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Abstract: Thin films and coatings which have a high demand in a variety of industries—such as
manufacturing, optics, and photonics—need regular improvement to sustain industrial productivity.
Thus, the present work examined the problem of the Carreau thin film flow and heat transfer with the
influence of thermocapillarity over an unsteady stretching sheet, numerically. The sheet is permeable,
and there is an injection effect at the surface of the stretching sheet. The similarity transformation
reduced the partial differential equations into a system of ordinary differential equations which is then
solved numerically by the MATLAB boundary value problem solver bvp4c. The more substantial effect
of injection was found to be the reduction of the film thickness at the free surface and development of
a better rate of convective heat transfer. However, the increment in the thermocapillarity number
thickens the film, reduces the drag force, and weakens the rate of heat transfer past the stretching
sheet. The triple solutions are identified when the governing parameters vary, but two of the solutions
gave negative film thickness. Detecting solutions with the most negative film thickness is essential
because it implies the interruption in the laminar flow over the stretching sheet, which then affects
the thin film growing process.
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1. Introduction

The discovery of the boundary layer by Prandtl [1] remarked the highest achievement in the
development of fluid mechanics and created a proper basis to understand the dynamics of the real fluid.
The Prandtl boundary layer is found in a wide range of aerodynamics and engineering applications.
The boundary layer idea then evolved into the theoretical works on the boundary layer flow over
a stretching surface which was contributed by the following literature: Sakiadis [2,3], Crane [4],
and Carragher and Crane [5]. These works were highly appreciated due to its significance in the
extrusion process. As time progressed, the boundary layer flow has been probed under various
circumstances to improve the quality of the extrusion process, and hence many works have been
reported accordingly (see [6–19]). Cast film extrusion is an emerging industrial process that produces
cast films which are widely used for food and textiles packaging and coating substrates in the extrusion
coating process [20]. The demand for this process is still high, and research activities are conducted
so that it can be improved from time to time. The theoretical work in thin film flow was started
by Wang [21] by investigating the behavior of thin liquid film flow past an impermeable stretching
surface and it was found that the similarity solutions were absent when the value of the unsteadiness
parameter (S) falls within the range of S > 2. Usha and Sridharan [22] reexamined the work of [21]
by considering the asymmetric flow and justified that the similarity solutions become unavailable
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when the value of the unsteadiness parameter fell within the range of S > 4. Shortly thereafter,
the subject of non-Newtonian fluid captured the attention of the researchers in the thin film flow since
non-Newtonian fluid such as paint also used in the extrusion coating process. Thus, the problem
of thin film flow towards an unsteady stretching sheet in a generalized non-Newtonian fluid was
solved by Andersson et al. [23] and concluded that at a higher value of the unsteadiness parameter,
the impact of the power-law index is more significant. The researchers then realized that the heat
transfer aspect is also equally important as the fluid flow characteristics in a thin film flow so that the
complications in the design of various heat exchangers and chemical processing equipment can be
surmounted. Andersson et al. [24] came forward to investigate the heat transfer features in a thin
film flow past an unsteady stretching surface and discovered that, at low Prandtl numbers (Pr < 1),
the effect of the unsteadiness parameter on the rate of heat transfer is highly significant. Chen [25] also
was interested in studying the heat transfer characteristics in the thin film flow and hence revisited the
work of [23] to examine the heat transfer feature in the power-law model considered in [23]. On the
other hand, Wang [26] attempted to solve the thin film problem in [24] by using a different form of
similarity transformation and generated the analytic solutions via the homotopy analysis method
(HAM). The work of [26] proved that the analytic method also could be employed in the theoretical
investigation of the thin film flow mechanism past a stretching sheet. After that, the thin film flow and
heat transfer past an unsteady stretching sheet were investigated under various settings, for instance,
see [27–32].

Thermocapillarity is a physical effect which formed through the thermally induced surface-tension
gradients over a fluid–fluid interface [33]. Researchers then developed this effect in the thin film flow
as the surface-tension gradients able to produce interfacial flow which can be found in the continuous
casting process. The thermocapillarity effect seemed to be significant in crystal growth melts [34] and
nucleate boiling [35]. In the theoretical work of the thin film flow, Dandapat and Ray [36] explored the
effect of thermocapillarity on thin film flow past a rotating disc and exposed that thermocapillarity
force at the free surface reduces the film thickness when the disc is cooled. Then, Dandapat et al. [37]
explored the effect of thermocapillarity in the problem solved by [24] and concluded that the impact
of thermocapillarity thickens the film and enhances the rate of heat transfer along the stretching
sheet. Meanwhile, Chen [38] tested the thermocapillarity effect in the power-law thin film flow past
a stretching sheet and found that thermocapillarity causes thin film to thicken. Later, researchers
investigated the impact of thermocapillarity on thin film flow and heat transfer along with other settings
such as magnetic field [39], nanofluid [40], thermal radiation [41], and suction/injection effects at the
surface of the stretching sheet [42]. Recently, Rehman et al. [43] solved the thin film flow, heat, and mass
transfer problem with several physical effects such as thermocapillarity, heat generation/absorption,
mixed convection, chemical reaction, and magnetohydrodynamics (MHD) past an unsteady stretching
sheet. Another interesting work by Rehman et al. [44] that incorporated the effect of thermocapillarity
in the MHD Casson thin film flow past an unsteady stretching sheet under the slip and variable
fluid properties influences. Meanwhile, the theoretical work of the thin film flow and heat transfer
in a Carreau fluid was initiated by Myers [45], and in fact [45] had proposed the application of
several non-Newtonian models, such as power-law model, Ellis model and Carreau model to thin
film flow. The idea in [45] then encouraged Tshehla [46] to explore the Carreau thin film flow and
heat transfer over an inclined surface. Ashwinkumar and Sulochana [47] examined the Carreau
thin nano-liquid film flow and heat transfer with magnetohydrodynamics (MHD) dissipative over
an unsteady stretching sheet. Khan et al. [48] extended the work of [47] by probing the impact of
an inclined magnetic field in Carreau nano-liquid thin film flow and its heat transfer characteristics with
graphene nanoparticles. Recently, Iqbal et al. [49] solved the problem of Carreau magneto-nanofluid
thin film flow past an unsteady stretching sheet. So far, in the previous theoretical investigations of the
Carreau thin film flow, no one had considered the effects of thermocapillarity and injection in their
models and presented multiple solutions.
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Therefore, the present study is devoted to analyzing the influences of the thermocapillarity
and injection in the thin film flow over an unsteady permeable stretching sheet in a Carreau fluid,
theoretically. The present study also employs similarity transformations, which had been proposed by
Wang [26], and the reduced model is solved numerically by a collocation method, namely the bvp4c
function in MATLAB. To date, no one has reported on the triple solutions in the thin film flow problem,
and this study has successfully identified the triple solutions. The presences of these triple solutions
are found to be important in detecting the flaw in the flow system by unveiling the most negative
film thickness.

2. Problem Formulation

We are focused with an incompressible two–dimensional unsteady Carreau fluid flow confined
by a thin liquid film of uniform thickness, h(t) and a horizontal elastic sheet which is stretching from
a narrow slit at the origin of the Cartesian coordinate system, as illustrated by Figure 1. The setup of
the Cartesian coordinates is in a way where the y− coordinate is normal to the x− coordinate. The state
of stretching sheet induce the Carreau fluid to flow within the thin film as the sheet stretched at
Uw(x, t) = bx

(1−αt) , where both b and α are positive constants with dimension time–1, αt , 1, and b > 0
indicates the rate of stretching. The setup of α > 0 yields the constructive stretching rate, b/(1− αt) to
upsurge with time. The surface of the sheet is permeable, and hence there is the mass velocity which
is denoted by Vw, wherein Vw > 0 signifies suction while Vw < 0 injection. The wall temperature
is denoted by Tw and h(t) labels the film width. It is assumed that the end effects and gravity are
negligible and the thickness of the film h(t) is stable and uniform. It is worth mentioning that the
boundary layer approximation is valid if, and only if, the thickness of the liquid film maintains its
position without overlapping with the boundary layer thickness [40].
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The Cauchy stress tensor for the Carreau fluid can be expressed as [45]

τ = −pI + ηA1, (1)

where

η = η∞ + (η0 − η∞)
[
1 +

(
λ

.
γ
)2

] n−1
2

, (2)

wherein τ is the Cauchy stress tensor, p is the pressure, I signifies the identity tensor, η0 implies the
zero-shear-rate viscosity, η∞ is the infinite-shear-rate viscosity, λ denotes the material time constant,
and n represents the power–law index. The shear rate which is symbolized by

.
γ can be conveyed as

.
γ =

√
1
2

∑
j

∑
j

.
γi j

.
γi j =

√
1
2

Π =

√
1
2

tr(A1). (3)
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The second invariant strain rate tensor denoted by Π and A1 which implies the Rivlin–Ericksen
tensor can be defined as

A1 = (gradV) + (gradV)T. (4)

As been recommended by Boger [50], we consider the most practical cases where η0 � η∞.
Normally, the value of η∞ is determined by the extrapolation procedure or chosen to be zero (suggested
theoretical value) [50]. We take the value of η∞ to be zero and thus Equation (1) simply becomes

τ = −pI + η0

[
1 +

(
λ

.
γ
)2

] n−1
2

A1. (5)

The Carreau model exhibits the shear thinning or pseudoplastic characteristics when the value of
the power–law index lies within 0 < n < 1. The Carreau model reveals the shear thickening or dilatant
feature when n > 1. Under these assumptions, the governing liquid film flow of the Carreau fluid can
be written as

∂u
∂x

+
∂v
∂y

= 0, (6)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2

1 + λ2
(
∂u
∂y

)2
n−1

2

+ ν(n− 1)λ2 ∂
2u
∂y2

(
∂u
∂y

)21 + λ2
(
∂u
∂y

)2
n−3

2

, (7)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= κ
∂2T
∂y2 , (8)

where u and v are the velocity components along the x− and y−directions, respectively, ν is the kinematic
viscosity, λ is a material time constant, n signifies the power-law index, T is the temperature, κ = k

ρCp
,

with k is the thermal conductivity, ρ is the density, and Cp is the specific heat. The Equations (6)–(8) are
accompanied by the boundary conditions as

u = Uw(x, t), v = Vw, T = Tw at y = 0,
µ∂u
∂y = ∂χ

∂x , ∂T
∂y = 0, v = dh

dt at y = h,
(9)

where χ is the surface tension which varies linearly with temperature [37] given as

χ = χ0[1− γ(T − T0)], (10)

where χ0 is the surface tension at temperature T0 and γ is the positive fluid property. The wall
temperature (Tw) is defined as [37]

Tw = T0 − Tre f

(
bx2

2ν

)
(1− αt)−

3
2 , (11)

where T0 signifies the temperature at slit, and Tre f embodies the reference temperature which can be
taken as a constant reference temperature or as a constant temperature difference. The definition of Tw

imitates the circumstance where the sheet temperature decreases from T0 at the slit in proportion to x2

and the amount of temperature reduction along the sheet increases with time [37]. The expression for
Uw(x, t) and Tw only valid for time t < α−1. The boundary condition when y = h enforces a kinematic
constraint of the fluid motion. Next, we introduce the similarity transformations as follows [26]:

ψ =
√

νb
1−αt

x
β f (ζ), u =

∂ψ
∂y = bx

1−αt f ′(ζ),

v = −
∂ψ
∂x = −

√
νb

1−αtβ f (ζ), T = T0 − Tre f
(

bx2

2ν

)
1

(
√

1−αt)
3θ(ζ),

(12)
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ζ =

√
b
ν

y

β
√

1− αt
, (13)

where prime designates the derivative with respect to ζ, ψ(x, y, t) is the stream function, and β,
the nonzero constant, is an unknown parameter representing the dimensionless film thickness. At the
free surface, set ζ = 1 and (13) will take the form

β =

√
b

ν(1− αt)
h(t), (14)

which eventually gives
dh
dt

= −
αβ

2

√
ν

b(1− αt)
. (15)

Employing the similarity conversion as in (12) and (13) into the governing model (6)–(9) satisfies
the continuity equation and the remaining equations are transformed as

1 + nWe2( f ′′ )2

J

1 + We2( f ′′ )2

J


n−3

2

f ′′′ + J
(

f f ′′ −
σζ
2

f ′′ − f ′2 − σ f ′
)
= 0, (16)

θ′′ + PrJ
(

fθ′ − 2 f ′θ−
σζθ′

2
−

3σθ
2

)
= 0, (17)

along with the boundary conditions

f (0) = S, f ′(0) = 1, θ(0) = 1,
f (1) = σ/2, f ′′ (1) = Mθ(1), θ′(1) = 0,

(18)

while letting the constant mass transfer parameter, S = −Vw
β

√
1−αt
νb , with the setting S > 0 connotes

suction and S < 0 indicates the injection condition, We2 = λ2b3x2

ν(1−αt)3 , is the local Weissenberg number,

J = β2 is an unknown constant to be calculated as a part of the problem, M =
γχ0Tre f β

µ
√

bν
is the

thermocapillarity number, Pr = ν
κ is the Prandtl number, and σ = α

b is the dimensionless measure of
unsteadiness to the stretching rate. It has to be noted that when n = 1 and We = 0, the Carreau fluid
model will reveal the Newtonian characteristics. Besides that, setting S = M = We = 0 and n = 3
in (16)–(18) reduces the present model to the thin film flow problem considered by Wang [26]. Also,
by fixing S = We = 0 and n = 3 in (16)–(18), the thermocapillarity effect in a thin film flow problem
solved by Noor and Hashim [39] is recoverable if the value of the Hartmann number in Equation (14)
of [39] set to be zero. The physical quantities of interest in the present work are the local skin friction
coefficient

(
C f x

)
and the local Nusselt number (Nux) which can be defined as

C f x =
τw

ρ(Uw)
2/2

, Nux =
qwx

kTre f
, (19)

where the wall shear stress (τw) and the heat flux from the surface of the sheet (qw) are given by [51]

τw =

µ0
∂u
∂y

1 + λ2
(
∂u
∂y

)2
n−1

2


y=0

, qw = −k
(
∂T
∂y

)
y=0

, (20)
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By employing (12)–(13) and inducing (20) into (19) provides the following expression

C f xRe1/2
x = 2 f ′′ (0)

{
1 +

We2

J
[ f ′′ (0)]2

} n−1
2

, 2NuxRe−3/2
x β(1− αt)1/2 = θ′(0). (21)

The local Reynolds number defined as Rex =
xUw(x,t)

ν .

3. Computational Scheme

The developed boundary value problem of (16)–(18) in the previous section was solved numerically
via a built-in method in the MATLAB software, that is the bvp4c function. The MATLAB solver bvp4c
solver, which was originated by Shampine et al. [52], incorporates the finite-difference program that
prompts the three stages of Lobatto IIIa rule. The robust Lobatto IIIa rule belongs to the implicit
Runge-Kutta methods and exercised the collocation method associated with the implicit trapezoidal
method. Thus, the MATLAB solver bvp4c denotes the collocation method, which presents the
C1-continuous solution with a fourth-order precision uniformly in the interval where the function
is integrated. In the present work, the bvp4c routine can commence by defining the following new
variables of

y(1) = f , y(2) = f ′, y(3) = f ′′ ,
y(4) = θ, and y(5) = θ′.

(22)

By employing the variables in (22), the system of ordinary differential equations (16)–(18) can be
written in the terms

f ′ = y(2),
f ′′ = y(3),

f ′′′ = J·σ·ζ·0.5·y(3)+J·(y(2))2+J·σ·y(2)−J·y(1)·y(3)[
1+ n·We2 ·(y(3))2

J

][
1+We2 ·(y(3))2

J

] n−3
2

,

θ′ = y(5),
θ′′ = 2 · Pr · J · y(2) · y(4) + 0.5 · Pr · J · σ · ζ · y(5) + 1.5 · Pr · J · σ · y(4) − Pr · J · y(1) · y(5),

(23)

Accompanied with the boundary conditions (18) which is written as

ya(1) − S = 0, ya(2) − 1 = 0, ya(4) − 1 = 0,
yb(1) − σ/2 = 0, yb(3) −M · yb(4) = 0, yb(5) = 0.

(24)

The subscripts ‘a’ and ‘b’ describe the position at the surface of the stretching sheet and the free
surface, respectively. The relative tolerance has been fixed to 1× 10−10 throughout the computation
process. The bvp4c function eases the computation process of the boundary value problems involving
unknown parameters, and efficient in solving the boundary value problems even with the poor
guesses [52]. However, a good initial guess is requisite to obtain multiple solutions. By using this clue,
the present work has generated three different numerical solutions by using three sets of different
initial guesses. The existence of the non-uniqueness solutions is common in a boundary value problem
because the nonlinearity of the mathematical model in (16)–(18) and the variation of the respective
governing parameters may lead to bifurcations in solutions which encourages the presences of the
multiple solutions [53]. In this work, non-uniqueness solutions have been identified and are classified
as the first, second, and third solutions. The first solution is a numerical solution which converged with
a thin boundary layer whereas the second and third solutions converged with the thicker boundary
layer. These solutions satisfy the boundary condition (18). Before the present numerical results
discussed, it is important to validate the mathematical model as in (16)–(18) and measure the efficiency
of the collocation method. Tables 1 and 2 show the comparison of the numerical results with the
previous analytic solutions, and there is a good agreement. This validates the present model and proves
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the accuracy of the collocation method in solving a boundary layer problem as the present results able
to withstand the homotopy analysis method (HAM) which has been employed by Wang [26] and Noor
and Hashim [39].

Table 1. Comparison values of β and f ′′ (0) when Pr = n = 1 and We = S = M = 0.

S
β f”(0)

Wang [26] Present Study Wang [26] Present Study

0.6 3.13125 3.131710 −3.74233 −3.742786
0.7 2.57701 2.576995 −3.14965 −3.149614
0.8 2.15199 2.151994 −2.68094 −2.680966
0.9 1.81599 1.815987 −2.29683 −2.296825
1.0 1.54362 1.543616 −1.97238 −1.972385

Table 2. Comparison values of β, f ′′ (0) and −θ′(0) when n = 3, Pr = 1, We = S = 0 and M = 1.

S
β f”(0) −θ

′

(0)

Noor and
Hashim [39]

Present
Study

Noor and
Hashim [39]

Present
Study

Noor and
Hashim [39]

Present
Study

0.6 3.077525 3.180970 −3.648093 −3.798725 4.946056 5.077439
0.8 2.238349 2.230600 −2.777115 −2.770430 3.729232 3.733874
1.0 1.654829 1.653841 −2.097875 −2.095761 2.884973 2.886293
1.2 1.271942 1.271892 −1.598689 −1.598526 2.297023 2.297249
1.4 1.002731 1.002729 −1.199091 −1.199085 1.856868 1.856914
1.6 0.803335 0.803335 −0.856981 −0.856982 1.507663 1.507691

4. Results and Discussion

This section presents the numerical results in the form of the velocity and temperature profiles with
a variation of the unsteadiness parameter (σ), the thermocapillarity number (M), and the constant mass
transfer parameter (S) within the range of (0.8 ≤ σ ≤ 1.6), (0.01 ≤M ≤ 2.0), and (−0.3 ≤ S ≤ −1.0),
respectively. In the present study, the Prandtl number (Pr) has a fixed value of 30 as the interest is
about the molten polymer. Meanwhile, the values of the local Weissenberg number (We) and the
power-law index (n) are remained as 0.04 and 0.6, respectively. This section also organized in a way
where the discussion of the first and second solutions is given initially, while the explanations of the
third solution end up the section.

Figure 2 demonstrates the velocity profiles of the Carreau fluid when σ varies past a stretching
surface under the influence of injection at the rate of −0.3. The first and second solutions express
an increment in the fluid velocity when the value of σ increases from 0.8 to 1.6. Vajravelu et al. [54]
have reported the unique solution with the similar result trend. Based on Table 3, the increment in
σ gradually reduces the film thickness of the first solution. The decrement in the film thickness at
the free surface increases the fluid velocity past the permeable stretching sheet, which then enhances
the wall shear stress along with the stretching sheet. Consequently, the value of the reduced skin
friction coefficient

(
C f xRe1/2

x

)
in Table 4, increases and higher values of C f xRe1/2

x implies the growth in
the frictional drag exerted on the stretching surface, which is not favorable in sustaining the laminar
boundary layer flow. Intriguingly, the second solution in Table 3 which revealed the increment in the
film thickness also records the increment in the values of C f xRe1/2

x like the first solution. Based on the
values of C f xRe1/2

x for the first and second solutions in Table 4, a decrement in σ elucidates that the
stretching sheet found to exert the drag force on the Carreau fluid by expressing the negative values of
C f xRe1/2

x . Next, Figure 3 displays the temperature profiles, and based on the first and second solutions,
when the value of σ increases, the fluid temperature increases and the heat flux from the surface of the
sheet rises. Eventually, the thermal conductivity past the stretching sheet depreciates and increases the
value of the local Nusselt number.
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Table 4. Value of C f xRe1/2
x and θ′(0) as σ varies at Pr = 30, We = 0.2, n = 0.6, S = −0.3 and M = 2.

σ CfxRe1/2
x θ

′

(0)

FS 1 SS 2 TS 3 FS 1 SS 2 TS 3

0.8 −1.980577 −0.296318 0.369629 −6.407399 −15.643947 25.767820
1.0 −1.277002 0.141808 0.802004 −5.299440 −14.000526 27.249769
1.2 −0.665062 0.592954 3.288306 −4.064348 −12.656062 −101.360411
1.4 −0.149305 1.053797 1.746104 −3.054334 −11.503536 29.040625
1.6 0.304406 1.524980 8.210864 −2.385140 −10.487733 33.146586

1 FS = First solution. 2 SS = Second solution. 3 TS = Third solution.

Table 5 overviews the effect of the thermocapillarity number (M) over C f xRe1/2
x and θ′(0). The first

solution in Table 5 exhibits the gradual increment in the film thickness (J) when the values of M
increases from 0.01 to 2.0. The increment in the film thickness then affects the fluid velocity to decrease,
and this is depicted in Figure 4. The decreasing fluid velocity then reduces the wall shear stress past the
stretching sheet and results in the decrement of C f xRe1/2

x , as shown in Table 6. Noor and Hashim [39],
and Rehman et al. [44] also have reported the decrement of the skin friction coefficient in their work.
On the other hand, the second solution indicates the decrement in the value of J past the unsteady
stretching sheet. No one has reported such a trend before, and this suggests that an increment in the
surface tension gradient have the potential to enhance the film thickness. The gradual increment in the
film thickness triggers the speed of the fluid flow to increase, which then increases the wall shear stress
and eventually, the value of C f xRe1/2

x increases. Besides that, the first solution in Figure 5 illustrates



Energies 2020, 13, 3177 9 of 17

the decreasing trend of the fluid temperature when the thermocapillarity effect dominates near the
free surface. When the fluid temperature decreases, the heat flow rate intensity from the surface of
the stretching sheet declines. Thus, the thermal conductivity over the stretching surface increases
and inducing the rate of heat transfer to decrease when M increases (see Table 6). These trends are
in accordance with the findings given by [44]. The negative values of θ′(0) elucidate that the heat
energy is transferred from the fluid to the stretching sheet. Conversely, the second solution shows the
decrement in J, and the fluid temperature at the free surface found be increasing when M increases
after encountering some mild fluctuations across the boundary layer. As a result, the rate of convection
heat transfer becomes inconsistent with the trend of increasing, decreasing, and increasing.
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Table 5. Value of J as M varies at Pr = 30, We = 0.2, n = 0.6, S = −0.3, and σ = 1.2.

M
J

First Solution Second Solution Third Solution

0.01 0.1654261 −0.0237977 −0.1987100
0.1 0.1681247 −0.1855381 −1.1277911
0.5 0.1785531 −0.5951102 −3.2025872
1.0 0.1891674 −0.6234975 −1.1007880
2.0 0.2058215 −0.6771271 −1.0672621

Table 6. Value of C f xRe1/2
x and θ′(0) as M varies at Pr = 30, We = 0.2, n = 0.6, S = −0.3 and σ = 1.2.

M
CfxRe1/2

x θ
′

(0)

FS 1 SS 2 TS 3 FS 1 SS 2 TS 3

0.01 −0.613689 −0.372742 −0.127939 −3.714041 −39.195759 294.841558
0.1 −0.617140 −0.146453 1.377446 −3.739231 25.692494 782.037891
0.5 −0.630449 0.462043 8.923835 −3.833974 −40.763726 −40.729483
1.0 −0.643954 0.506981 1.326987 −3.926454 −22.672611 68.706145
2.0 −0.665062 0.592954 1.265005 −4.064348 −12.656062 28.245961

1 FS = First solution. 2 SS = Second solution. 3 TS = Third solution.
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Table 7 displays the values of J when the values S decreases from −0.3 to −1.0. The decrement
in S explicates the increment in the injection intensity at the surface of the stretching sheet. The first
solution shows that an increment in the injection strength reduces the film thickness at the free surface
and affects the fluid velocity to increase steadily (see Figure 6). Rehman et al. [44] also has obtained
the similar trend when S decreases. The improvement in the fluid velocity, as shown in Figure 6,
increases the skin friction at the surface of the stretching sheet, which then enhances the value of
C f xRe1/2

x when S decreases from −0.3 to −1.0 (see Table 8). Interestingly, the second solution in Table 8
found to increase the film thickness at the free surface, and no one has reported this observation before.
Even though the second solution displays the increment in J, it does increases the value of C f xRe1/2

x
when the impact of injection increases. From the aspect of the heat transfer, the first solution shows that
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the decrement in S increases the fluid temperature and is disclosed in Figure 7. The effect of injection
found to increases the amount of heat flux emitted from the stretching sheet, and this substantially
augments the rate of convective heat transfer. Therefore, the values of θ′(0) increase when the value of
S decreases. The second solution postulates the increment of the fluid temperature at the free surface
after confronted the high oscillation across the boundary layer. Hence, the value of θ′(0) decreases
when S varies from −0.3 to −0.7, and then upsurges when S varies from −0.7 to −1.0. Stronger injection
effect at the surface of the stretching sheet increases the strength of the reverse or overshoot flow,
which is shown in Figures 7 and 8c [55]. The observed inflection points in Figures 7 and 8c signify the
flow instability, and this may yield the irregular rate of heat transfer past the stretching sheet.

Table 7. Value of J as S varies at Pr = 30, We = 0.2, n = 0.6, M = 2 and σ = 1.2.

S
J

First Solution Second Solution Third Solution

−0.3 0.2058215 −0.6771271 −1.9809900
−0.5 0.0603109 −0.5696448 −1.1092403
−0.7 0.0246653 −0.5309704 −1.2876096
−1.0 0.0072303 −0.2978425 −0.1952172

Table 8. Value of C f xRe1/2
x and θ′(0) as S varies at Pr = 30, We = 0.2, n = 0.6, M = 2 and σ = 1.2.

S
CfxRe1/2

x θ
′

(0)

FS 1 SS 2 TS 3 FS 1 SS 2 TS 3

−0.3 −0.665062 0.592954 3.288306 −4.064348 −12.656062 −101.360411
−0.5 0.301583 1.430791 2.632399 −2.271308 −27.057939 287.943093
−0.7 1.052951 2.453767 4.824057 −1.471507 −50.930799 3901.196761
−1.0 1.535432 3.604139 3.337833 −0.733154 −4.841747 −8.748436

1 FS = First solution. 2 SS = Second solution. 3 TS = Third solution.
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On the other hand, the remaining solution (third solution) yields the most negative values of
J when σ, M, and S varies, and the most negative values can be set to zero [56]. When J is set to
zero, the momentum equation for the hydrodynamic boundary layer, as shown in Equation (16) is
undefined and deleted from the problem matrix at this nodal point. Meanwhile, in the coating activities,
the growth of the film is strictly dependent on the substrate flow over the stretching sheet (which is the
Carreau fluid flow in the present work), and any changes occurring in the substrate vicinity will be
reflected in the thin film thickness. Defects in the thin film flow such as a strong flow of divergence over
the stretching sheet, or saddle points of attachment due to effect of surface tension, unsteadiness, or
injection may yield the most negative film thickness. Therefore, when the most negative film thickness
appeared, one can predict a rupture in the process and contact occurs between the film and stretching
sheet surfaces [56]. Based on the results of the physical quantities and profiles (see Figures 2, 3, 6
and 8) of the third solution in the present work, it is clear that there is an abrupt increase in the velocity
profiles and irregular rising and falling in the fluid temperature which results in the uneven trend
(increase, decrease and increase) of C f xRe1/2

x and θ′(0), respectively. Even the reported values of J for
the third solution showed a changing trend; for instance, the thickness increase, decrease, increase.
These essentially suggest the defects (as been explained above) within the boundary layer region,
which have the potential to interrupt the film growing process.

5. Conclusions

The present investigation was conducted to observe the effects of thermocapillarity and injection
in the Carreau thin film flow and heat transfer past an unsteady stretching sheet. The appropriate
similarity variables transformed the governing boundary layer model which was in the form of the
partial differential equations into a system of ordinary differential equations to ease the computational
process. The reduced form of the mathematical model was solved numerically by a collocation method,
namely bvp4c function in the MATLAB software. Interestingly, this study reported triple solutions in
thin-film flow problems for the first-time. However, only one solution (first solution) can be physically
reliable since the other two solutions (second and third solutions) are not reliable with negative
film thickness. An increase in the unsteadiness parameter and higher intensity of injection reduces
the film thickness, which then increases the value of the skin friction coefficient and improves the
rate of convective heat transfer past a permeable stretching sheet. Besides that, an increase in the
thermocapillarity number increases the film thickness, which then depreciates the value of the skin
friction coefficient and deteriorates the rate of convective heat transfer past a permeable stretching sheet.
This remarkable contribution could be useful in improving the manufacturing and materials processing.
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Nomenclature

A1 Rivlin–Ericksen tensor (Pa)
b Stretching rate

(
s−1

)
C f x Local skin friction coefficient (−)
Cp Specific heat

(
Jkg−1 K−1

)
h(t) Liquid thin film thickness (m)

I Identity tensor
J Unknown constant (−)
k Thermal conductivity

(
Wm−1K−1

)
M Thermocapillary number (−)
n Power–law index (−)

Nux Local Nusselt number (−)
p Pressure (Pa)
Pr Prandtl number (−)
qw Heat flux at the wall

(
J s−1m−2

)
Rex Local Reynolds number (−)
S Constant mass transfer parameter (−)
t Time (s)
T Temperature (K)

T0 Temperature at the slit (K)

Tw Surface temperature (K)

Tre f Reference temperature (K)

u, v x− and y− components of velocity
(
m s−1

)
Uw(x, t) Stretching surface velocity

(
m s−1

)
Vw Uniform surface mass flux

(
m s−1

)
We Local Weissenberg number (−)
x, y Cartesian coordinates (m)

Greek Symbols

α Positive constant
(
s−1

)
β Dimensionless film thickness (−)
.
γ Shear rate (s)
γ Positive fluid property

(
K−1

)
ζ Similarity variable (−)

η0 Zero-shear-rate viscosity
(
kg m−1 s−1

)
η∞ Infinite-shear-rate viscosity

(
kg m−1 s−1

)
κ Thermal diffusivity

(
m2 s−1

)
σ Unsteadiness parameter (−)
λ Material time constant (s)
µ Dynamic viscosity

(
kg m−1 s−1

)
ν Kinematic viscosity

(
m2 s−1

)
ρ Density

(
kg m−3

)
τ Cauchy stress tensor (Pa)
τw Wall shear stress

(
kg m−1 s−2

)
χ Surface tension

(
kg s−2

)
χ0 Surface tension at temperature T0

(
kg s−2

)
ψ(x, y, t) Stream function



Energies 2020, 13, 3177 15 of 17

References

1. Prandtl, L. Über Flussigkeitsbewegungen bei sehr kleiner Reibung. Verhandlg. III Intern. Math. 1904, 484–491.
Available online: https://ci.nii.ac.jp/naid/20000989592/ (accessed on 12 June 2020).

2. Sakiadis, B.S. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for
two-dimensional and axisymmetric flow. AICH J. 1961, 7, 26–28. [CrossRef]

3. Sakiadis, B.S. Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous
flat surface. AICH J. 1961, 7, 221–225. [CrossRef]

4. Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. 1970, 21, 645–647. [CrossRef]
5. Carragher, P.; Crane, L.J. Heat transfer on a continuous stretching sheet. Z. Angew. Math. Phys. 1982, 62,

564–565. [CrossRef]
6. Krishna, M.V.; Chamkha, A.J. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid

past an infinite vertical plate embedded in a porous medium. Results Phys. 2019, 15, 102652. [CrossRef]
7. Basha, H.T.; Sivaraj, R.; Reddy, A.S.; Chamkha, A.J. SWCNH/diamond-ethylene glycol nanofluid flow over

a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation–solar energy
application. Eur. Phys. J. Spec. Top. 2019, 228, 2531–2551. [CrossRef]

8. Rasool, G.; Zhang, T.; Chamkha, A.J.; Shafiq, A.; Tlili, I.; Shahzadi, G. Entropy generation and consequences
of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly
stretching surface. Entropy 2020, 22, 18. [CrossRef]

9. Gorla, R.S.R.; Chamkha, A. Natural convective boundary layer flow over a nonisothermal vertical plate
embedded in a porous medium saturated with a nanofluid. Nanosc. Microsc. Therm. 2011, 15, 81–94.
[CrossRef]

10. Magyari, E.; Chamkha, A.J. Combined effect of heat generation or absorption and first-order chemical
reaction on micropolar fluid flows over a uniformly stretched permeable surface: The full analytical solution.
Int. J. Therm. Sci. 2010, 49, 1821–1828. [CrossRef]

11. Chamkha, A.J. Solar radiation assisted natural convection in uniform porous medium supported by a vertical
flat plate. J. Heat Transf. 1997, 119, 89–96. [CrossRef]

12. Chamkha, A.J.; Al-Mudhaf, A. Unsteady heat and mass transfer from a rotating vertical cone with a magnetic
field and heat generation or absorption effects. Int. J. Therm. Sci. 2005, 44, 267–276. [CrossRef]

13. Takhar, H.S.; Chamkha, A.J.; Nath, G. Combined heat and mass transfer along a vertical moving cylinder
with a free stream. Heat Mass Transf. 2000, 36, 237–246. [CrossRef]

14. Chamkha, A.J.; Takhar, H.S.; Soundalgekar, V.M. Radiation effects on free convection flow past a semi-infinite
vertical plate with mass transfer. Chem. Eng. J. 2001, 84, 335–342. [CrossRef]

15. Takhar, H.S.; Chamkha, A.J.; Nath, G. Unsteady three-dimensional MHD-boundary-layer flow due to the
impulsive motion of a stretching surface. Acta Mech. 2001, 146, 59–71. [CrossRef]

16. Chamkha, A.J.; Al-Mudhaf, A.F.; Pop, I. Effect of heat generation or absorption on thermophoretic free
convection boundary layer from a vertical flat plate embedded in a porous medium. Int. Commun. Heat Mass
2006, 33, 1096–1102. [CrossRef]

17. Ghalambaz, M.; Behseresht, A.; Behseresht, J.; Chamkha, A. Effects of nanoparticles diameter and
concentration on natural convection of the Al2O3-water nanofluids considering variable thermal conductivity
around a vertical cone in porous media. Adv. Powder Technol. 2015, 26, 224–235. [CrossRef]

18. Chamkha, A.J. Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally
stratified porous medium. Int. J. Eng. Sci. 1997, 35, 975–986. [CrossRef]

19. Reddy, M.G.; Rani, M.S.; Kumar, K.G.; Prasannakumar, B.C.; Chamkha, A.J. Cattaneo-Christov heat flux
model on Blasius-Rayleigh-Stokes flow through a transitive magnetic field and Joule heating. Phys. A 2020,
548, 123991. [CrossRef]

20. Cotto, D.; Duffo, P.; Haudin, J.M. Cast film extrusion of polypropylene films. Int. Polym. Proc. 1989, 4,
103–113. [CrossRef]

21. Wang, C.Y. Liquid film on an unsteady stretching surface. Q. Appl. Math. 1990, 48, 601–610. [CrossRef]
22. Usha, R.; Sridharan, R. The axisymmetric motion of a liquid film on an unsteady stretching surface. J. Fluids

Eng. 1995, 117, 81–85. [CrossRef]
23. Andersson, H.I.; Aarseth, J.B.; Braud, N.; Dandapat, B.S. Flow of a power-law fluid film on an unsteady

stretching surface. J. Non-Newton. Fluid Mech. 1996, 62, 1–8. [CrossRef]

https://ci.nii.ac.jp/naid/20000989592/
http://dx.doi.org/10.1002/aic.690070108
http://dx.doi.org/10.1002/aic.690070211
http://dx.doi.org/10.1007/BF01587695
http://dx.doi.org/10.1002/zamm.19820621009
http://dx.doi.org/10.1016/j.rinp.2019.102652
http://dx.doi.org/10.1140/epjst/e2019-900048-x
http://dx.doi.org/10.3390/e22010018
http://dx.doi.org/10.1080/15567265.2010.549931
http://dx.doi.org/10.1016/j.ijthermalsci.2010.04.007
http://dx.doi.org/10.1115/1.2824104
http://dx.doi.org/10.1016/j.ijthermalsci.2004.06.005
http://dx.doi.org/10.1007/s002310050391
http://dx.doi.org/10.1016/S1385-8947(00)00378-8
http://dx.doi.org/10.1007/BF01178795
http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.04.009
http://dx.doi.org/10.1016/j.apt.2014.10.001
http://dx.doi.org/10.1016/S0020-7225(96)00122-X
http://dx.doi.org/10.1016/j.physa.2019.123991
http://dx.doi.org/10.3139/217.890103
http://dx.doi.org/10.1090/qam/1079908
http://dx.doi.org/10.1115/1.2816830
http://dx.doi.org/10.1016/0377-0257(95)01392-X


Energies 2020, 13, 3177 16 of 17

24. Andersson, H.I.; Aarseth, J.B.; Dandapat, B.S. Heat transfer in a liquid film on an unsteady stretching surface.
Int. J. Heat Mass Transf. 2000, 43, 69–74. [CrossRef]

25. Chen, C.H. Heat transfer in a power-law fluid film over a unsteady stretching sheet. Heat Mass Transf. 2003,
39, 791–796. [CrossRef]

26. Wang, C. Analytic solutions for a liquid film on an unsteady stretching surface. Heat Mass Transf. 2006, 42,
759–766. [CrossRef]

27. Noor, N.F.M.; Abdulaziz, O.; Hashim, I. MHD flow and heat transfer in a thin liquid film on an unsteady
stretching sheet by the homotopy method. Int. J. Numer. Meth. Fluids 2010, 63, 357–373. [CrossRef]

28. Aziz, R.C.; Hashim, I. Liquid film on unsteady stretching sheet with general surface temperature and viscous
dissipation. Chin. Phys. Lett. 2010, 27, 110202. [CrossRef]

29. Aziz, R.C.; Hashim, I.; Abbasbandy, S. Flow and heat transfer in a nanofluid thin film over an unsteady
stretching sheet. Sains Malys. 2018, 47, 1599–1605. [CrossRef]

30. Aziz, R.C.; Hashim, I.; Alomari, A.K. Thin film flow and heat transfer on an unsteady stretching sheet with
internal heating. Meccanica 2011, 46, 349–357. [CrossRef]

31. Kumar, K.A.; Sandeep, N.; Sugunamma, V.; Animasaun, I.L. Effect of irregular heat source/sink on the
radiative thin film flow of MHD hybrid ferrofluid. J. Therm. Anal. Calorim. 2020, 139, 2145–2153. [CrossRef]

32. Tassaddiq, A.; Amin, I.; Shutaywi, M.; Shah, Z.; Ali, F.; Islam, S.; Ullah, A. Thin film flow of couple stress
magneto-hydrodynamics nanofluid with convective heat over an inclined exponentially rotating stretched
surface. Coatings 2020, 10, 337. [CrossRef]

33. Tan, M.J.; Bankoff, S.G.; Davis, S.H. Steady thermocapillary flows of thin liquid layers. I. Theory. Phys. Fluids
A 1990, 2, 313–321. [CrossRef]

34. Arafune, K.; Hirata, J. Thermal and solutal Marangoni convection in ln-Ga-Sb system. J. Crystal Growth 1999,
197, 811–817. [CrossRef]

35. Christopher, D.M.; Wang, B.X. Similarity simulation for Marangoni convection around a vapor bubble during
nucleation and growth. Int. J. Heat Mass Transf. 2001, 44, 799–810. [CrossRef]

36. Dandapat, B.S.; Ray, P.C. The effect of thermocapillarity on the flow of thin liquid film on a rotating disc.
J. Phys. D Appl. Phys. 1994, 27, 2041–2045. [CrossRef]

37. Dandapat, B.S.; Santra, B.; Andersson, H.I. Thermocapillarity in a liquid film on an unsteady stretching
surface. Int. J. Heat Mass Transf. 2003, 46, 3009–3015. [CrossRef]

38. Chen, C.H. Marangoni effects on forced convection of power-law liquids in a thin film over a stretching
surface. Phys. Lett. A 2007, 370, 51–57. [CrossRef]

39. Noor, N.F.M.; Hashim, I. Thermocapillarity and magnetic field effects in a thin liquid film on an unsteady
stretching surface. Int. J. Heat Mass Transf. 2010, 53, 2044–2051. [CrossRef]

40. Maity, S.; Ghatani, Y.; Dandapat, B.S. Thermocapillary flow of a thin nanoliquid film over an unsteady
stretching sheet. J. Heat Trans-T ASME 2016, 138, 042401. [CrossRef]

41. Sarojamma, G.; Vajravelu, K.; Sreelakshmi, K. A study on entropy generation on thin film flow over
an unsteady stretching sheet under the influence of magnetic field, thermocapillarity, thermal radiation and
internal heat generation/absorption. Commun. Numer. Anal. 2017, 2, 141–156. [CrossRef]

42. Maity, S. Thermocapillary flow of thin liquid film over a porous stretching sheet in presence of suction/injection.
Int. J. Heat Mass Transf. 2014, 70, 819–826. [CrossRef]

43. Rehman, S.; Rehman, S.U.; Khan, A.; Khan, Z. The effect of flow distribution on heat and mass transfer
of MHD thin liquid film flow over an unsteady stretching sheet in the presence of variational physical
properties with mixed convection. Phys. A 2020, 551, 124120. [CrossRef]

44. Rehman, S.; Idrees, M.; Shah, R.A.; Khan, Z. Suction/injection effects on an unsteady MHD Casson thin
film flow with slip and uniform thickness over a stretching sheet along variable flow properties. Bound.
Value Probl. 2019, 1, 26. [CrossRef]

45. Myers, T.G. Application of non-Newtonian models to thin film flow. Phys. Rev. E 2005, 72, 066302. [CrossRef]
46. Tshehla, M.S. The flow of a Carreau fluid down an incline with a free surface. Int. J. Phys. Sci. 2011, 6,

3896–3910.
47. Ashwinkumar, G.P.; Sulochana, C. Numerical simulation of heat transfer characteristics in thin film flow of

MHD dissipative Carreau nanofluid past a stretching sheet with CoFe2O4 nanoparticles. Int. J. Res. Eng.
Technol. 2016, 5, 18–25.

http://dx.doi.org/10.1016/S0017-9310(99)00123-4
http://dx.doi.org/10.1007/s00231-002-0363-2
http://dx.doi.org/10.1007/s00231-005-0027-0
http://dx.doi.org/10.1002/fld.2078
http://dx.doi.org/10.1088/0256-307X/27/11/110202
http://dx.doi.org/10.17576/jsm-2018-4707-31
http://dx.doi.org/10.1007/s11012-010-9313-0
http://dx.doi.org/10.1007/s10973-019-08628-4
http://dx.doi.org/10.3390/coatings10040338
http://dx.doi.org/10.1063/1.857781
http://dx.doi.org/10.1016/S0022-0248(98)01071-9
http://dx.doi.org/10.1016/S0017-9310(00)00129-0
http://dx.doi.org/10.1088/0022-3727/27/10/009
http://dx.doi.org/10.1016/S0017-9310(03)00078-4
http://dx.doi.org/10.1016/j.physleta.2007.05.024
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.12.052
http://dx.doi.org/10.1115/1.4032146
http://dx.doi.org/10.5899/2017/cna-00319
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.070
http://dx.doi.org/10.1016/j.physa.2019.124120
http://dx.doi.org/10.1186/s13661-019-1133-0
http://dx.doi.org/10.1103/PhysRevE.72.066302


Energies 2020, 13, 3177 17 of 17

48. Khan, N.S.; Gul, T.; Kumam, P.; Shah, Z.; Islam, S.; Khan, W.; Zuhra, S.; Sohail., A. Influence of inclined
magnetic field on Carreau nanoliquid thin film flow and heat transfer with graphene nanoparticles. Energies
2019, 12, 1459. [CrossRef]

49. Iqbal, K.; Ahmed, J.; Khan, M.; Ahmad, L.; Alghamdi, M. Magnetohydrodynamic thin film deposition of
Carreau nanofluid over an unsteady stretching surface. Appl. Phys. A-Mater. 2020, 126, 105. [CrossRef]

50. Boger, D.V. Demonstration of upper and lower Newtonian fluid behaviour in a pseudoplastic fluid. Nature
1977, 265, 126–128. [CrossRef]

51. Khan, M.; Azam, M. Unsteady boundary layer flow of Carreau fluid over a permeable stretching surface.
Results Phys. 2016, 6, 1168–1174. [CrossRef]

52. Shampine, L.F.; Gladwell, I.; Thompson, S. Solving ODEs with MATLAB; Cambridge University Press: New
York, NY, USA, 2003; p. 166.

53. Schlicthing, H.; Gersten, K. Boundary-Layer Theory, 9th ed.; Springer Nature: Berlin, Germany, 2017; p. 99.
54. Vajravelu, K.; Prasad, K.V.; Ng, C.O. Unsteady flow and heat transfer in a thin film of Ostwald-de Waele

liquid over a stretching surface. Commun. Nonlinear Sci. Numer. Simulat. 2012, 17, 4163–4173. [CrossRef]
55. Ali, M.E. The effect of suction or injection on the laminar boundary layer development over a stretched

surface. J. King Saud Univ. 1996, 8, 43–58. [CrossRef]
56. Dowson, D.; Priest, M.; Dalmaz, G.; Lubrecht, A.A. Tribological Research and Design for Engineering Systems;

Elsevier: Amsterdam, The Netherlands, 2003; p. 581.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/en12081459
http://dx.doi.org/10.1007/s00339-019-3204-6
http://dx.doi.org/10.1038/265126a0
http://dx.doi.org/10.1016/j.rinp.2016.11.035
http://dx.doi.org/10.1016/j.cnsns.2012.01.027
http://dx.doi.org/10.1016/S1018-3639(18)30639-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Formulation 
	Computational Scheme 
	Results and Discussion 
	Conclusions 
	References

