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Abstract: PV (photovoltaic) systems are receiving the spotlight in Korea due to the Renewable
Energy 3020 Implementation Plan (RE3020), which has the goal of reaching 20% for the proportion of
renewable energy generation by 2030. Accordingly, the actual performance evaluation of PV systems
to achieve the RE3020 has become more important. PV efficiency is mainly determined by various
weather conditions (e.g., solar radiation) that affect the power generation of PV systems. However,
the efficiency is also affected by changes in module surface temperature. In particular, the efficiency
decreases when the module surface temperature rises. That is, the actual PV efficiency falls short of
the rated efficiency. The estimation of module surface temperature is critical for evaluating the actual
performance of PV systems. Many studies have been conducted to calculate the surface temperature.
However, most of the previous studies focused on calculations of current surface temperatures using
current environment data, which means that the previous studies have limitations related to timestep.
That is, there is a lack of predictive models that calculate the future surface temperatures by using the
current measured data. Therefore, this study developed a predictive model using an ANN (artificial
neural network) algorithm to determine the surface temperature of PV modules for a future period of
time. Then, this study evaluated the actual performance (i.e., power generation) with the predicted
surface temperatures.

Keywords: photovoltaic system; efficiency; power generation; module surface temperature; predictive
model; artificial neural network

1. Introduction

Korea began implementing energy conservation design standards for buildings in 2008 to promote
efficient energy management for buildings [1]. The standards were revised in 2018, and Korea was
divided into four regions (Central 1, Central 2, Southern, and Jeju Island). The heat transmission
coefficient standards for each region were also strengthened in the same year. Accordingly, various
standards and laws are being implemented for efficient building energy management. Despite these
efforts, the electricity supply and demand trend surpassed 90 million GW in Korea for the first time in
2018 [2]. As a result, renewable energy sources are receiving the spotlight for energy conservation and
stable power supply in buildings.

Renewable energy sources include solar, wind, and geothermal power. Among these sources,
PV (photovoltaic) systems are widely used because they are easy to use and install, unlike wind and
geothermal power. In 2017, the Ministry of Trade, Industry, and Energy reported that PV systems will
account for more than 57% of the total renewable energy in Korea by 2030 [3]. Accordingly, PV systems
that provide small-footprint installation and distributed power generation are attracting attention
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in the building sector. Analyzing the amount of power generated by PV systems is also essential to
stabilizing smart grids and power systems.

However, PV systems are exposed to and influenced by of the external environment because they
are primarily installed outside to collect solar energy. Therefore, changes in module surface temperature
affect power generation efficiency. In particular, the power generation efficiency decreases when
the module temperature increases [4–7]. This can lead to inaccurate power generation calculations
and system capacity estimations. Eventually, when the power produced by the PV system and the
actual energy consumed in the building become unbalanced, a significant load is applied to the power
system and results in blackouts. Therefore, analyzing the module surface temperature is essential
before evaluating the performance and calculating the power produced by PV systems. Therefore,
this study developed and validated a predictive model for the analysis of module surface temperature.
The purpose of this study was to analyze the module surface temperature, efficiency, and power
generation using this model.

2. Previous Models for the Prediction of PV Module Surface Temperatures

A module’s surface temperature changes according to the influence of various external
environmental factors [8–13]. Recently, various tests and simulation studies have been conducted to
analyze module surface temperature. This study performed a literature review, and Table 1 below
summarizes the studies on the prediction and analysis of module surface temperature.

Davis et al. (2001) [14] used the NOCT (nominal operating cell temperature) model to predict a
PV panel’s temperature, but the actual temperature was 20 K higher than the prediction made by the
model. To improve this, four 1D steady-state heat-transfer models were derived, and the operating
cell temperature was calculated. As a result, Model 4 (which reflected the measured horizontal solar
radiation) was most accurate in predicting the actual panel temperature and power.

Tamizhmani et al. (2003) [9] predicted module surface temperatures to predict the power generated
by PV modules. This study evaluated the accuracy of the module surface temperature according to
the combination of five variables (ambient temperature, solar radiation, wind speed, wind direction,
and relative humidity). The module surface temperature algorithm produced the most accurate results
when considering the ambient temperature, solar radiation, and wind speed (R2 = 0.943).

Garcia and Balenzategui (2004) [15] conducted the application of the International Standards
(EN 61215 and EN-61646) to determine the NOCT of a PV device. As a result of the study, it was
observed that the inaccuracies of the NOCT value were about ±3 ◦C. However, they claimed that the
inaccuracy did not lead to excessive errors (about ±1.5%) on annual performance estimation.

Mattei et al. (2006) [16] developed a simple model using the energy balance to calculate the
PV output power. The simple model included several equations to determine the cell temperature.
The authors considered the wind effect on the cell temperature, and they calculated the optimal value
of (ατ) from experimental data for all wind speeds. They found the optimal value of (ατ) was 0.81.
With the optimal value, the resultant RMSE of the cell temperature was 2.24 ◦C. The resultant error
was not very low, but it appeared that they were satisfied with the error level that resulted from the
simplified model.

Kurtz et al. (2011) [17] analyzed PV module surface temperatures in extreme environments.
The module surface temperature algorithm in this study was derived from algorithms proposed in
previous studies and used ambient temperature, solar radiation, and wind speed as variables. The PV
module surface temperature rose to 75 ◦C~96 ◦C in extreme environments.

Brano et al. (2014) [18] predicted module temperatures through an ANN (artificial neural network).
This study used power, solar radiation, weighting factor, outdoor air temperature, short circuit current,
and open circuit voltage as input data. The measured data of two PV modules (Kyocera, Sanyo) were
obtained for the analysis. The developed model showed excellent predictive performance with MAE
(mean absolute error) of ±0.23 ◦C and ±0.11 ◦C compared to the two modules.
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Table 1. Literature reviews of photovoltaic (PV) cell (or module) surface temperature.

Reference
Number

Year Objective Location PV Type
Methodology Calculation

Models
Input Parameters Output

Parameters
Accuracy Analysis

ParametersExperiment Simulation

[14] 2001
Computation of the

operating cell
temperature

Maryland,
US

Single Crystalline,
Poly-Si, Si-Film,

Triple-junction, A-Si
# ×

1D steady state
heat-transfer

model

Solar radiation, Ambient
temperature, Cell efficiency,
Transmittance, Absorbance

Operating cell
temperature

Relative error
−12.1~10.6%

Cell temperature,
Power

[9] 2003 Prediction of PV cell
temperature

Arizona,
US

Mono-Si, Poly-Si, A-Si,
CIS, EFG-Poly-Si,

CdTe
# #

Linear
regression model

Solar radiation, Ambient
temperature, Wind speed, Wind

direction, Relative humidity
Cell temperature R2 = 0.943 Cell temperature

[15] 2004
Estimation of PV

module temperature
and performance

Madrid,
Spain Semitransparent A-Si # # Previous model Solar radiation, Ambient

temperature

Nominal
operation cell
temperature

Inaccuracy = ±3 ◦C Cell temperature

[16] 2006
Development of a PV
module temperature

model

Ajaccio,
France Crystalline-Si # ×

Modified model
of previous

model

Solar radiation, Ambient
temperature, Wind speed,

Convection coefficient
Cell temperature RMSE = 2.24 ◦C Cell temperature,

Efficiency, Power

[17] 2009 Evaluation of PV cell
temperature

Florida, US
Colorado,

US
Silicon Ribbon Module # ×

Modified model
of previous

model

Solar radiation, Ambient
temperature, Wind speed Cell temperature Unknown Cell temperature

[18] 2013 Prediction of PV cell
temperature

Palermo,
Italy Mono-Si, Poly-Si # #

Artificial neural
network model

Power, Solar radiation,
Weighting factor, Outdoor air

temperature, Short circuit
current, Open circuit voltage

Cell temperature MAE ± 0.23 ◦C,
±0.11 ◦C Cell temperature

[19] 2014 Prediction of PV cell
temperature

Aegean,
Turkey Poly-Si # #

Artificial neural
network model

System outlet air temperature,
Solar radiation Cell temperature R2 = 0.99

Cell temperature,
Efficiency, Power

[20] 2014

Development of a 3D
thermal model to

predict the PV module
temperature

Abu Dhabi,
UAE Poly-Si # ×

3D thermal
model

Solar radiation, Ambient
temperature, Wind speed, Heat

loss coefficients
Cell temperature RMSE < 1, MBE < 2 Cell temperature,

Power

[21] 2017
Forecasting of PV

power considering cell
temperature

Eskisehir,
Turkey Unknown # × Previous model

Solar radiation, Ambient
temperature, Wind speed,

Convection coefficient
Cell temperature

RMSE = 2.23 ◦C
MBE = 1.09 ◦C

MABE = 1.82 ◦C

Cell temperature,
Power

[22] 2018 Prediction of PV cell
temperature

Hapcheon,
Korea Crystalline-Si # #

Multiple linear
equation

Solar Radiation, Ambient
temperature, Wind speed,

Water temperature
Cell temperature Relative error 2.06%,

4.40%
Cell temperature,

Efficiency

[23] 2019 Prediction of PV cell
temperature

Bengaluru,
India Unknown # #

Artificial neural
network model

Solar radiation, Ambient
temperature, Wind speed,
Relative humidity, Panel

temperature

Cell temperature MAE = 0.9965 ◦C Cell temperature

[24] 2019 Prediction of PV cell
temperature

Cairo,
Egypt A-Si # #

Neural network
model

Solar radiation, Ambient
temperature Cell temperature 96% of accuracy Solar radiation,

Cell temperature
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Ceylan et al. (2014) [19] predicted module temperatures using an artificial neural network. System
outlet air temperature and solar radiation were used as the input data. As a result, R2 of the ANN
prediction model was 0.99, and the module efficiency decreased as the solar radiation increased.
The power generated by the applied model was the highest between March and July.

Olukan and Emziane (2014) [20] developed a 3D thermal model to predict PV module temperatures
under the environmental conditions in the UAE. This study used the finite element method (FEM) as
the prediction method and solar radiation, ambient temperature, wind speed, and heat loss coefficient
as the input data. The developed model had the lowest RMSE (root mean squared error) and MBE
(mean bias error) compared to the Ross model, PVSYST model, and Homer model.

Ayvazogluyuksel and Filik (2017) [21] forecasted PV power outputs using several different models
to calculate a cell’s temperature. For the calculation, they referenced six cell temperature models:
Standard, Koehl, Mattei, Skoplaki, Muzathik, and Kurtz. As a result, the accuracy of the Skoplaki
model with global solar radiation, ambient temperature, and panel specifications was the highest
(2.23 ◦C of RMSE, 1.09 ◦C of MBE, and 1.82 ◦C of MABE (mean absolute bias error)). They concluded
that the Skoplaki model provided the closest results to the measured module temperature.

Kamuyu et al. (2018) [22] conducted a study on the module temperature prediction model
of floating PV systems. This study used MATLAB to derive an equation to calculate the module
temperature based on solar radiation, ambient temperature, wind speed, and water temperature as the
input data. As a result, the underwater temperature cooled the module temperature and the floating
PV system produced 10% more power than the PV system installed on the surface.

Chayapathy et al. (2019) [23] predicted module temperatures using an artificial neural network.
Solar radiation, ambient temperature, wind speed, and module temperature were used as input data.
The ANN-based predictive model was developed by using Simulink, and the MAE was 0.9965 ◦C.
As a result, the PV performance decreased as the module temperature increased.

Hegazy et al. (2019) [24] predicted module surface temperatures using an NN (neural network).
The predictive model used solar radiation and ambient temperature as input data. The predictive
model’s accuracy was about 96% compared to the measured data.

Per the above, various studies associated with the surface temperature of PV modules were
reviewed, and the results of the literature review are summarized in Table 1. The ability to forecast
power generation is essential for the stabilization of power systems, and module surface temperatures
must be considered to estimate power generation more accurately. Several studies have developed
algorithms to predict module surface temperatures using measured data. However, most of the
prediction methods proposed in previous studies have limitations related to timestep. That is,
the proposed algorithms calculated the current PV module surface temperature using current data.
However, predictive analyses should be able to predict the future using current and past data. Therefore,
this study developed a model that can predict future PV module surface temperatures from current
data using measured data. The developed predictive model was also used to examine the efficiency
and power generation according to changes in module surface temperature.

3. Methodology

This study developed an ANN-based predictive model using the Neural Network (NN) toolbox
in MATLAB [25]. An ANN provides more accurate predictions because it is more adaptable to external
changes than are mathematical control models. The developed model was trained by using the
Levenberg–Marquardt algorithm (LMA) [26], and six types of measured data (ambient temperature,
wind speed, solar radiation, relative humidity, cloud cover, and module surface temperature) were
used as the dataset. Seventy percent of the dataset (January 2018—December 2018) was used for
training, 15% for validation, and the remaining 15% for the test process. The dataset was composed
of hourly data, and Table 2 shows the dataset parameters and value ranges. The measured data of
the dataset were collected from a 10 kW rooftop PV installed on Building A in Daejeon (see Figure 1).
Tables 3 and 4 show the system and sensor specifications. In terms of the wind speed, relative humidity,
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and cloud cover, this study used data measured in Daejeon (2018) from the KMA (Korea meteorological
administration) open data portal [27]. The final predictive model was developed through the process
of developing and optimizing the initial model.

Table 2. Dataset parameters and value ranges.

Parameters Values

Outdoor air temperature (◦C) −16.2~40.4
Wind speed (m/s) 0~8.3

Solar radiation (W/m2) 0~1041.0
Humidity (%) 14.0~98.0

Cloud cover (-) 0~10.0
Module surface temperature (◦C) −17.3~63.8
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Figure 1. Photos for the photovoltaic system and sensors.

Table 3. Electrical characteristics of the photovoltaic (PV) system (PV module name: SN310P-23 [28]).

Parameters Values

Rated power (W) 310 W
Voltage at Pmax (V) 36.3 V
Current at Pmax (A) 8.54 A

Warranted minimum Pmax (W) 310 W
Short-circuit current (Isc) (A) 8.96 A
Open-circuit current (Voc) (V) 45.4 V

Module efficiency (%) 15.89%
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Table 3. Cont.

Parameters Values

Operating module temperature (◦C) −40~+85 ◦C
Maximum system voltage (V) 1000 V (IEC)

Maximum series fuse rating (A) 15 A
Maximum reverse current (A) 20.25 A

Power tolerance (W) 0/+5 W

Table 4. Specification of sensors.

Measurements Measurement Point Type Non-Stability

Solar radiation Top side Si-pyranometer (Class: C) ±2%
Outdoor temperature Back side RTD (Class: B) ±0.25%

Module surface temperature Back side RTD (Thin film) ±0.5%

3.1. Overall Study Process

The purpose of this study was to develop a predictive model for PV module surface temperatures
to analyze the module surface temperature, efficiency, and power generation. Figure 2 shows the
overall study process. The initial predictive model was developed by using a dataset that went through
an optimization process. The optimized model then went through a validation process. The model
was validated based on ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning
Engineers) Guideline 14 [29]. The ASHRAE Guideline 14 was developed to provide standardized
guidelines for reliably measuring the energy, demand, and water savings achieved in conservation
projects. According to ASHRAE Guideline 14, the accuracy of a predictive model using hourly data
must satisfy R2 > 0.75 and cvRMSE (coefficient of variation of the root mean squared error) < 30%.
Finally, this study used the developed model to predict module surface temperatures and analyze the
efficiency and power generated by the PV system accordingly.Energies 2020, 13, x FOR PEER REVIEW 8 of 20 
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3.2. Development Process of the ANN Model

This study developed a predictive model to calculate PV module surface temperatures for a next
timestep using the current measured data. The predictive model was based on the theory of the
artificial neural networks (ANN), which simulates the way the human brain analyzes information.
Artificial intelligence (AI) has been receiving more attention since it can model complex behavior that
traditional engineering methods cannot model. Among the various ANN techniques, this study used
the Levenberg–Marquardt algorithm (LMA), which is available in MATLAB software, to develop a
predictive model using ANN [26]. The LMA was developed in the early 1960s to resolve nonlinear
least squares curve-fitting problems. It is known as a hybrid technique using both the gradient descent
method and the Gauss–Newton method to converge to an optimal solution.

The predictive model of this study was developed through three steps: (1) initial model
development, (2) initial model optimization, and (3) optimized model validation (see Figure 3).Energies 2020, 13, x FOR PEER REVIEW 9 of 20 
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The first step was developing an initial predictive model. The initial predictive model was
developed by setting a random NHN (number of hidden neurons) and NHL (number of hidden layers).

The second step was optimizing the initial predictive model. The NHN and NHL were
re-determined to ensure the predictive performance of the initial model. The R2 value and cvRMSE
were analyzed, and the variables (NHN, NHL) with the highest accuracy that also satisfied the reference
values required by ASHRAE Guideline 14 were used to optimize the model.

4. Results of the ANN Model

This section describes how the predictive model was developed and explains how it was structured
according to the development process. Min–max normalization was used to reflect the input data for
training on the same scale. However, this study normalized values between 0.1 and 0.9 to prevent
returning 0 and 1 [30]. This is because 0 and 1 may have adverse effects on the prediction. The min–max
normalization algorithm shown in Equation (1) was used in this study. The model was used to predict
and calculate the module surface temperature, efficiency, and power generation.

Xnew =

(
X −min(x)

max(x) −min(x)

)
× 0.8 + 0.1, (1)

where Xnew is the normalized data, X is the previous data, min(x) is the minimum value of previous
data, and max(x) is the maximum value of previous data [30].

In addition, the predictive model was optimized by evaluating the accuracy by using cvRMSE.
Equations (2) and (3) are the RMSE and cvRMSE algorithms, respectively [28].

RMSE =

√∑
(S−M)2

interval

Ninterval
, (2)
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cvRMSE =
RMSEperiod

Aperiod
, (3)

where S is the predicted data, M is the measured data, Ninterval is the number of measured data points,
and Aperiod is the average of the measurement period [28].

4.1. Development of an Initial ANN Model

This study developed an initial predictive model using the dataset. The initial model consisted of
NHN (=13) and NHL (=1), and the LR (learning rate) and MC (momentum constant) were both set to
0.3 (see Figure 4). Random variables were set by referring to the study by Moon (2015) [30]. The input
data consisted of the outdoor air temperature (OA), wind speed (WS), solar radiation (SR), relative
humidity (RH), and cloud cover (CC), and the output was the module surface temperature. As a
result of developing the predictive model, the cvRMSE of the initial model was 22.00% and satisfied
the criteria recommended in ASHRAE Guideline 14. Then, the initial model was optimized to more
accurately evaluate predictive performance.Energies 2020, 13, x FOR PEER REVIEW 10 of 20 
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Figure 4. Diagram of the initial ANN model.

4.2. Optimization of the Initial ANN Model

The initial model went through an optimization process. The cvRMSE was evaluated by changing
the NHN and NHL. The optimization process was performed by changing the NHN from 8 to 18 and
the NHL from 1 to 5. Table 5 shows the optimization results.

Table 5. The coefficient of variation of the root mean squared error (cvRMSE) (%) according to the
number of hidden neurons and layers.

NHL
NHN

8 9 10 11 12 13 14 15 16 17 18

1 23.39 22.02 22.18 21.57 22.62 22.35 21.85 21.33 21.42 21.42 21.66
2 21.34 20.88 22.21 21.25 21.97 21.69 21.28 20.96 21.60 21.86 20.86
3 21.17 21.71 21.43 21.41 21.30 21.43 21.23 20.61 22.10 20.83 21.04
4 21.08 22.10 21.92 20.54 21.25 21.33 21.09 21.85 21.25 20.70 20.58
5 21.58 21.09 23.41 20.90 21.10 21.61 21.12 21.98 19.81 21.65 20.93
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After the optimization process, the model showed the highest accuracy (cvRMSE = 19.81%) when
NHN = 16 and NHL = 5, and it satisfied the criteria specified in ASHRAE Guideline 14. The optimized
model’s accuracy improved by about 2.19% compared to that of the initial model. Figure 5 shows a
diagram of the optimized predictive model.Energies 2020, 13, x FOR PEER REVIEW 11 of 20 
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4.3. Validation of the Optimized ANN Model

The validation step was performed to confirm the applicability of the optimized predictive model.
The output and errors of the training, validation, and test datasets were checked to confirm validation.
Figure 6 shows the error (MSE; mean squared error). The MSE of the X-axis is the error and the epochs
of the Y-axis are the points at which iterative training stops. Figure 7 shows the result of the regression
analysis on the optimized predictive model. The target of the X-axis is the measured data and the
output of the Y-axis is the output of the predictive model.
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As a result of error analysis, iterative training stopped after 16 iterations. The predictive
performance showed the best validation performance in the 10th iteration. The error characteristics of
the training, validation, and test datasets also showed similar patterns. This shows that the optimized
predictive model will provide high accuracy.

In terms of the regression analysis results, the R2 value was 0.97 for training, 0.97 for validation,
0.96 for test, and 0.97 overall. This shows that the optimized predictive model will predict the measured
data with high accuracy.

5. Results Analysis and Discussion

This section discusses the analysis of the module surface temperatures predicted by the optimized
model and the efficiency and power generation calculated using the predicted module surface
temperatures. The calculated power generation was analyzed by comparing it with the actual power
generation data.

5.1. Module Surface Temperature

The accuracy of the predicted module surface temperatures was evaluated by comparing them
with the measured module surface temperatures. The module surface temperature analysis was
performed in the daytime with solar radiation and also in the nighttime without solar radiation.
Figure 8 shows the distribution of module surface temperatures and cvRMSE by each month. In the
figure, the Min, 25%, Mid, 75%, and Max refer to the minimum, 25% (first quartile value), median,
75% (third quartile value), and maximum values, respectively.

In terms of the distribution of predicted module surface temperatures for the daytime, the cvRMSE
was about 18% and satisfied ASHRAE Guideline 14. The 25~75% values of the annual module surface
temperature showed a distribution of about 15 ◦C~38 ◦C. The accuracy of module surface temperature
for winter (January, February, and December) was relatively low. On the other hand, the cvRMSE
was about 12~26% for the rest of the year (March–November) and satisfied the criteria specified in
ASHRAE Guideline 14.
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In terms of the distribution of the predicted module surface temperatures for the nighttime,
the cvRMSE was about 12% and satisfied ASHRAE Guideline 14. The 25~75% values of the annual
module surface temperature showed a distribution of about 0 ◦C~19 ◦C. Unlike the daytime value,
the cvRMSE ranged from 4% to 26% and satisfied ASHRAE Guideline 14 during all periods except
the months of February and December. The predictive performance of the annual module surface
temperature for the nighttime was about 6% higher than that of the daytime and about 8% higher than
that of the entire period.
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Therefore, the developed model was able to predict the module surface temperatures for the
entire period, daytime, and nighttime, among which the predictive performance for nighttime was
considered the best.

As mentioned above, the accuracy of predicting the module surface temperatures for winter was
relatively low. However, the trend of predicted module surface temperature needs to be examined
because the results derived from cvRMSE evaluation are numerical indicators. Figure 9 shows graphs
comparing the predicted module surface temperatures with the measured data.
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Figure 9. Comparison of the measured and predicted module surface temperatures.
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Figure 9a compares the hourly module surface temperatures for winter (January). The cvRMSE
results show that the predictive performance for January was low but relatively similar to the measured
data. Figure 9b compares the hourly module surface temperatures for summer (August). The predicted
module temperatures were also similar to the measured data.

Figure 9c shows a graph comparing the hourly module surface temperature for the year 2018.
The predicted data were similar to the measured data. The predictive model’s R2 was 0.9536 and
predicted the measured data with high accuracy. The results show that the model has excellent
performance in predicting module surface temperature.

5.2. Module Efficiency According to the Module Surface Temperature

The results in Section 5.1 show that the developed model has excellent predictive performance.
Based on this, the predictive model is expected to show high performance in calculating power
generation. As noted in the introduction, the module surface temperature affects the efficiency and
power generation of PV systems. In particular, the efficiency of PV systems decreases as the module
surface temperature increases. Therefore, this section calculates and evaluates power generation
efficiency by reflecting the predicted module surface temperature. The power generation efficiency of
PV modules is calculated as shown in Equation (4) [4].

ηm = ηre f ×
[
1− β

(
Tm − Tre f

)]
, (4)

where ηm is the actual module efficiency (%), ηre f is the rated efficiency (%), β is the temperature
coefficient (◦C−1), Tm is the module surface temperature (◦C), and Tre f is the reference temperature of
the rated efficiency (◦C). This study used 0.0045 ◦C−1 for β and 25 ◦C for Tre f , which are typical general
electrical characteristics at STC (standard test conditions) [4].

Figure 10 shows a graph of the PV system power generation efficiency according to the module
surface temperature. The bar graphs with the data label indicate solar radiation in W/m2. The analysis
was based on the days when the module surface temperature was highest during winter and summer
(February 26 and August 1), where the rated efficiency of the PV system is 15.89% (see Table 2).

Energies 2020, 13, x FOR PEER REVIEW 15 of 20 

 

 
(c) Hourly module surface temperature for the year 2018 

Figure 9. Comparison of the measured and predicted module surface temperatures. 

5.2. Module Efficiency according to the Module Surface Temperature 

The results in Section 5.1 show that the developed model has excellent predictive performance. 
Based on this, the predictive model is expected to show high performance in calculating power 
generation. As noted in the introduction, the module surface temperature affects the efficiency and 
power generation of PV systems. In particular, the efficiency of PV systems decreases as the module 
surface temperature increases. Therefore, this section calculates and evaluates power generation 
efficiency by reflecting the predicted module surface temperature. The power generation efficiency 
of PV modules is calculated as shown in Equation (4) [4].  𝜂 = 𝜂 × [1 − 𝛽(𝑇 − 𝑇 )], (4)

where 𝜂  is the actual module efficiency (%), 𝜂  is the rated efficiency (%), 𝛽 is the temperature 
coefficient (°C1), 𝑇  is the module surface temperature (°C), and 𝑇  is the reference temperature 
of the rated efficiency (°C). This study used 0.0045 °C−1 for 𝛽 and 25 °C for 𝑇 , which are typical 
general electrical characteristics at STC (standard test conditions) [4]. 

Figure 10 shows a graph of the PV system power generation efficiency according to the module 
surface temperature. The bar graphs with the data label indicate solar radiation in W/m2. The analysis 
was based on the days when the module surface temperature was highest during winter and summer 
(February 26 and August 1), where the rated efficiency of the PV system is 15.89% (see Table 2). 

 
(a) Winter period (February 26). 

R² = 0.9536

-30

-20

-10

0

10

20

30

40

50

60

70

-30 -20 -10 0 10 20 30 40 50 60 70
Pr

ed
ic

te
d 

[℃
]

Measured [℃]

27

350

68

723

870 890
835

691

438

269

8
13.0%

14.0%

15.0%

16.0%

17.0%

18.0%

19.0%

20.0%

-10

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
od

ul
e 

ef
fic

ie
nc

y

Te
m

pe
ra

tu
re

 [℃
]

Time [Hour]

Outdoor air tempertaure Module surface temperature Rated efficiency Actual efficiency

Figure 10. Cont.



Energies 2020, 13, 4005 14 of 18Energies 2020, 13, x FOR PEER REVIEW 16 of 20 

 

 
(b) Summer period (August 1) 

Figure 10. Module efficiency according to the module surface temperature. 

In winter, the actual efficiency was between 14.7% and 18.2%. The actual efficiency decreased as 
the module surface temperature increased. It also changed in inverse proportion to the module 
surface temperature. In particular, the actual efficiency was lower than the rated efficiency from 12:00 
to 16:00 when solar radiation is concentrated. When the module surface temperature rose to 41.7°C, 
the actual efficiency was about 14.7%, 1.2% lower than the rated efficiency. When there was no or low 
solar radiation in winter, the actual efficiency was about 2.4% higher than the rated efficiency. In 
summer, the actual efficiency was between 13.1% and 15.9%. Similar to winter, the actual efficiency 
decreased as the module surface temperature increased. When the module surface temperature rose 
to 64.4°C, the actual efficiency was about 13.1%, 2.7% lower than the rated efficiency. These results 
show that the efficiency decreases as the module surface temperature increases. 

5.3. Electricity Power Generation 

According to the analysis results in Section 5.2, the module efficiency changes according to the 
module surface temperature. In particular, the module efficiency decreased as the module surface 
temperature increased. This is consistent with the results of previous studies [4–7]. Therefore, this 
study evaluated the effect of the changed efficiency on power generation. Equation (5) shows how to 
calculate the power generation [10]. 𝑃 = 𝐴 × 𝐺 × 𝜂 , (5)

where 𝑃  is the actual module power generation (W), 𝐴  is the module surface area (m2), 𝐺  is the 
solar radiation (W/m2), and 𝜂  is the actual module efficiency (%) [10]. 

Figure 11 shows the amount of power generated by the PV system. Figure 11a,b shows the power 
generated during the periods analyzed in Section 5.2, and Figure 11c shows the annual cumulative 
power generation. In terms of power generation, this study compared the measured data (actual), the 
data without considering module surface temperature (i.e., W/O Tm), and the data considering 
module surface temperature (i.e., W/Tm).  

15 31

267

473

657

811
896 918

857
737

574

383

176

24
12.0%

13.0%

14.0%

15.0%

16.0%

17.0%

18.0%

19.0%

20.0%

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
od

ul
e 

ef
fic

ie
nc

y

Te
m

pe
ra

tu
re

 [℃
]

Time [Hour]

Outdoor air tempertaure Module surface temperature Rated efficiency Actual efficiency

Figure 10. Module efficiency according to the module surface temperature.

In winter, the actual efficiency was between 14.7% and 18.2%. The actual efficiency decreased
as the module surface temperature increased. It also changed in inverse proportion to the module
surface temperature. In particular, the actual efficiency was lower than the rated efficiency from 12:00
to 16:00 when solar radiation is concentrated. When the module surface temperature rose to 41.7 ◦C,
the actual efficiency was about 14.7%, 1.2% lower than the rated efficiency. When there was no or
low solar radiation in winter, the actual efficiency was about 2.4% higher than the rated efficiency.
In summer, the actual efficiency was between 13.1% and 15.9%. Similar to winter, the actual efficiency
decreased as the module surface temperature increased. When the module surface temperature rose to
64.4◦C, the actual efficiency was about 13.1%, 2.7% lower than the rated efficiency. These results show
that the efficiency decreases as the module surface temperature increases.

5.3. Electricity Power Generation

According to the analysis results in Section 5.2, the module efficiency changes according to the
module surface temperature. In particular, the module efficiency decreased as the module surface
temperature increased. This is consistent with the results of previous studies [4–7]. Therefore, this study
evaluated the effect of the changed efficiency on power generation. Equation (5) shows how to calculate
the power generation [10].

Pm = Am ×GT × ηm, (5)

where Pm is the actual module power generation (W), Am is the module surface area (m2), GT is the
solar radiation (W/m2), and ηm is the actual module efficiency (%) [10].

Figure 11 shows the amount of power generated by the PV system. Figure 11a,b shows the power
generated during the periods analyzed in Section 5.2, and Figure 11c shows the annual cumulative
power generation. In terms of power generation, this study compared the measured data (actual),
the data without considering module surface temperature (i.e., W/O Tm), and the data considering
module surface temperature (i.e., W/Tm).

As a result of analyzing the power generation in winter, the maximum power generated per hour
of W/O Tm and W/Tm were 9.1 kW and 8.4 kW, respectively. W/Tm was similar to the actual amount
of power generated. In addition, W/ Tm was similar to the actual power generation between 13:00
and 16:00 when there was high solar radiation. On the other hand, W/Tm was higher than W/O Tm

between 10:00–11:00 and 17:00–18:00. This is due to the results (increased efficiency) of Figure 10a.
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In terms of the daily cumulative power generation, actual (45 kW) was about 18% lower than W/O Tm

(53 kW) and 4% lower than W/Tm (51 kW).Energies 2020, 13, x FOR PEER REVIEW 17 of 20 
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As a result of analyzing the power generation in summer, the maximum power generated per
hour of W/O Tm and W/Tm were 9.3 kW and 7.7 kW, respectively. The power generation of W/Tm

was similar to the actual amount of power generated. In contrast to winter, W/Tm was always lower
than W/O Tm in terms of the power generated in summer. In the case of the daily cumulative power
generation, actual (48 kW) was about 44% lower than W/O Tm (69 kW) and W/Tm (60 kW) was about
15% lower than W/O Tm.

The annual cumulative power generation was 10,984 kW for actual, 11,691 kW for W/O Tm, and
11,341 kW for W/ Tm. In terms of power generation, actual was about 707 kW lower than W/O Tm

and W/Tm was about 350 kW lower than W/O Tm. In terms of relative error, the power generation of
W/Tm considering module surface temperature was about 50.5% lower than that of W/O Tm without
considering module surface temperature. These results show that considering the module surface
temperature is advantageous for calculating the power generation more accurately. These results will
help calculate system capacity and prevent overdesign in the future.

6. Summary and Conclusions

In general, PV efficiency is determined by weather conditions and affects the amount of power
generated. PV efficiency changes according to not only solar radiation but also to module surface
temperature. In particular, the efficiency decreases as the module surface temperature rises. Therefore,
analyzing the module surface temperature is an essential process in the evaluation of the performance
of PV systems.

Therefore, this study developed a predictive model for module surface temperatures to analyze
the efficiency and power generation according to module surface temperatures. Unlike conventional
methods, the developed model predicts the module surface temperature of the next hour using data
from the previous hour. This model uses ANN. Based on the analysis of the results, the findings of this
study are as follows.

• The initial predictive model consisted of NHN = 13, NHL = 1, LR 0.3, and MC 0.3. The model’s
cvRMSE was 22.00%. However, the predictive model’s accuracy was improved through an
optimization process. The optimized predictive model showed the highest accuracy when
NHN = 16, NHL = 5, LR 0.3, and MC 0.3. Under this configuration, the cvRMSE was
19.81%, an improvement of 2.19% over the initial predictive model. This model satisfied the
recommendations specified in ASHRAE Guideline 14. In terms of the regression analysis results,
the R2 value of the optimized predictive model was 0.97 for training, 0.97 for validation, 0.96 for
test, and 0.97 overall. This shows that the optimized predictive model has high accuracy.

• The accuracy of module surface temperatures was higher during the nighttime than the daytime
and higher in the summer than in winter. As a result of evaluating the annual cvRMSE, the daytime
cvRMSE was about 18% and the nighttime cvRMSE was 12%. These results also satisfied the criteria
specified in ASHRAE Guideline 14. In addition, the R2 value of the predicted annual module
surface temperature was 0.95 when compared to the measured data. The model predicted the actual
data with high accuracy. This shows that the developed model has high predictive performance.

• As a result of analyzing efficiency according to module surface temperature changes, the efficiency
decreased as the module surface temperature increased. When the module surface temperature
rose during winter, the actual efficiency was about 14.7%, 1.2% lower than the rated efficiency.
When the module surface temperature rose to 64.4 ◦C in the summer, the actual efficiency was
about 13% and 2.7% lower than the rated efficiency. These results show that the module surface
temperature may have adverse effects on the actual PV efficiency.

• In terms of annual power generation, W/Tm considering module surface temperature was closer
to the measured power generation than W/O Tm without considering module surface temperature.
In the case of relative error, W/Tm was about 50.5% lower than W/O Tm. That is, W/Tm was closer
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to the actual amount of power generated. These results will help calculate system capacity and
prevent overdesign in the future.

This study can help to estimate the module surface temperature, efficiency, and power generation.
The predictive model developed in this study has the potential to improve the performance of PV
systems. However, this model limited the number of input variables to five. This study assumed and
considered that these five variables would have the greatest effect on module surface temperature,
but other variables may affect the performance of PV systems. Therefore, further research should
consider additional input variables that may affect the performance of PV systems. If various other
input variables are further considered, this model will predict the performance of PV systems with
higher accuracy.
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19. Ceylan, İ.; Erkaymaz, O.; Gedik, E.; Gürel, A.E. The prediction of photovoltaic module temperature with
artificial neural networks. Case Stud. Therm. Eng. 2014, 3, 11–20. [CrossRef]

20. Olukan, T.A.; Emziane, M. A comparative analysis of PV module temperature models. Energy Procedia 2014,
62, 694–703. [CrossRef]

21. Ayvazogluyuksel, O.; Filik, U.B. Power output forecasting of a solar house by considering different cell
temperature methods. In Proceedings of the ELECO 2017 10th International Conference on Electrical and
Electronic Engineering, Bursa, Turkey, 30 November–2 December 2017.

22. Kamuyu, W.C.L.; Lim, J.R.; Won, C.S.; Ahn, H.K. Prediction model of photovoltaic module temperature for
power performance of floating PVs. Energies 2018, 11, 447. [CrossRef]

23. Chayapathy, V.; Anitha, G.S.; Raghavendra, P.S.G.; Vijaykumar, R. Solar Panel Temperature Prediction By
Artificial Neural Networks. In Proceedings of the 2019 4th International Conference on Recent Trends on
Electronics, Information, Communication & Technology (RTEICT-2019), Bengaluru, India, 17–18 May 2019.

24. Hegazy, A.; Shenawy, E.T.E.; Ibrahim, M.A. Determination of the PV Module Surface Temperature Based on
Neural Network using Solar Radiation and Surface Temperature. ARPN J. Eng. Appl. Sci. 2019, 14, 494–503.

25. MathWorks. Available online: http://www.mathworks.com (accessed on 10 June 2020).
26. Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math.

1963, 11, 431–441. [CrossRef]
27. Korea Meteorological Administration. Available online: https://data.kma.go.kr (accessed on 10 June 2020).
28. S-Energy. SN72 Cell 1,000V Polycrystalline PV Module Catalogue, Korea. 2018. Available online: http:

//www.s-energy.com (accessed on 10 June 2020).
29. Hargan, M.R. ASHRAE Guideline 14-2002 Measurement of Energy and Demand Savings; American Society of

Heating Refrigerating and Air-Conditioning Engineers (ASHRAE) Inc.: Atlanta, GA, USA, 2002.
30. Moon, J.W.; Kim, K.; Min, H. ANN-based prediction and optimization of cooling system in hotel rooms.

Energies 2015, 8, 10775–10795. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.renene.2004.03.010
http://dx.doi.org/10.1016/j.renene.2005.03.010
http://dx.doi.org/10.1002/pip.1103
http://dx.doi.org/10.1155/2014/193083
http://dx.doi.org/10.1016/j.csite.2014.02.001
http://dx.doi.org/10.1016/j.egypro.2014.12.433
http://dx.doi.org/10.3390/en11020447
http://www.mathworks.com
http://dx.doi.org/10.1137/0111030
https://data.kma.go.kr
http://www.s-energy.com
http://www.s-energy.com
http://dx.doi.org/10.3390/en81010775
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Previous Models for the Prediction of PV Module Surface Temperatures 
	Methodology 
	Overall Study Process 
	Development Process of the ANN Model 

	Results of the ANN Model 
	Development of an Initial ANN Model 
	Optimization of the Initial ANN Model 
	Validation of the Optimized ANN Model 

	Results Analysis and Discussion 
	Module Surface Temperature 
	Module Efficiency According to the Module Surface Temperature 
	Electricity Power Generation 

	Summary and Conclusions 
	References

