver in a GAMS environment. The case studies include two systems.
The first system is a system that contains four units including one power-only unit, two CHP units,
and one heat-only unit. The data of power-only, CHP, and heat-only generation units is shown in
Tables 1–3, respectively. The maintenance required duration of units are also included in these tables.

Table 1. Data of the power-only unit.

Unit Cost Function MCi
P Pi

P,min Pi
P,max Ni

P

1 C1
P = 50× P1

P 20 20 150 4

Table 2. Data of the CHP units.

Unit a b c d e f MCj
CHP Nj

CHP

1 0.0345 14.5 265 0.030 4.2 0.031 20 6
2 0.0435 36 125 0.027 0.6 0.011 8 5

Table 3. Data of the heat-only unit.

Unit Cost Function MCk
H Hk

H,min Hk
H,max Nk

H

1 C1
H = 23.4×H1

H 1.25 0 269.52 4

Moreover, the heat-power FOR of the CHP unit 1 and CHP unit 2 are provided in Figure 5
Mohammadi-Ivatloo et al. [12].

For the short-term generation scheduling, first, the long-tern GMS should be studied to determine
the maintenance schedule. It is worth mentioning that in short-term scheduling, each unit that is under
yearly maintenance does not participate in power or heat generation. It is clear that the power and
heat demands vary due to changes in needed power and heat caused by changes in air temperature
and space heating requirements. The long-term power and heat profiles for the understudy systems
are as Figure 6. These per-unit profiles are multiplied with the base power and heat demands that are
350 MW and 450 MWth, respectively.
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Figure 6. Long-term demands for maintenance scheduling. (a) Power demand [50]; (b) heat
demand [51].

As mentioned, the long-term problem is optimized to determine the maintenance schedule that
is needed for short-term generation scheduling. Table 4 lists the power generation of units in the
long-term plan. As can be seen from the obtained results in this table, the CHP units operate in their
FOR and do not deviate from that. It is worth noting that the global optimal solution has been obtained
by GAMS for the understudy system. Table 5 depicts the cost of different units in the long-term plan as
well as the total cost. The yearly maintenance plan is illustrated in Figure 7. It can be seen from this
figure that the power-generating units (power-only and the CHP units) are not under-maintenance
simultaneously. Likewise, the maintenance intervals of heat-generating units (heat-only and the CHP
units) are not simultaneous. Also, it can be seen that the maintenance interval of each unit is consecutive.
As mentioned, during these weeks, the units do not participate in power or heat generation and they
are out of task for the maintenance services. This figure indicates that the optimal maintenance interval
of power-only, CHP 1, CHP 2, heat-only units are in weeks 31–34, 36–41, 11–15, and 32–35.
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Table 4. Optimal generation of the units.

Time
(Week)

Power-Only Unit
(MW)

CHP Unit 1 CHP Unit 2
Heat-Only Unit

(MWth)Power
(MW)

Heat
(MWth)

Power
(MW)

Heat
(MWth)

1 27.33 148.57 97.64 125.80 269.52
2 32.08 157.12 30.04 125.80 269.52
3 34.05 147.45 106.54 125.80 269.52
4 21.79 144.31 140.33 125.80 30.70 269.52
5 38.93 143.27 139.56 125.80 26.88 269.52
6 20.00 149.30 143.13 125.05 37.35 269.52
7 20.58 144.82 127.36 125.80 16.18 269.52
8 156.30 97.64 125.80 269.52
9 133.20 75.94 125.80 269.52
10 132.15 23.70 125.80 269.52
11 97.80 152.45 67.04 269.52
12 102.32 152.13 69.56 269.52
13 88.32 158.08 22.40 269.52
14 110.37 152.13 69.56 269.52
15 91.43 160.92 200.16
16 154.20 0.81 125.80 222.30
17 138.10 4.09 125.80 203.72
18 167.15 125.80 181.04
19 20.00 158.70 125.80 113.44
20 21.28 160.92 125.80 187.38
21 20.00 153.80 0.89 125.80 161.02
22 158.05 0.03 125.80 131.28
23 28.28 160.92 125.80 65.02
24 23.73 160.92 125.80 66.28
25 26.88 160.92 125.80 128.74
26 20.00 155.55 0.53 125.80 35.15
27 138.45 4.02 125.80 25.32
28 159.80 125.80 42.08
29 154.55 0.74 125.80 27.30
30 21.28 160.92 125.80 44.64
31 126.90 6.37 125.80 43.35
32 145.80 29.34 125.80
33 154.20 34.42 125.80
34 129.35 26.78 125.80
35 128.30 33.16 125.80
36 120.95 125.80 118.58
37 147.20 125.80 82.84
38 117.45 125.80 116.01
39 127.60 125.80 179.73
40 127.60 125.80 161.91
41 134.25 125.80 0.75 269.52
42 134.60 6.60 125.80 269.52
43 154.20 0.81 125.80 230.94
44 21.63 160.92 125.80 259.29
45 23.03 160.92 125.80 109.40
46 31.43 160.92 125.80 169.02
47 50.47 152.73 64.74 125.80 269.52
48 29.09 156.60 34.14 125.80 269.52
49 42.98 160.92 125.80 234.81
50 56.90 156.80 32.61 125.80 269.52
51 63.28 160.92 125.80 172.08
52 47.53 160.92 125.80 211.86
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Table 5. Total cost of the long-term plan.

Power-Only Unit CHP Unit 1 CHP Unit 2 Heat-Only Unit System

Cost (M$) 18.88197802 60.87697027 22.95173059 3.78239233 106.49307121

Based on the obtained maintenance intervals, some days are selected for the short-term generation
scheduling. The results are presented in three cases as Case I: a day with 1 under-maintenance unit
(located in weeks 15, 31, 35, 41); Case II: a day with 2 under-maintenance unit (located in week 32);
and Case III: a day with no under-maintenance unit (located in week 51). The load factor for these
weeks is presented in Table 6.

Table 6. Demand factors for the selected weeks.

Case Week
Under-Maintenance Unit(s)

(Based on Figure 7)
Demand Factors (Based on Figure 6)

Power Heat

Case I

15 CHP unit 2 0.721 0.4448
31 Power-only unit 0.722 0.1105
35 Heat-only unit 0.726 0.0737
41 CHP unit 1 0.743 0.6006

Case II 32 Power-only unit & Heat-only unit 0.776 0.0652

Case III 51 – 1 0.3824

The per-unit profiles of power and heat demands are illustrated in Figure 8 Alipour et al. [52].
These profiles are multiplied with the mentioned base power and heat demands of system (350 MW
and 450 MWth, respectively) and the power and heat demand factors of the related week (based on
Table 6) to form the real power and heat demand.
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3.1. Case I

For this case, days in weeks 15, 31, 35, and 41 are selected for short-term generation scheduling.
First, a day in week 15 is selected. On this day, CHP unit 2 is under maintenance. Therefore, this unit
does not participate in power or heat generation.

The generated power by the units is depicted in Figure 9. As this figure illustrates, the CHP unit 2
does not participate in power and heat generation. This figure also shows that the CHP units operate
in their FOR. As observed, the power demand is mainly supplied by the CHP unit 1 while the heat
demand is mainly supplied by the heat-only unit. Table 7 tabulates the total cost of different units as
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well as the total cost of the system. It is worth mentioning that the obtained cost for the CHP unit 2
includes the fixed and maintenance costs.Energies 2020, 13, 2840 12 of 25 
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Table 7. Total cost of the short-term plan for a typical day in week 15.

Power-Only Unit CHP Unit 1 CHP Unit 2 Heat-Only Unit System
Total cost (k$) 42.74030 152.29693 6.5520 7.67932 209.26855

For more evaluation of the obtained results, demand response is implemented. A different
participation percent is considered in this research. Table 8 lists the optimal cost of the power-only,
CHP, and heat-only units for different participation percent in demand response. As can be seen,
the optimal cost of the units is changed respect to participation percent. Improving trend of the total
cost of the system is also observed in this table. As mentioned, the cost of CHP unit 2 is related to the
fixed and maintenance costs. In Figure 10, optimal hourly participation percent in demand response is
illustrated. As observed, based on the cost optimization, the hourly loads are shifted to other hours.
Additionally, it can be seen from this figure that the values of the shifted loads are not identical for
different hours. Decreasing trend of the total cost respect to participation percent is shown in Figure 11.
This figure shows the system cost for participation percent in the range of (0–50%) in demand response.
The value of the improved cost is not uniform for identical intervals of participation percent and vary
with percent and with problem.

Table 8. The units’ cost for different participation percent in demand response for a typical day in
week 15.

Participation
in Demand
Response

Optimal Cost (k$)

Power-Only Unit CHP Unit 1 CHP Unit 2
(under Maintenance) Heat-Only Unit System

0% 42.74030 152.29693 6.55200 7.67932 209.26855
5% 41.01164 153.74652 6.55200 7.69636 209.00652

10% 39.48881 155.03358 6.55200 7.72654 208.80093
15% 38.04201 156.28226 6.55200 7.80925 208.68552
20% 33.26298 160.96853 6.55200 7.74252 208.52603
25% 31.74955 162.16932 6.55200 7.75467 208.22554
30% 30.24424 163.35240 6.55200 7.76505 207.91369

For the other days of Case I (located in weeks 31, 35, and 41), the short-term generation scheduling is
presented in Table 9. In each of the selected weeks, one of the units is under maintenance. As mentioned,
the obtained cost for the under-maintenance units includes the fixed cost and the maintenance cost.
The impact of demand response on improving the system’s cost is also seen in this table. Additionally,
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the total cost of the system is considerably different, arising from difference in power and demand of
typical days of the selected weeks. The under-maintenance units in those weeks are another influential
factor on the total cost of the system.
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Figure 10. Hourly shifted load percent in a typical day in week 15 for different participation percent in
demand response (positive: added loads, negative: reduced loads).
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Table 9. The units’ cost for different participation percent in demand response for typical days in the
weeks 31, 35, and 41.

Week of the
Selected Day

Participation
Percent

Optimal Cost (k$)

Power-Only Unit CHP Unit 1 CHP Unit 2 Heat-Only Unit System

31
0% 0.16800 81.73645 50.75306 0.49301 133.15052
15% 0.16800 74.85815 53.93323 0.29851 129.25789
30% 0.16800 67.28533 57.93544 0.38956 125.77833

35
0% 8.44676 63.49479 58.29588 0.12000 130.35743
15% 6.51920 56.47739 62.93711 0.12000 126.05370
30% 3.20326 57.58416 63.60250 0.12000 124.50992

41
0% 79.24283 3.24000 60.36658 10.64927 153.49868
15% 76.70784 3.24000 61.45286 10.64927 152.04997
30% 74.90289 3.24000 62.21459 10.64927 151.00675
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3.2. Case II

In this case, a day with two under-maintenance units is selected. A typical day in week 32 is
considered. Based on constraints (18) and (19), the power-generation units cannot be under-maintenance
simultaneously. Likewise, the heat-generation units cannot be under-maintenance in a week. Therefore,
undoubtedly, the two units that are under maintenance in week 32 are power-only and heat-only
units so that the system reliability not to be exposed to risk (Figure 7 confirms this issue.). Generation
scheduling ignoring demand response is illustrated in Figure 12. As this figure shows, the CHP units
operate in their FOR zone. In Table 10, the obtained costs for different participation percent of demand
response is depicted for this day. Figure 13 depicts the decreasing trend of the total cost with respect to
participation percent in demand response.
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3.3. Case III

Finally, in this case, the generation scheduling is accomplished for a day that no unit is under
maintenance. For this aim, a day in week 51 (peak power demand of the year) is selected. Table 11
illustrates the generation scheduling for this day. As observed, all the units participate in demand
supply and also the CHP units operate in their FOR zone. The CHP unit 2 participates in power and
heat generation due to its lower cost. The improving trend of the system cost respect to participation
percent in demand response is shown in Figure 14. The impact of participation percent is more for the
lower participation percent. However, a higher participation percent has a lower cost. In Table 12,
the total cost of the units as well as the system cost are listed for 0%, 15%, and 30% participation in
demand response. As seen, the cost of the power-only unit for 30% participation in demand response
is 0 for the considered day because the power-only unit is not under maintenance and so it has not
maintenance cost. Additionally, this unit has not fixed cost based on its data (presented in Table 1).
Therefore, when this unit is off while it is not under maintenance, its cost will be 0.

Table 11. Optimal generation of the units.

Time
(Hour)

Power-Only Unit
(MW)

CHP Unit 1 CHP Unit 2 Heat-Only Unit
(MWth)Power (MW) Heat (MWth) Power (MW) Heat (MWth)

1 84.90 81.85 123.33 7.60
2 84.21 85.88 105.18 8.12
3 24.83 125.80 72.02
4 80.85 37.14
5 111.87 53.82
6 34.80 125.80 111.44
7 84.90 81.85 123.33 36.41
8 120.09 7.76 125.80 121.87
9 138.91 3.92 125.80 108.27

10 167.71 125.80 115.23
11 20.00 151.04 1.46 125.80 143.33
12 147.78 2.13 125.80 107.79
13 133.38 5.05 125.80 132.91
14 110.12 9.79 125.80 94.82
15 166.60 125.80 152.37
16 20.00 156.57 0.32 125.80 161.14
17 153.31 0.99 125.80 115.75
18 20.00 151.04 1.46 125.80 149.39
19 34.48 160.92 125.80 133.42
20 53.31 160.92 125.80 158.43
21 63.28 160.92 125.80 172.08
22 20.00 156.57 0.32 125.80 171.00
23 162.17 125.80 141.00
24 138.91 3.92 125.80 106.00

Table 12. The units’ cost for different participation percent in demand response for a typical day in
week 51.

Participation in
Demand Response

Optimal Cost (k$)

Power-Only Unit CHP Unit 1 CHP Unit 2 Heat-Only Unit System

0% 14.53541 122.08611 61.37628 6.11055 204.10835
15% 2.00000 130.89263 62.09062 6.46068 201.44393
30% 0.00000 129.66859 63.00707 6.45940 199.13506

For more evaluation of the proposed model, a 24-unit CHP-based system is adopted. This system
contains of 13 power-only units, six CHP units, and five heat-only units. The data of the generation
units for this system is listed in Table 13 [12].
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Table 13. Generation units’ data of the second system.

Power-only Units

Unit α β γ Pi
P,min Pi

P,max Ni
P

1 0.00028 8.1 550 0 680 6
2 0.00056 8.1 309 0 360 5
3 0.00056 8.1 309 0 360 5
4 0.00324 7.74 240 60 180 4
5 0.00324 7.74 240 60 180 4
6 0.00324 7.74 240 60 180 4
7 0.00324 7.74 240 60 180 4
8 0.00324 7.74 240 60 180 4
9 0.00324 7.74 240 60 180 4
10 0.00284 8.6 126 40 120 3
11 0.00284 8.6 126 40 120 3
12 0.00284 8.6 126 55 120 3
13 0.00284 8.6 126 55 120 3

CHP units

Unit a b c d e f
Feasible region coordinates

[P j
CHP,H j

CHP]
N j

CHP

14 0.0345 14.5 2650 0.030 4.2 0.031 [98.8,0], [81,104.8], [215,180], [247,0] 6

15 0.0435 36 1250 0.027 0.6 0.011 [44,0], [44,15.9], [40,75], [110.2,135.6],
[125.8,32.4], [125.8,0] 5

16 0.0345 14.5 2650 0.030 4.2 0.031 [98.8,0], [81,104.8], [215,180], [247,0] 6

17 0.0435 36 1250 0.027 0.6 0.011 [44,0], [44,15.9], [40,75], [110.2,135.6],
[125.8,32.4], [125.8,0] 5

18 0.1035 34.5 2650 0.025 2.203 0.051 [20,0], [10,40], [45,55], [60,0] 3
19 0.0720 20 1565 0.020 2.34 0.040 [35,0], [35,20], [90,45], [90,25], [105,0] 4

Heat-only units

Unit τ µ σ Hk
H,min Hk

H,max Nk
H

20 0.038 2.0109 950 0 269.52 3
21 0.038 2.0109 950 0 60 4
22 0.038 2.0109 950 0 60 4
23 0.052 3.0651 480 0 120 5
24 0.052 3.0651 480 0 120 5
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By optimizing the long-term plan, the yearly maintenance scheduling is depicted in Figure 15.
The maintenance intervals are dispersed throughout the year. The maintenance interval for all the
power-only, CHP, and heat-only units is shown in this figure. The total cost of the system for each week
is illustrated in Figure 16. This cost includes the cost of power-only, CHP, and heat-only units that is
depicted in Figure 17. As observed, the power-only units 10, 11, 12, and 13 do not participate in power
generation due to their higher cost, and hence, their cost is related to the fixed and maintenance costs.
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The total number of under-maintenance units is illustrated in Figure 18. As seen, the maximum
number of power-producing units that are simultaneously under maintenance (i.e., 2) is greater than
that of power-producing units (i.e., 1). This is due to the greater number of power-producing units.
Additionally, it can be seen that constraints (18) and (19) are effective for limiting the maximum number
of simultaneous under-maintenance units.
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The short-term generation scheduling for the second system is studied in two cases includes Case
I for week 10 and Case II for week 40. The number of under-maintenance units in these weeks is listed
in Table 14.

Table 14. Under-maintenance units in the selected weeks.

Case Week Units Under-Maintenance Units (Based on Figure 15)

Week 10
Power-only units 1

Case I CHP units –
Heat-only units 4

Week 40
Power-only units 4, 9

Case II CHP units 2
Heat-only units –

3.4. Case I

As previously mentioned, in this case, the generation scheduling of week 10 is studied. In this
week, power-only unit 1 and heat-only unit 4 are under maintenance. The hourly cost of the system
with respect to hour is shown in Figure 19. This figure illustrates the system cost in the presence
of demand response for participation of 0% and 30%. Table 15 shows the total cost of the system
respect to demand response participation. As seen, demand response is effective and has improved the
system cost.

Table 15. The total cost of the system for different participation percent in demand response for a
typical day in week 10.

Participation in Demand Response Optimal Cost (k$)

0% 714.64241
15% 714.39687
30% 714.19046
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3.5. Case II

Generation scheduling of week 40 is studied in this case. In this week, power-only units 4 and 9
and CHP unit 2 are being maintenance. The system cost with respect to hour is shown in Figure 20.
This figure illustrates the system cost in the presence of demand response for participation of 0% and
30%. The system cost respect to demand response participation is depicted in Table 16, which shows
the effective influence of demand response on the system cost.
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4. Conclusions 

In this paper, the yearly preventive GMS in CHP-based systems was accomplished due to its 
important role in retaining network reliability as well as cost improvement. The GMS problem for 
power-only, CHP, and heat-only units was done with the aim to minimize the total cost of the system. 
The security constraints like the FOR of CHP units and demand balances for electricity and heat loads 
were considered. In this research, the short-term generation scheduling of the units was performed 
subject to the obtained yearly maintenance. The under-maintenance units did not participate in 
power or heat generation. The impact of demand response on generation scheduling was also 
investigated in this research. The resulting MIQP model was implemented in the GAMS software 
package and solved by the SCIP solver. Numerical simulation was accomplished to validate the 
effectiveness of the suggested model. 

The obtained results revealed that the yearly maintenance scheduling impacts the total cost of 
the generating units and system in the short-term generation scheduling. The units that are under 
maintenance based on the long-term maintenance scheduling do not participate in power or heat 
generation in the short-term generation scheduling. It has been found that demand response impacts 
the mentioned costs as well as the generation scheduling of power-only, CHP, and heat-only units. 
In the case under study, CHPs participated more in demand supply due to their potential for 
simultaneous power and heat generation. 
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Figure 20. The system cost with and without demand response for a typical day in week 40.

Table 16. The total cost of the system for different participation percent in demand response for a
typical day in week 40.

Participation in Demand Response Optimal Cost (k$)

0% 700.58294
15% 700.52343
30% 700.45887

4. Conclusions

In this paper, the yearly preventive GMS in CHP-based systems was accomplished due to its
important role in retaining network reliability as well as cost improvement. The GMS problem for
power-only, CHP, and heat-only units was done with the aim to minimize the total cost of the system.
The security constraints like the FOR of CHP units and demand balances for electricity and heat loads
were considered. In this research, the short-term generation scheduling of the units was performed
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subject to the obtained yearly maintenance. The under-maintenance units did not participate in power
or heat generation. The impact of demand response on generation scheduling was also investigated
in this research. The resulting MIQP model was implemented in the GAMS software package and
solved by the SCIP solver. Numerical simulation was accomplished to validate the effectiveness of the
suggested model.

The obtained results revealed that the yearly maintenance scheduling impacts the total cost of
the generating units and system in the short-term generation scheduling. The units that are under
maintenance based on the long-term maintenance scheduling do not participate in power or heat
generation in the short-term generation scheduling. It has been found that demand response impacts
the mentioned costs as well as the generation scheduling of power-only, CHP, and heat-only units. In the
case under study, CHPs participated more in demand supply due to their potential for simultaneous
power and heat generation.
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Nomenclature

Indexes:
i Index of power-only units
j Index of CHP units
k Index of heat-only units
t Index of time intervals
Scalar:
T Total number of intervals
Parameters:
α, β, γ Cost coefficients of power-only units
a, b, c, d, e, f Cost coefficients of CHP units
τ, µ, σ Cost coefficients of heat-only units
MCi

P Maintenance cost of power-only units

MC j
CHP

Maintenance cost of CHP unit
MCk

H Maintenance cost of heat-only units
Ni

P Maintenance duration of power-only units
N j

CHP
Maintenance duration of CHP units

Nk
H Maintenance duration of heat-only units

Dt
P Power demand of system

Dt
H Heat demand of system

FDR,max Maximum participation in demand response
Variables:
TC Total cost
Pi,t

P Power generation of power-only units
Pi

P,min Minimum power generation of power-only units
Pi

P,max Maximum power generation of power-only units

P j,t
CHP

Power generation of CHP units

H j,t
CHP

Heat generation of CHP units

H j
CHP,min Minimum heat generation of CHP units

H j
CHP,max Maximum heat generation of CHP units
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Hk,t
H Heat generation of heat-only units

Hk
H,min Minimum heat generation of heat-only units

Hk
H,max Maximum heat generation of heat-only units

xi,t
P Binary of maintenance state of power-only units

x j,t
CHP

Binary of maintenance state of CHP units

xk,t
H Binary of maintenance state of heat-only units

si,t
P Binary of on-off state of power-only units

s j,t
CHP

Binary of on-off state of CHP units

sk,t
H Binary of on-off state of heat-only units

Dt
P,DR Power demand of system in the presence of demand response

Dt
Sh Shifted value of loads

Ft
DR Participation percent in demand response
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