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Abstract: A rotary displacer, Stirling engine-driven, oscillatory liquid piston-compression air
conditioning unit is analyzed, designed, and conceptually proved by experiments on its cooling
capability and performance efficiency. The engine itself aims to work compatibly with a conventional
solar water heater as its power source, with a rotary displacer to manipulate its operation frequency.
A U-shaped, oscillatory liquid piston, with the cylinder chamber vented to low pressure, aims to both
reduce the sealing friction and serve as the refrigerant. During the experiments, the engine is fed
with an electrically heated hot bath whose temperature profile is determined according to a field test
of solar thermal collectors in summer conditions. Experimental results show that the coefficient of
performance (COP) of the oscillatory liquid piston air conditioning unit would be in the range of 1.3
to 1.5.
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1. Introduction

Solar heating of buildings is the main reason for high electricity consumption for air conditioning in
tropical and subtropical regions, thus, making solar cooling an especially attractive idea for application
in these areas. Normally, solar air conditioning could be accomplished by three means: absorption
cycle, desiccant cycle, and solar mechanical cycle [1]. The solar mechanical cycle might run on two
main kinds of energy supply: electricity from a photovoltaic system or mechanical energy from a solar
thermal engine. A solar thermal engine would quite often be an external combustion engine, due to its
natural compatibility with all kinds of thermal energy as input. In particular, the Stirling engine has
been receiving considerable attention in the solar mechanical application field.

A Stirling engine, operating on a closed regenerative thermodynamic cycle, with cyclic compression
and expansion of the working fluid at different temperature levels, as described by Walker [2], relies
on internal volume variation caused by repeated heating and cooling of the working fluid and its
changing position to produce work output. Being able to approach the ideal cycle efficiency, i.e., the
equivalent Carnot cycle efficiency, at designated temperatures with a suitably designed regenerator,
along with other features such as low emissions and quietness, a Stirling engine would have great
potential for application in residential spaces.

Generally, Stirling engines can be categorized into three types of configuration [3] as follows:

1. α-type: this type of configuration features two pistons, each in its own cylinder;
2. β-type: this type of configuration has a piston and a displacer in the same cylinder;
3. γ-type: this type of configuration has a piston and a displacer, each in its own cylinder.
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A displacer, mentioned above in types 2 and 3, as suggested by its name, aims to produce the
displacement of the working fluid from one end to the other and would somehow be similar to a
conventional reciprocating piston in behavior. However, while the piston would come with some
kind of sealing, a displacer may not necessarily always have such a mechanism as, sometimes, a
gap is desired to let the working fluid flow through. Some other displacer designs, such as the
rotary displacer [4,5], may even go without linear reciprocating motion. In some Stirling engines, the
connection between the piston and displacer may not be a solid crank, but rather connected by some
springs or even the working gas within. This design is often referred as a free piston Stirling engine.

In addition to the conventional solid mechanical configuration, there is a special category of the
free piston Stirling engine, which is sometimes referred as the fluidyne [2], utilizing a pure liquid to
serve as its piston. While mostly used for irrigation applications due to low power density and low
operation frequency, the nature of the liquid helps the piston to adapt easily to almost any kind of
cylinder configuration with good sealing, without introducing too much friction on the contact surface.
Usually, the liquid piston and displacer in a fluidyne would be held in its own U-shaped tubes, while
they periodically oscillate within the tubes and operate around the atmospheric pressure. However,
the operating pressure conditions may vary due to different design [6], which suggests a low pressure
unit would be possible.

While a heat pipe normally operates under almost constant pressure, there is a category of heat
pipes that comes with a pressure control to adjust the operating conditions [7,8]. These heat pipes
serve situations with a wider range of operating temperatures or, in some cases, contexts with delicate
temperature requirements. Some may even operate in conjunction with a Stirling cycle machine for
temperature control [9]. Sowale and Kolios proposed a novel approach to the numerical examination
of the quasi-steady model of the gamma-type free piston Stirling engine, including the thermodynamic
analysis of the heat exchangers [10]. Later, the optimization of the second-order quasi-steady model of
the gamma-type free piston Stirling engine is performed through a genetic algorithm to maximize
performance in terms of power output, and considering the design parameters of components such as
piston and displacer damper, geometry of heat exchangers, and regenerator porosity [11].

Gholamalizadeh and Chung developed a practical methodology which estimates the performance
of the solar dish–Stirling system by calculating the performance of each part of the system. A practical
example reflected important conclusions regarding the obtained results for thermal losses through the
receiver, its thermal efficiency, and the power output [12].

Shin et al. investigated the energy performance enhancement obtained by applying a heat pump
to a liquid desiccant and indirect and direct evaporative cooling-assisted 100% outdoor air system [13].
A heat pump applied in the liquid desiccant system shown in this research is an adequate solution for
the relatively high regeneration energy consumption observed in this system [13].

2. System Design

A system composed of a Stirling engine with a rotary displacer and an oscillatory liquid piston
air conditioning unit, as illustrated in Figure 1, along with its basic operating principle, is proposed
as the focus of this study. The working fluid used in this system is air. We suggest that the whole
system should be composed of three parts: the heat source, the Stirling engine, and the air conditioning
unit. In this study, the mechanical operating potential of the Stirling engine and the conditioning
unit is analyzed and tested experimentally, while the heat source is simulated by a hot water bath
electrically heated to the maximum temperature of the temperature profile recorded in field tests,
through solar thermal emission collectors modified from a solar water heating system operating in
summer conditions. A rotary displacer aims for the capability to adapt the system operating frequency
to different working conditions, and the liquid piston pipe is sealed at one end to serve as a pulsating
conditioning unit as the piston oscillates within the U-shaped tube.
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Figure 1. Stirling engine and conditioning unit overview. 

The displacer chamber is composed of upper and lower plates, and additional fin arrays are 
installed to increase the heat transfer efficiency. A cylindrical side wall with relatively lower heat 
conductivity ensures that the energy flow will pass through the working fluid rather than the wall 
itself. The bulk body of the displacer rotates within the chamber. To control the heat transfer 
sequence, the end plates should be covered with a heat insulation layer over 240° of their surface, 
leaving a 120° arc where the fin array is located for heat exchange. The two fin arrays should phase 
to each other by 60° intervals, as illustrated in Figure 2, and the displacer bulk should have a 60° 
notch to contain the working fluid, as shown in Figure 3. 

 
Figure 2. Displacer end plates surface sections and displacer notch: (a) upper end plate as the cold 
end; (b) lower end plate as the hot end; (c) displacer bulk with notch; (d) end plate phasing. 

Figure 1. Stirling engine and conditioning unit overview.

The displacer chamber is composed of upper and lower plates, and additional fin arrays are
installed to increase the heat transfer efficiency. A cylindrical side wall with relatively lower heat
conductivity ensures that the energy flow will pass through the working fluid rather than the wall
itself. The bulk body of the displacer rotates within the chamber. To control the heat transfer sequence,
the end plates should be covered with a heat insulation layer over 240◦ of their surface, leaving a 120◦

arc where the fin array is located for heat exchange. The two fin arrays should phase to each other by
60◦ intervals, as illustrated in Figure 2, and the displacer bulk should have a 60◦ notch to contain the
working fluid, as shown in Figure 3.
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Figure 3. Fin arrays phasing (a), assembled with the displacer bulk (b). 

The liquid piston is housed in a U-shaped tube, which is connected to the displacer chamber at 
one end and sealed tight at the other. As shown in Figure 4, the sealed end may have two heat 
exchange surfaces, with the upper one as the condenser and the lower one as the evaporator. The 
liquid piston oscillates within the tube, while the liquid head should stay in the region between the 
condenser and the evaporator. As shown in Figure 5, when the liquid piston head goes down, the 
chamber above the piston head at the seal end is enlarged, causing a sudden pressure drop to 
encourage evaporation of the liquid at the contact surface of the liquid piston and the evaporator 
section. 

 
Figure 4. Schematic illustration of the liquid piston and conditioning unit. 

Heat Insulation Layer 

Cylindrical Side Wall Bulk Body 
of Displacer 

Figure 3. Fin arrays phasing (a), assembled with the displacer bulk (b).

The liquid piston is housed in a U-shaped tube, which is connected to the displacer chamber at one
end and sealed tight at the other. As shown in Figure 4, the sealed end may have two heat exchange
surfaces, with the upper one as the condenser and the lower one as the evaporator. The liquid piston
oscillates within the tube, while the liquid head should stay in the region between the condenser and
the evaporator. As shown in Figure 5, when the liquid piston head goes down, the chamber above the
piston head at the seal end is enlarged, causing a sudden pressure drop to encourage evaporation of
the liquid at the contact surface of the liquid piston and the evaporator section.
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Figure 5. Condition unit working principle.

Though a small amount of heat absorption in the vapor housing in the upward chamber may
reduce the heat absorption effect, this is considered relatively unimportant. When the liquid piston
head goes up, the chamber above then decreases in volume, causing a pressure increase to encourage
condensation, which thus, rejects the previously absorbed heat out of the conditioning unit. Then, with
the cyclic oscillation behavior of the liquid piston, heat absorption and rejection take place alternately,
thus, forming a typical piston compression cycle.

3. System Analysis

3.1. Rotary Displacer Analysis

According to Naotsugu Isshiki [4], the variation of the heat transfer area within a rotary
displacer chamber, and even the temperature and pressure profiles, can be approximately simplified
into sinusoidal functions. With the nature of the rotary displacer described above, a sinusoidal
approximation of the real contact surface area Ad,real, whose magnitude is denoted as Ad, between
the displacer cover plates and the gas within is shown in Figure 6. The effective contact area Ad,real is
introduced as a sinusoidal function Ad,e with a magnitude of Amax, such that the time integral of the
contact area would give the same value as the actual case. Thus, Ad,e is defined as follows:

π∫
0

Ad,real(θ)dθ ≈

π∫
0

Ad,e(θ)dθ =

π∫
0

Amax sinθdθ (1)

which renders as:
Amax =

π
3

Ad (2)

This would suggest a heat flow profile as follows:

.
Qd = (Amax sinωt)hd

(
Td,wall − Tg

)
(3)

where Qd is the heat transfer amount of the displacer gas; Tg is the displacer chamber gas temperature;
Td,wall is the contact area wall temperature; ω is the reference rotational velocity, with t the designated
time; hd is the convection coefficient between the displacer chamber gas and the contact area.
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Assuming the displacer chamber gas undergoes the ideal gas behavior, the energy conservation
of gas within the displacer chamber would lead to:

dUg

dt
= mgcv

dTg

dt
=

.
Qd −

.
W = (Amax sinωt)hd

(
Td,wall − Tg

)
−

mg

M
R

dTg

dt
(4)

where Ug is the internal energy of the displacer chamber gas, whose mass is mg; the work output term

is
mg
M R

dTg
dt , with R as the gas constant; M is the molecular mass of the chamber gas, and its specific

heat at constant volume cv, if the volume variation is relatively small. This gives the relation of the
temperature of the displacer chamber gas Tg and Td,wall as follows:

Td,wall − Tg = Γ exp(λ cosωt) ∀0 ≤ θ = ωt < π
Tg − Td,wall = Γ exp(−λ cosωt) ∀π ≤ θ = ωt < 2π

(5)

where

λ =
MAmaxhd

ωmg(Mcv + R)
(6)

and
Γ =

TH − Tc

eλ + e−λ
(7)

where TH and Tc are the temperatures of the hot end and cold end, respectively.
Then, the pressure of the displacer chamber gas, Pd, can be assumed as:

Pd = Pd,0

(
Tg

Tg,0

) k
k−1

(8)

where Pd,0 and Tg,0 are the initial pressure and temperature of the chamber gas, with k = cp/cv, the
ratio of specific heat at constant pressure to that at constant volume.
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3.2. U-Tube Oscillatory Liquid Piston Air Conditioning Unit Analysis

According to Zhang [6], and defining x as the displacement of the liquid piston with the upward
end at the right-hand side of the tube as positive, then, for the U-shaped tube oscillatory system shown
in Figure 7, the momentum equation would be:

πd2

4
Lρ

d2x
dt2 =

(
Pd − Pp

)πd2

4
− 2ρgx

πd2

4
−πdL
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p is shear stress; ρ is the density of the liquid; d is the diameter of the tube; Pp is the pressure in
the chamber above the piston; Pd is the pressure in the displacer; L is the liquid column length.
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With the Hagen–Poiseuille law, it could be rearranged as:

..
x +

32ν
d2

.
x +

2g
L

x =
Pp − Pd

ρL
(10)

where ν is the effective kinetic viscosity of the liquid.
With sufficiently long operation time, the liquid piston should behave like a simple harmonic

motion system, prompting a displacement of the liquid head as follows:

x = α sin(ωt + φ) (11)

where φ is the initial phase difference between the rotary displacer and the liquid piston phases; α is
the vibration magnitude of the liquid piston head. This would render the pressure difference term as:

Pp − Pd = δ sin(ωt + φ+ ϕ) (12)

where

δ = ρLα

√(32νω
d2

)2
+

(
2g
L
−ω2

)2

(13)
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and

sinϕ =

32νω
d2√(

32νω
d2

)2
+

( 2g
L −ω

2
)2

(14)

As a fair approximation, with a delicate setting of the phase angle, the pressure difference between
the piston chamber and the displacer is:

Pp − Pd = δ cos(ωt) (15)

The momentum equation is:

..
x +

32ν
d2

.
x +

2g
L

x =
δ cos(ωt)

ρL
(16)

which renders the solution of the piston head as:

x = e−
16νt

d

(
C1 cos

(
t
√(

32ν
d

)2
−

8g
L

)
+ C2 sin

(
t
√(

32ν
d

)2
−

8g
L

))
+

δ
ρL

( 2g
L −ω

2
)√( 2g

L −ω
2
)2
+( 32ν

d )
2
ω2

cos(ωt) −
δ
ρL (

32ν
d ω)√( 2g

L −ω
2
)2
+( 32ν

d )
2
ω2

sin(ωt)
(17)

This can be simplified as

x = e−
16υt

d

Π cos

t

√(32ν
d

)2
−

8g
L

+ Θ


+ δ

ρL
cos(ωt + ϕ) (18)

where Π and Θ are constants determined by the initial condition of vibration. The first term accounts
for the effect of the initial vibration condition, by which energy put into the system is eventually
dissipated through the damping force, and as the operating time increases, it may become more and
more negligible. After a long operating period, then, the motion of the liquid piston is reduced to:

x =
δ
ρL

cos(ωt + ϕ) (19)

which reconfirms the suggestion from Naotsugu Isshiki [4,5].
As to the vapor slug in the upper chamber on the top of the liquid piston, its ideal gas behavior

gives:
Pp

(
Lp0 − x

)π
4

d2 = mpRTp (20)

where Lp0 is the original length of the vapor slug in the upper chamber above the piston; mp is the
mass of the vapor slug; Tp is the temperature of the vapor slug.

By differentiation with respect to time, this becomes:

(
Lp0 − x

)π
4

d2 dPp

dt
−
π
4

d2Pp
dx
dt

= mpR
dTp

dt
+ RTp

dmp

dt
(21)

Considering the first law of thermodynamics, the related energy equation of the vapor is:

d
dt

(
mpcvTp

)
= cpTp

dmp

dt
− Pp

π
4

d2 dx
dt

(22)
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By solving the left-hand term, Equation (22) may be rearranged into:

dTp

dt
=

RTp

mpcv

dmp

dt
−

Pp

mpcv

π
4

d2 dx
dt

(23)

Substituting Equations (20) and (23) back to Equation (21), replacing the term RTp leads to:

(
Lp0 − x

)π
4

d2 dPp

dt
+

( R
cv
− 1

)
π
4

d2Pp
dx
dt

=
(cp

cv
+ 1

)(
Lp0 − x

)π
4

d2 dmp

dt
(24)

which can be further revised into:

1
Pp

dPp

dt
−

(
k− 2

Lp0 − x

)
dx
dt

=

(
k + 1
mp

)
dmp

dt
(25)

This suggests an interpretation of the vapor mass mp above the liquid piston as:

mp = CP
1
k
p

(
Lp0 − x

)
(26)

where C is the integration constant. Its temperature would be readily obtained as:

Tp =
πd2

4C1R
P

k−1
k

p (27)

As the initial conditions may easily be set to Tp0 and Pp0, the integration constant C1 is simply:

C1 =
πd2

4RTp0
P

k−1
k

p0 (28)

With Pp defined in Equation (15), the temperature of the piston chamber gas is readily obtained
from Equation (27).

3.3. System Performance Definition

During the experiment, the heat source for the displacer was simulated by an electrically heated
hot water bath #1 to simulate the hot water from a solar thermal collector, with its temperature set as
the maximum value of the temperature profile acquired from field tests of the performance of solar
thermal collectors in summer conditions. The waste heat of the displacer was ejected into another
water bath (#2) simulating room temperature water, which would be preheated and go into the hot
water tank of the solar water heating system. The two heat exchange surfaces of the U-tube were
subjected to water baths at room temperature, in which bath #3 represents the indoor space where the
conditioning power would be of use and bath #4 stands for the outdoor space where the heat would be
ejected. Each water bath was covered by a heat insulation layer to reduce heat loss. The arrangement
of the water baths was as illustrated in Figure 8.

The performance of the system was evaluated in two parts: the efficiency of the Stirling engine
and the coefficient of performance of the conditioning unit (COP).

The efficiency of the engine is defined as:

ηe f f =
Huse f ul

Hin
=

Hin −Hwaste

Hin
= 1−

Hwaste

Hin
(29)

where Huse f ul is the available work to power the liquid piston; Hin is the electrical work to keep the
temperature in bath #1 around the initial condition; Hwaste is the energy gained in bath #2.
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The conditioning unit coefficient of performance could be defined as:

COP =
Hremoval
Winput

(30)

where Hremoval is measured by the heat loss from bath #3, which is attached to the evaporator of the
conditioning unit, and the work input Winput is calculated as:

Winput = Huse f ul = Hin −Hwaste (31)

4. Experiment Settings

The whole experiment setup was as shown in Figure 8, along with the components of the Stirling
engine and the oscillatory liquid conditioning unit. The whole inner system was initially vented to
a low pressure around 2.3 kPa, which enabled the liquid water to boil at approximately 20 ◦C. Each
section exposed to the atmosphere was covered with a heat insulation layer to reduce interference
from outside heat sources, while only the heat exchanging sections would be in contact with the
associated water baths. It should be mentioned that the topic of this paper is the prototype design of
an oscillatory liquid piston conditioning unit powered by a Stirling engine containing rotary displacer
with its cooling capability and compatibility with a conventional solar water heating system. Moreover,
in the proposed design, the circumferential fin in rotary displacer as well as the heat absorption and
rejection in bath #5 and #6, respectively, have the function of heat exchange through periodic variety
of temperatures.
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The water loading of each water bath is listed in Table 1. The electrical heater for bath #1 was set
at 200 W, which was able to keep the water temperature in bath #1 at around 85 ◦C throughout the
experiment, which was set as the average maximum temperature according to the field study of solar
thermal collectors.

Table 1. Water volume in each bath

Bath # #1 #2 #3 #4

Water loaded 10,000 cc 5000 cc 2000 cc 2000 cc

The water temperature in bath #2 was deliberately kept around 27 ◦C initially, as the same tests
suggested that it was the average water temperature before it entered the solar collector if the water
supply pipe was embedded within the concrete wall of the building, exposed to the outer atmosphere.
The water temperatures in the other two baths were also kept around 27 ◦C initially to simulate the
averaged shielded outdoor and indoor temperature for a room subject to indirect solar emission in
a subtropical region, which was also suggested by the tests. The experiment was conducted with a
rotary displacer revolving at 0.01, 0.03, 0.05, and 0.1 Hz.

5. Experiment Results and Discussions

The experimental results suggest that a rotary displacer may serve the purpose effectively, causing
a fluctuating variation in the displacer chamber gas temperature profile Tg, throughout the testing
range of the operating frequencies. While the heat source, bath #1, was kept at around 85 ◦C and the
heat sink, bath #2, rose from 27 ◦C to around 40 ◦C, the temperature of the displacer chamber gas
Tg tended to fluctuate by a 15 ◦C magnitude around the mean temperature between the two baths,
which is quite close to the value expected from the prediction of Equation (5) with Td,wall, using the
experimental readings of the contact surface temperature.

Though the illustration in Figure 9 only shows the result of 0.01 Hz operation, the same tendency is
shared in operations at other frequencies. It is a fair guess that for a large enough concentric residential
application, due to its constant dispensing of hot water and resupply of cold water, the preheated
water, which is intended to serve as the displacer heat sink, may mostly stay at the same temperature.
The average value of theoretical prediction and experimental readings of Tg are, respectively, 59.30 and
58.13 ◦C. The difference of theoretical prediction and experimental readings between the beginning
and ending values of Tg are, respectively, 27.91 and 33.25 ◦C.

A smaller scale application may not always have fresh cold water undergoing the preheating
process, so the water from bath #2 would not be returned to bath #1 like the regeneration process used
in the present experiments.

Due to the pipe arrangement and the insulation, the motion of the water heat of the liquid piston
may not be directly visible. However, judging from the reading of the fin array at the condenser section,
as in the example of 0.01 Hz operation shown in Figure 10, along with the theoretical prediction from
Equation (27), the temperature Tp should indeed be a cyclic pressure and temperature change within
the chamber above the liquid piston, causing heat ejection into water bath #4, as with a conventional
piston compressor. The deviation between the theoretical estimate of Tp and the experimental reading
may come from all kinds of loss, especially the friction between the viscous liquid piston and the wall.
The average value of theoretical prediction of Tp and condense fin array are, respectively, 29.70 and
29.51 ◦C. The difference of theoretical prediction of Tp and condense fin array between the beginning
and ending values of Tg are, respectively, 3.27 and 3.07 ◦C.
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Table 2 summarizes the system performance under different operating frequencies.
The performance of the Stirling engine is evaluated by the efficiency, ηe f f . The engine efficiency tended
to stay around 5.5%, while the ideal cycle efficiency at the designated temperature conditions might
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be around 14%, and the waste heat in bath #2 was not yet returned to heating bath #1 to fulfill the
regeneration process due to experimental needs.

Table 2. System performance

Operation Frequency 0.01 Hz 0.03 Hz 0.05 Hz 0.1 Hz

Bath #2
Temperature (◦C)

Starting 26.92 26.76 27.03 27.11
Ending 38.17 38.02 38.74 39.44

Difference 11.25 11.26 11.71 12.33
Average 32.27 32.12 32.60 32.97

Displacer waste heat, Hwaste(J) 235,125 235,344 244,739 257,697
Available work, Huse f ul(J) 13,875 14,066 14,461 15,103

Stirling engine efficiency (ηe f f ) 5.57% 5.64% 5.58% 5.54%

Bath #3
Temperature (◦C)

Starting 27.43 26.91 27.48 27.04
Ending 25.29 24.74 25.14 24.17

Difference 2.14 2.17 2.34 2.87
Operation time (sec) 1245 1247 1296 1364

Temperature drop per cycle 0.172 0.057 0.036 0.021
Temperature drop per 100 s 0.172 0.174 0.181 0.210

conditioning unit COP 1.289 1.306 1.355 1.579

The cooling capability of the oscillatory liquid piston conditioning unit is evaluated by the
temperature drop in bath #3, which represents the indoor space cooled, and the COP of the oscillatory
liquid piston air conditioning unit. The COP seemed to rise as the operation frequency increased,
but not proportionally. Since the average temperature drops, normalized for 100 s, still tend to rise
as the frequency goes higher, the increase in COP may not merely be due to the longer operation
time, implying that, although the amount of heat transferred in a single cycle may be lower at higher
operating frequency than at lower, it may be compensated by the increased number of cycles. It should
be mentioned that, as the example shown in Figure 10, we take 0.01 Hz operation along with the
theoretical prediction. This is because the target area will oscillate with the temperature of each cycle;
we average the temperature of each cycle to observe the rising trend of the temperature.

6. Conclusions

An oscillatory liquid piston conditioning unit powered by a Stirling engine with a rotary displacer
was designed, prototyped, and tested for its cooling capability and its compatibility with a conventional
solar water heating system, using a simulated heat source. The rotary displacer mechanism with the
arc fin array conceptually proved operational for the Stirling engine, capable of easy tuning to different
operating frequencies to suit the demands of the location.

A further investigation of the potential to operate at higher temperature differences may help to
boost the performance. The liquid piston conditioning unit with its COP of 1.3~1.5 could operate like a
conventional piston compressor cooler whose COP normally ranges from 1 to 4. However, featuring
fewer components and a flexible geometry arrangement, the oscillatory liquid piston conditioning unit
may help to reduce maintenance demands.
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Nomenclature

Ad maximum value of Ad,real
Ad,e effective contact area between displacer and gas within
Ad,real real contact surface area between displacer and gas within
Amax magnitude of Ad,e
C integration constant
C1 constant defined in Equation (28)
COP coefficient of performance of the conditioning unit
cv specific heat at constant volume
cp specific heat at constant pressure
d diameter of the liquid piston
g gravitational acceleration
Hin energy flowing into the system
Hremoval heat removed from the system
Huse f ul available work
Hwaste waste heat
h convective heat transfer coefficient
k ratio of cp/cv

L length
M molecular mass
m mass
P pressure
Qd heat transfer amount of the displacer gas
R ideal gas constant
T temperature
t time
U internal energy
W work
Winput work input into the system
x displacement of the liquid piston
α vibration magnitude of the liquid piston
ρ density vibration magnitude of the liquid piston
λ constant defined in Equation (6)
δ constant defined in Equation (12)
ηe f f efficiency
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