
energies

Article

A Proposal for an MPPT Algorithm Based on the
Fluctuations of the PV Output Power, Output Voltage,
and Control Duty Cycle for Improving the
Performance of PV Systems in Microgrid

Nguyen Van Tan †,‡, Nguyen Binh Nam *,†,‡ , Nguyen Huu Hieu †,‡, Le Kim Hung †,‡,
Minh Quan Duong †,‡ and Le Hong Lam †,‡

Faculty of Electrical Engineering, The University of Danang—University of Science and Technology,
Danang 550000, Vietnam; tan78dhbk@dut.udn.vn (N.V.T.); nhhieu@dut.udn.vn (N.H.H.);
lekimhung@dut.udn.vn (L.K.H.); dmquan@dut.udn.vn (M.Q.D.); lhlam@dut.udn.vn (L.H.L.)
* Correspondence: nbnam@dut.udn.vn
† 54 Nguyen Luong Bang Street, Lien Chieu District, Danang 550000, Vietnam.
‡ These authors contributed equally to this work.

Received: 20 June 2020; Accepted: 7 August 2020; Published: 20 August 2020
����������
�������

Abstract: In microgrids, distributed generators that cannot be dispatched, such as a photovoltaic
system, need to control their output power at the maximum power point. The fluctuation of their
output power should be minimized with the support of the maximum power point tracking algorithm
under the variation of ambient conditions. In this paper, a new maximum power point tracking
method based on the parameters of power deviation (∆PPV), voltage difference (∆VPV), and duty cycle
change (∆D) is proposed for photovoltaic systems. The presented algorithm achieves the following
good results: (i) when the solar radiance is fixed, the output power is stable around the maximum
power point; (ii) when the solar radiance is rapidly changing, the generated power is always in the
vicinity of maximum power points; (iii) the effectiveness of energy conversion is comparable to that
of intelligent algorithms. The proposed algorithm is presented and compared with traditional and
intelligent maximum power point tracking algorithms on the simulation model by MATLAB/Simulink
under different radiation scenarios to prove the effectiveness of the proposed method.

Keywords: microgrid; photovoltaic; MPPT; P&O; hill climbing; fuzzy logic; boost converter

1. Introduction

The Microgrid (MG) is currently the grid structure of interest as it is capable of integrating multiple
distributed energy resources, especially renewable ones, which significantly reduces concerns about
climate changes. In an MG, the generated power sources are located close to the loads, and hence,
it should lessen the capacity of transmission power systems. As a result, this increases the reliability
and improves the power quality while lessening infrastructure requirements and power transmission
and reducing emission and generation costs.

However, the applications of renewable energy sources pose several challenges arising from
their dependent uncertainty factors (the output capacity depends heavily on weather conditions)
and the variation of loads. The most common renewable energy sources are hydroelectric, solar,
and wind. Although hydroelectricity is predominant, Photovoltaic (PV) energy sources are increasing
more than 30% per year [1]. The power grid with a high penetration of PV sources results in a power
imbalance, along with the related issues of power quality and reliability as PV sources have intermittent
and non-linear characteristics. Their properties and output power variation depend greatly on
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environmental factors. Therefore, there have been many studies [2–5] to enhance the efficiency
of MG by improving the working efficiency of the PV system.

Several mathematical models of a PV panel have been developed in the literature [6–15].
Among them, the single-diode equivalent-circuit model, which is shown in Figure 1, is the most
widely used for presenting the operation of a PV cell [12–15]. This PV model consists of a DC current
source Iph, a diode D, a resistance Rsh connected in parallel with this current source, and a series
resistance Rs. The current source Iph represents the PV current of the cell, which is directly proportional
to the solar irradiance G. The parallel resistance Rsh illustrates the leakage current, and the series
resistance Rs represents the Ohmic losses.

phI shR

sR

PVVD

PVI

Figure 1. Single-diode model of a PV cell.

By applying this equivalent model, a PV array under specific solar radiance and temperature
has a current (IPV)–voltage (VPV) characteristic as shown in Figure 2. This characteristic curve has
an exclusive point, called the Maximum Power Point (MPP). When operating at this point, the PV
array generates the maximum output power and reaches the optimal performance. If a PV array is
directly connected to a load, the operating point will be the intersection of the IPV − VPV characteristic
of the PV array and the load line as illustrated in Figure 2. It can be seen from Figure 2 that this
operating point is not located at the PV array’s MPP. In addition, it is also strongly affected by the solar
radiance and PV temperature levels [16,17]. Therefore, the PV array must be designed in an over-sized
manner to ensure that it can supply the full load’s power requirements. Consequently, this results in
an expensive cost for the PV system’s construction.
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Figure 2. Typical current–voltage curve for a PV array.

Thus, in order to dynamically set the MPP as the operating point of a PV array for a wide range of
solar irradiation and temperature, specific circuits, known as Maximum Power Point Tracking (MPPT)
circuits [18,19], are integrated between the PV module and loads, as shown in Figure 3. The MPPT
operation aims to control the PV array’s voltage or current independently of the load’s parameters.
If a suitable algorithm is applied, the MPPT can locate and track the MPP of the PV array. The aim of
MPPT algorithms is to continuously adjust the operating point of the PV array to keep it as close as
possible to the MPP under various conditions of weather or load demand. Hence, MPPT techniques
can improve the PV system’s performance and reduce the total system cost.
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Figure 3. Structure of a typical MPPT.

Multiple MPPT techniques have been developed and improved in the literature and widely
used in practice, such as Perturb and Observe (P&O), Incremental Conductance (INC), and Hill
Climbing (HC) [20–25]. In general, they aim to quickly track the MPP operation point under such
continuously changing conditions and generate small output power fluctuation. However, the fast
tracking response and accuracy conflict with each other, so these tracking methods cannot meet both
of them [22]. During the steady-state operation, the fluctuation of output power around the MPP can
be minimized by reducing the increment duty cycle step size in these methods. However, a smaller
value of the step size will slow down the convergence speed of the MPPT controller, especially under
the rapid change of weather conditions [22]. To overcome this drawback, several adaptive control
algorithms based on these MPPT methods were suggested by utilizing the variable perturbation
during tracking processes [3,26–28]. Although these proposals present better performance compared
to a fixed perturbation parameter, they are still not truly accurate and fast as the impacts of ambient
conditions have not been considered thoroughly [3].

In order to overcome the limitations of the above traditional MPPT algorithms, some intelligent
MPPT methods based on Fuzzy Logic (FL) and Artificial Neural Network (ANN) have been
proposed [23,29–33]. However, these suggestions contain some drawbacks, such as complexity,
high cost, the requirement of high-performance micro-processor, and in some cases, the employment
of extra sensors for ambient conditions. In detail, the FL control model is based on fuzzy rules,
which consist of three major operations: fuzzification, inference, and defuzzification. The collected data
are put into an FL-based system where the input quantities are transferred to linguistic variables with
appropriate membership functions. If the defined membership function is increased, the associated
computational process increases as well [23,29–31]. In terms of ANN, it is an artificial intelligence
method that has more advantages than conventional MPPT methods [32]. However, the controller
needs much information to train the neurons present in the algorithm, and it is usually implemented
in combination with other conventional MPPT methods [32]. To employ ANN or FL techniques,
the designer must have significant knowledge of the operation of each PV system [19,29,31]. Therefore,
these intelligent MPPT methods are merely spread in practical PV applications.

In this paper, the suggested MPPT method is based on three main factors: (i) the variation of the
PV’s output power; (ii) the variation of the output voltage; and (iii) the change of the duty cycle of the
MPPT controller. By utilizing these fundamental parameters in combination, the proposed technique
presents significant advantages as follows:

1. Simplicity in implementation because of the fundamental measured parameters (∆PPV, ∆VPV,
and ∆D);

2. Accuracy and almost no oscillation around the MPP during tracking and steady-state operations;
3. The necessary requirements of an MPPT technique are achievable by using only a low-cost

controller due to the simplicity of the proposed algorithm;
4. Unaffected by the fixed perturbation value (increment size of the duty cycle) for a wide range of

this parameter.
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The paper is organized as follows: Following the Introduction in Section 1, Section 2 is reserved
for the detailed reviews of three MPPT algorithms, P&O, HC, and MPPT based on FL. The operating
principle and structure of the proposed MPPT algorithm are presented in Section 3. In Section 4,
some simulation results are shown to validate the advantages of this proposed MPPT method. Finally,
a brief summary of this paper is given in Section 5.

2. Review of MPPT Algorithms

Numerous MPPT techniques have been introduced in the literature; this section only provides
a review of the three common methods utilized in most of PV systems, which are the P&O algorithm,
the HC algorithm, and the MPPT algorithm based on FL. The details of these techniques are discussed
in this section.

2.1. Perturb and Observe Algorithm

The most basic form of the P&O algorithm was presented in [22–24]. The P&O algorithm is
periodically carried out by perturbing the operating voltage and observing the power variation in
order to regulate the operating point to move toward the MPP. The voltage perturbation for the MPP
tracking is carried out by decreasing or increasing the duty cycle of the MPPT controller by a small
value (Dstep) in each control period. The algorithm can be easily understood by the following flowchart,
which is shown in Figure 4.

Begin

Measure

IPV[n], VPV[n]

PPV[n] = VPV[n].IPV[n]

∆PPV = PPV[n] – PPV[n–1]

∆VPV = VPV[n] – VPV[n–1]

∆PPV > 0

∆VPV > 0 ∆VPV > 0

Decrease
Duty Cycle

Increase
Duty Cycle

Increase
Duty Cycle

Decrease
Duty Cycle

Yes YesNo No

Yes No

PPV[n–1] = PPV[n]

VPV[n–1] = VPV[n]

Figure 4. Perturb and observe algorithm’s flowchart.

Nevertheless, a general drawback of the P&O algorithm is that the operating point fluctuates
around the MPP at the steady state, and therefore, this results in the loss of the PV system’s energy.
Moreover, the larger the duty cycle step (Dstep), the more power oscillation occurs. In order to reduce
the oscillations around the MPP in the steady state, the duty cycle step should be chosen with a smaller
value. However, in that case, it also slows down the speed of response of the MPPT system to the
fast change of the atmospheric conditions and reduces the efficiency of the MPPT algorithm [23–25].
This drawback is illustrated in Figure 5, where the paths of the operating point with the P&O algorithm
under solar radiance variation from 200 W/m2 are presented. The figure shows two different responses
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of the PV array in the power and voltage coordinates with the P&O algorithm. The red dotted line
in Figure 5 shows the trajectory of the operating point under slowly changing radiance, while the
blue continuous one shows the wrong tracking path of the P&O algorithm under the rapid changing
of radiance. This failure in the MPP tracking of the P&O algorithm during the period of rapidly
increasing radiance can be explained as follows. At the moment solar irradiation starts increasing
suddenly, the operating point moves from A to B (in accordance with ∆PPV > 0 and ∆VPV > 0).
According to the P&O algorithm, the controller sends signals to decrease the duty cycle D to increase
the operating voltage. On the contrary, the duty cycle D is increased due to the P&O algorithm when
the operating point moves from B to C (in accordance with ∆PPV > 0, ∆VPV < 0, and ∆D < 0).
As a result, the operating point continues moving from C to D. As the irradiation increases, the signal’s
width D continues widening in the following cycles, and thus, the operating point moves toward E
until the irradiation stops rising.
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Figure 5. Path of the PV array’s operating point with the P&O algorithm under slowly and rapidly
changing radiation (Adapted from [23]).

2.2. Hill Climbing Algorithm

In a PV system’s MPPT structure, as in Figure 3, a power electronic DC/DC converter is used
as the interface connection between the PV array and loads. The control parameter of the power
electronics stage is the switching duty cycle of the PWM signal of the MPPT controller. Therefore,
another approach to maximize the output power of the PV system is based on the relationship curve
between the PV system output power and the PWM duty cycle [21,22]. Figure 6 shows a typical
hill-shaped PV array output power curve with respect to the PWM duty cycle, where PPV is the PV
array output power and D represents the PWM duty cycle of a DC/DC boost converter [21]. There is
a unique value of the duty cycle at which the output power of the PV array reaches the maximum
level. The flowchart of the control algorithm is shown in Figure 7.
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Figure 6. The hill-shaped curve of the PPV − D characteristic of the MPPT boost converter.
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Begin

Measure

IPV[n], VPV[n]

PPV[n] = VPV[n].IPV[n] 
∆PPV = PPV[n] – PPV[n–1]

∆D = D[n] – D[n–1]

∆PPV > 0

∆D > 0 ∆D > 0

Increase
Duty Cycle

Decrease
Duty Cycle

Decrease
Duty Cycle

Increase
Duty Cycle

Yes YesNo No

Yes No

PPV[n–1] = PPV[n]

D[n –1] = D[n]
D[n] = D[n+1]

Figure 7. Hill climbing algorithm’s flowchart.

The advantage of the HC MPPT algorithm is its simplicity. Furthermore, the MPP can be tracked
accurately when the solar irradiance increases rapidly [21]. However, it is only effective in the case of
using a small value of the duty cycle steps. Otherwise, the level of oscillating power around the MPP
is very large.

2.3. Fuzzy Logic Based MPPT Algorithm

FL is one of the intelligent control methods and is applied in many fields of control theory.
The fuzzy controller is able to receive and process unstable and complex data, fix bugs, and offer
optimal solutions to make control objects perform better. FL provides a methodology that can integrate
human-like thinking into a control system.

There are three stages in an FL control algorithm as shown in Figure 8, namely fuzzification,
inference, and defuzzification [34].

Rules

InferenceFuzzification Defuzzification

PPV

VPV

D

Figure 8. Basic structure of the FL controller.
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2.3.1. Fuzzification

Fuzzification is the process of turning numerical variables into fuzzy variables. The actual
voltage and current of a PV array can be continuously measured and used to calculate the power [23].
The input data of the considered FL controller are ∆VPV and ∆PPV . These input variables are defined
as follows:

∆VPV = VPV [k]− VPV [k − 1], (1)

∆PPV = PPV [k]− PPV [k − 1]. (2)

where VPV [k] and PPV [k] are respectively the power and voltage deviation of the PV array at time k.
The set of input parameters is described by the set NB, NM, NS, ZE, PS, PM, PB, where NB

(Negative Big) is a large decrease, NM (Negative Moderate) is a moderate decrease, NS (Negative
Small) is a small decrease, ZE (zero) is no increase or decrease, PS (Positive Small) is a small increase,
PM (Positive Moderate) is a moderate increase, and PB (Positive Big) is a large increase. Figure 9a,b
shows the membership functions of the seven basic fuzzy subsets for the input variables.
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Figure 9. (a) Membership function input variable ∆VPV ; (b) Membership function input variable ∆PPV .
NB, Negative Big; NM, Negative Moderate; NS, Negative Small; ZE, Zero; PS, Positive Small; PM,
Positive Moderate; PB, Positive Big.

2.3.2. Inference

The relationship between the output voltage and the input voltage of DC/DC boost converters is
as follows:

Vout =
Vin

1 − D
=

VPV
1 − D

. (3)

As Vout is kept constant, Vin is inversely proportional to the duty cycle D.
Based on the PPV − VPV characteristic curve of the PV panel in Figure 10a, the fuzzy control

rule can be inferred. The properties of the panel are divided into nine regions [34]. Based on the
relationship between voltage deviation and power deviation, as well as the fuzzy sets of input and
output, the fuzzy controller is designed to use the control rule as shown in Figure 10b.
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Figure 10. (a) Fuzzy regions for PPV − VPV curve; (b) Fuzzy rules for algorithm using ∆VPV and ∆PPV

as the inputs.

2.3.3. Defuzzification

The set of output parameters is described by the set NB, NM, NS, ZE, PS, PM, PB, where NB is
a large decrease, NM is a moderate decrease, NS is a small decrease, ZE is no increase or decrease,
PS is a small increase, PM is a moderate increase, and PB is a large increase. Figure 11 shows the
membership functions that correspond to the relevant output variable ∆D.
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Figure 11. Membership functions for output variable ∆D.

3. Proposed MPPT Algorithm

The flowchart of the proposed MPPT method is shown in Figure 12. This method is changed
based on the P&O and HC algorithms. In the P&O algorithm, the variations of two PV factors,
PPV and VPV , are considered, whereas the changes of the PWM duty cycle, D and PPV , are used to
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determine the value of the controller’s duty cycle in the next control period in the HC algorithm. In the
proposed MPPT algorithm, all three control elements are used to combine the advantages of these
two algorithms. The proposed algorithm aims to track the MPP point correctly either under stable
irradiation or suddenly changing radiance.

Begin

Measure
IPV[n], VPV[n]

PPV[n] = VPV[n].IPV[n]

∆PPV = PPV[n]–PPV[n–1] 
∆VPV = VPV[n]–VPV[n–1] 
∆D = D[n]–D[n–1]

∆PPV > 0

∆VPV > 0

Decrease
Duty Cycle

Increase
Duty Cycle

∆D = 0

∆D > 0

Increase
Duty Cycle

∆VPV > 0

Decrease
Duty Cycle

YesNo

Yes

Yes

No

No

PPV[n–1] = PPV[n]

VPV[n–1] = VPV[n]

D[n–1] = D[n]

No Yes

YesNo

Figure 12. Proposed MPPT algorithm.

When the three factors ∆VPV , ∆PPV , and ∆D are taken into account in the proposed algorithm,
its operation in the steady state is explained in detail in the following situations.

3.1. Suddenly Increasing Solar Irradiation

When the solar irradiation increases, the power output of PV systems also increases accordingly
(∆PPV > 0). As a result, there are two possibilities to consider.

i. In the case of ∆PPV > 0 and ∆D > 0: The increase of duty cycle D at the current switching cycle
causes the rise of the output power. At this moment, the MPPT controller will increase the duty
cycle D according to the HC algorithm as ∆PPV > 0 and ∆D > 0. From [21], when the solar
irradiation increases, the duty cycle at the MPP (DMPP) is also widened. Hence, the MPP moves
to the right of the power and duty cycle plane. The duty cycle D should be increased in the
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following cycle. This adjustment of D is also applied in the case of stable irradiation [21]. Path 1
in Figure 13 presents the adaptiveness of the proposed method in this case.

ii. In the case of ∆PPV > 0, ∆V < 0, and ∆D < 0: As mentioned in Section 2.1, the P&O algorithm
increases the duty cycle D in the following switching cycles. However, this results in not tracking
the MPP correctly when the solar irradiation changes suddenly. Thus, instead of varying the duty
cycle D, the proposed method keeps D constant in the following switching cycles. The output
power of the PV system will increase due to the rise of solar irradiation at the constant value of D.
Path 2 in Figure 13 depicts the adaptiveness of the proposed method in this case.

Begin

Measure
IPV[n], VPV[n]

PPV[n] = VPV[n].IPV[n]
PPV = PPV[n] PPV[n 
VPV = VPV[n] VPV[n 

D = D[n] D[n 

PPV > 0

VPV > 0 D = 0

D > 0

VPV > 0

Increase
Duty Cycle

Decrease
Duty Cycle

Decrease
Duty Cycle

Increase
Duty Cycle

PPV[n PPV[n]
VPV[n VPV[n]

D[n D[n]

Yes
No

No

No

No

No

Yes

Yes

Yes Yes

While solar radiation is increasing: 
If PPV > 0 and D > 0,
the MPPT controller tracks MPP 
by following the red path (Hill
Climbing path)

If PPV > 0 and D > 0,
the MPPT controller tracks MPP 
by following the red path (Hill
Climbing path)

Path 1

Path 2

Figure 13. Responses of the proposed algorithm when solar radiation is unchanged: Path 1 or Path 2.

3.2. Stable Solar Radiation

When the solar irradiance is stable, the duty cycle D is adjusted similarly to how the P&O
algorithm does. Paths 3, 4, and 5 in Figure 14 illustrate the adaptiveness of the proposed method in
this case.
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Begin

Measure
IPV[n], VPV[n]

PPV[n] = VPV[n].IPV[n]
PPV = PPV[n] PPV[n 
VPV = VPV[n] VPV[n 

D = D[n] D[n 

PPV > 0

VPV > 0 D = 0

D > 0

VPV > 0

Increase
Duty Cycle

Decrease
Duty Cycle

Decrease
Duty Cycle

Increase
Duty Cycle

PPV[n PPV[n]
VPV[n VPV[n]

D[n D[n]

YesNo

No

No

No

No

Yes

Yes

Yes Yes

Path 3

Path 4Path 5

Figure 14. Responses of the proposed algorithm when solar radiation is stable: Path 3, Path 4, or Path 5.

The proposed MPPT algorithm utilizes three parameters (∆PPV , ∆VPV , and ∆D), which provide
the cases of execution, as shown in Table 1.

Table 1. Executions of the proposed MPPT algorithm.

∆PPV ∆VPV ∆D Execution

= 0 — — D[n + 1] = D[n]

> 0 — = 0 D[n + 1] = D[n]

> 0 > 0 > 0 D[n + 1] = D[n] + Dstep

> 0 < 0 > 0 D[n + 1] = D[n] + Dstep

> 0 > 0 < 0 D[n + 1] = D[n]− Dstep

> 0 < 0 < 0 D[n + 1] = D[n]

< 0 > 0 > 0 D[n + 1] = D[n] + Dstep

< 0 > 0 < 0 D[n + 1] = D[n] + Dstep

< 0 < 0 > 0 D[n + 1] = D[n]− Dstep

< 0 < 0 < 0 D[n + 1] = D[n]− Dstep
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4. Simulation

In [23], a comparison review of the MPPT algorithms based on FL, improved P&O, and improved INC
was presented. The comparison results in this paper showed that the FL algorithm achieved better tracking
efficiency and faster response time (or convergent speed) than the other adaptive algorithms.

Moreover, in [33], a comparison table of traditional MPPT algorithms and intelligent MPPT
algorithms was introduced. In terms of intelligent MPPT algorithms considered in this table (FL, ANN,
genetic algorithm), they had equivalent tracking efficiency, complexity level, response time, and cost.
On the other hand, the MPPT method based on FL was easier to integrate into the hardware than the
other intelligent algorithms.

For all these reasons, in the simulation section of this paper, the authors only chose the MPPT
method based on FL to compare with the proposed MPPT algorithm rather than other adaptive
algorithms and intelligent algorithms. Besides, the proposed MPPT algorithm is also compared with
the conventional P&O method to clarify its superior performance.

The performances of these methods were evaluated at constant ambient temperature (25 ◦C ) and
in two different cases of the fixed duty cycle step (Dstep = 3 × 10−4 and Dstep = 3 × 10−3).

The solar radiation was programmed to change rapidly or slowly in the four following scenarios.
The first case was designed to verify the tracking performance with a rapid rise of solar radiation
by 400 W/m2 within half of a second, which is represented as Case 1 in Figure 15 (from t = 5 s to
t = 5.5 s and from t = 10 s to t = 10.5 s). In the second case, the higher slope ramp function for the
solar radiance rapid increase was introduced as Case 2 (from 200 W/m2 at t = 20 s to 1000 W/m2 at
t = 20.5 s). In the two remaining cases, MPPT algorithms were evaluated under a gradual increase
and stable solar radiance, as illustrated in Case 3 and Case 4, respectively.
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800
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W
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2 )

Case 1

Case 2
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Case 4

Figure 15. Waveform of solar radiance.

The PV system of the “Average model of a 100-kW Grid-Connected PV Array” in the
MATLAB/Simulink environment was employed to perform this investigation. The 100-kW PV
array consisted of 66 strings of five series-connected 305.2-W modules connected in parallel
(66 × 5 × 305.2 W = 100.7 kW). The detailed specifications of the PV panel, PV array, and the DC/DC
boost converter are given in Table 2.
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Table 2. Characteristics of the PV panel, PV array structure, and DC/DC boost converter parameters.

Panel Data

Module SunPower SPR-305E-WHT-D

Maximum power (W) 305.226 Cells per module (Ncell) 96

Open circuit voltage Voc (V) 64.2 Short-circuit current Isc (A) 5.96

Voltage at maximum power point Vmpp 54.7 Current at maximum power point Impp 5.58

Temperature coefficient of Voc (%/◦C) −0.27269 Temperature coefficient of Isc (%/◦C) 0.061745

Array Data

Parallel strings 66

Series-connected modules per string 5

Maximum power (kW) 100.7

Temperature ◦C 25

Boost Converter’s Parameters

Inductor L 0.64 mH

Output capacitor Co 100 µF

Initial duty cycle 0.5

Duty cycle step Dstep 3 × 10−4 ÷ 3 × 10−3

Switching frequency fsw 50 kHz

4.1. Rapid Increase of Solar Radiance

Figures 16 and 17 show the PV array’s output power under the given value of panel temperature
(T = 25 ◦C) and the rapid increase of solar radiance from 200 W/m2 to 600 W/m2, from 600 W/m2 to
1000 W/m2, and from 200 W/m2 to 1000 W/m2 within 0.5 s periods (Case 1 and Case 2). Figure 16
shows the simulation results with respect to Dstep = 3 × 10−4, and Figure 17 presents the results in the
case of Dstep = 3 × 10−3.

Under these ambient conditions, the MPPT algorithm based on FL and the proposed algorithm are
significantly more effective than the P&O method. As can be seen in Figures 16 and 17, they respond
to the radiance change almost instantaneously when the output power increases linearly along with
the increase in radiance in all four cases. In contrast, the P&O algorithm shows a very poor tracking
performance by witnessing an appreciable deviation from the MPP. Although it presents almost the
same performance as the others when the duty cycle step Dstep is increased tenfold (from 3 × 10−4 to
3 × 10−3) in Case 1, it still cannot track the MPP properly in Case 2 with this increment of the duty
cycle. Furthermore, in terms of output power oscillation, the proposed method and intelligent FL both
present the least oscillation around the MPP.
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Figure 16. Comparison of the output power in the case of solar radiance increasing rapidly within
0.5 s periods and with Dstep = 3 × 10−4: (a) solar radiance increase from 200 W/m2 to 600 W/m2;
(b) solar radiance increase from 600 W/m2 to 1000 W/m2; (c) solar radiance increase from 200 W/m2

to 1000 W/m2.
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Figure 17. Comparison of the output power in the case of solar radiance increasing rapidly within
0.5 s periods and with Dstep = 3 × 10−3: (a) solar radiance increase from 200 W/m2 to 600 W/m2;
(b) solar radiance increase from 600 W/m2 to 1000 W/m2; (c) solar radiance increase from 200 W/m2

to 1000 W/m2.

4.2. Slow Increase of Solar Radiance

In this case, a slow increase in solar radiance from 200 W/m2 to 1000 W/m2 within a time period
of 10 s was simulated. As illustrated in Figure 18, the three MPPT techniques performed almost the
same with two different values of Dstep.
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Figure 18. Comparison of the output power in the case of solar radiance increasing slowly from
200 W/m2 to 1000 W/m2 within 10 s: (a) Dstep = 3 × 10−4; (b) Dstep = 3 × 10−3.

4.3. Stable Solar Radiance Condition

In this case, the radiance was kept constant at 1000 W/m2. The simulation results are illustrated
in Figure 19. The P&O algorithm presented extremely significantly large power oscillation around
the MPP in the steady state in comparison with the MPPT algorithms based on FL and the proposed
algorithm, especially when the controller utilized Dstep = 3× 10−3 to improve the MPP tracking speed.
The P&O power oscillation level increased from about 18.8 W with Dstep = 3 × 10−4 to about nearly
854 W with Dstep = 3 × 10−3. When utilizing the proposed algorithm and the MPPT algorithm based
on FL, the output power fluctuation was hardly noticed, just about 10 W and 0.3 W, respectively.
An important thing that should be noted is that the proposed algorithm achieved more output power
than the others. The detailed results of Figure 19 are shown in Table 3.

In terms of the proposed MPPT algorithm, we can see that it overcame the disadvantages of the
traditional MPPT algorithms by satisfying the two requirements of an MPPT algorithm, which is fast
convergence speed and small fluctuation of the output power. As shown in Table 3, in both cases of
Dstep = 3 × 10−4 (small value) and Dstep = 3 × 10−3 (large value), the PV system using the proposed
algorithm always tracked the MPP even when the solar radiation rapidly changed and the power
fluctuation was very small, 1 W with Dstep = 3 × 10−4 and 10 W with Dstep = 3 × 10−3.

Generally, the tracking performances during the changing period of the solar radiance of different
MPPT techniques are evaluated via the tracking efficiency ηMPPT , which is defined as [35,36]:

ηMPPT =

t2∫
t1

P(t)dt

t2∫
t1

Pmax(t)dt

, (4)

where t1 and t2 are the beginning and the end moments of the changing period, respectively, P(t) is
the actual PV output power, and Pmax(t) is the theoretical maximum output power of the PV system.
The efficiency obtained from Figure 16 to Figure 19 is shown in Table 4.
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Figure 19. Comparison of the output power in the case of solar radiance being stable at 1000 W/m2:
(a) Dstep = 3× 10−4; (b) Dstep = 3× 10−3.

Table 3. Average output power and oscillation power around the MPP under stable radiance at
1000 W/m2.

Algorithm
Average

Output Power
Oscillation

Level
Duty Cycle Step

(Dstep)

P&O algorithm
100.37 kW 18.8 W 3 × 10−4

100.1 kW 854 W 3 × 10−3

MPPT algorithm based on FL 100.28 kW 0.3 W

Proposed algorithm
100.38 kW 1 W 3 × 10−4

100.37 kW 10 W 3 × 10−3
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Table 4. Comparison of the tracking efficiency for different MPPT techniques under various changing
conditions of radiance.

Radiance
Conditions

MPPT Efficient (ηMPPT %)

P&O
with Dstep = 3 × 10−4 MPPT Based on FL

Proposed Algorithm
with Dstep = 3 × 10−4

Rapid increase from
200 W/m2 to 600 W/m2 50.39 99.74 96.91

Rapid increase from
600 W/m2 to 1000 W/m2 75.13 99.46 99.77

Rapid increase from
200 W/m2 to 1000 W/m2 33.98 99.50 99.51

Stable condition 99.68 99.59 99.58

Radiance
Conditions

MPPT Efficient (ηMPPT %)

P&O
with Dstep = 3 × 10−3 MPPT Based FL

Proposed Algorithm
with Dstep = 3 × 10−3

Rapid increase from
200 W/m2 to 600 W/m2 99.19 99.74 99.34

Rapid increase from
600 W/m2 to 1000 W/m2 99.31 99.46 99.80

Rapid increase from
200 W/m2 to 1000 W/m2 81.79 99.50 99.15

Stable condition 99.40 99.59 99.70

The data shown in Table 4 indicate that the proposed MPPT algorithm tracks the MPP correctly
under all considered cases of rapid changes of solar radiance and the tracking efficiencies are above
99% under most cases.

5. Conclusions

In this research, a new MPPT method based on the parameters of power variation (∆PPV),
voltage difference (∆VPV), and the change of duty cycle (∆D) is proposed. The effectiveness of the
proposed MPPT algorithm is verified by simulations in stable radiation conditions and in rapidly
changing conditions. The simulated results show the fast convergence speed to the MPP of the PV
system in the steady state and various weather conditions. In addition, fluctuations in the output
power of the PV system are very small under stable radiation conditions, and there is no sudden
capacity change in the case of rapidly changing weather conditions. Moreover, the proposed MPPT
algorithm resolves the disadvantages of the traditional algorithms and has similar results as the
MPPT algorithms using fuzzy intelligent control techniques. Finally, the proposed method shows the
advantage of simple control rules, the efficiency enhancement of the PV system, low investment cost,
and thus, the ease of application to all PV systems in an MG.
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