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Abstract: Coal structure directly correlates to permeability and hydraulic fracturing effects.
Underground coal mining indicates that a single coal section generally contains multiple coal
structures in superposition, making how to recognise the coal structure combination and predict
its influence on coal permeability a challenging problem. Based on well-drilling sampled cores,
the geological strength index (GSI), and well-logging data, the DEN, GR, CALX, and CALY were
selected to establish a model to predict GSI by multiple regression to identify coal structure from
100 coalbed methane wells. Based on fitting GSI and corresponding permeability test values,
injection fall-off (IFO) testing, and hydraulic fracturing results, permeability prediction models for
pre- and post-fracturing behaviour were established, respectively. The fracturing effect was evaluated
by the difference in permeability. The results show that a reservoir can be classified into one of nine
types by different coal structure thickness proportion (and combinations thereof) and the fracturing
curves can be classified into four categories (and eight sub-categories) by the pressure curve. Up-down
type I and type II reservoirs (proportion of hard coal >60%) and intervening interval type I reservoir
(proportion of hard coal >70%) are prone to form stable and descending fracturing curves and
the fracturing effects are optimal. Intervening interval type II (hard coal:soft coal:hard coal or soft
coal:hard coal:soft coal ≈1:1:1) and up-down type III (hard coal:soft coal =1:1) form descending
type II, rising type I and fluctuating type I fracturing curves and fracturing effect ranks second;
up-down type IV and V (proportion of hard coal <40%), interval type III (proportion of hard coal
<30%), and multi-layer superposition-type reservoirs readily form fluctuating and rising fracturing
curves and fracturing effects therein are poor. The research results provide guidance for the targeted
stimulation measured under different coal structure combinations.

Keywords: Shizhuangnan Block; coal structure combinations; fracturing curves; fracturing effect

1. Introduction

Coalbed methane (CBM) is a low-carbon, environmentally-friendly, unconventional energy
resource and should be developed effectively. The coal reservoir in Qinshui Basin has experienced
multistage tectonics, which form different coal structures of strong heterogeneity [1–5]. The complex
coal structure leads to the difference in porosity and permeability, which is an important factor in
determining CBM production [6–10]. Besides, coal structure determines the choice, and efficacy of
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drilling and completion operations and has an important influence on hydraulic fracturing [11–15].
In addition, with a certain thickness of deformed soft coal, coal and gas outbursts become more likely,
adversely affecting coal mine safety; the more deformed the coal, the more likely it is to give rise to
coal and gas outbursts [16–18]. Therefore, the accurate identification and distribution of coal structure
is of great importance for CBM exploration, development, and gas leakage prevention [19–21].

The methods of identification of coal structure mainly include observation of manually collected
specimens and geophysical information identification. Among them, geophysical information
identification methods mainly include logging [22–30] and seismic methods [31–33]. Compared with
the seismic method, the well-logging method offers higher resolution and accuracy and can provide
continuous data allowing better identification of coal structures. There are qualitative and quantitative
methods for logging identification. In previous research, qualitative identification was mainly based
on the differences between logging curves in different coal structures [34]. At present, the coal
structure cannot meet the actual demand only from the perspective of qualitative analysis and the
logging identification method is gradually moving towards quantitative development. Researchers
use multiple regression analysis [23], correspondence analysis [28], BP neural networks [35,36],
pore structure index methods [37], the intersection method [27,38], principal component analysis [39,40],
clustering analysis [41], and the kernel Fisher discriminant analysis method [42] based on data from
drilling coring, caliper logging, resistivity logging, density logging, natural gamma ray logging,
and acoustic logging to identify coal structure, and any trends therein. At present, although there are
many identification methods for coal structure and some logging parameters are affected by geological
evolution and other factors, the logging response characteristics are not obvious. The identification
results vary to some extent. For the high rank coal, caliper logging, density logging, and natural
gamma logging were mainly selected to identify coal structure.

The geological strength index (GSI) was established by Hoek and is used to classify a rock
mass [43–45]. The rock mass strength is estimated from the mechanical properties and observations of
the rock. The value is determined by the degree and the state of discontinuity of a rock mass. Similarly,
coal is a special combustible organic rock: the essence thereof is the same, therefore, GSI can be used to
evaluate the coal structure. The coal structure can reflect the coal integrity. Extraneous cracks and
cleats belong to discrete surfaces, and cut matrix blocks are similar to the rock lumpiness. When the
coal surface is better, the coal connectivity is stronger, the coal structure is better, and its GSI value is
larger (and vice versa).

Hydraulic fracturing is one of the most important methods used to reform low-permeability
coal reservoirs and the effect of fracturing has a direct influence on the productivity of CBM
wells. Fracturing evaluation methods mainly include the fracture/closure pressure, crack monitoring,
gamma tracing, and fracturing curve analysis [46,47]. Among them, the fracturing curves are easily
obtained and can reflect the characteristics of coal reservoirs, crack propagation, fracturing fluid
flow, and proppant migration. The fracturing curves should be analysed in detail as it is of great
significance to the integration of information relating to geology and engineering [48]. Some researchers
have classified the fracturing curves into four types: stable type, fluctuating type, descending type,
and stable-fluctuating type to evaluate the fracturing effect [48–51], believing that the coal structure
has an important influence on hydraulic fracturing: however, the above research only focuses on the
influence of single coal structure on fracturing. According to the fracturing process, the relationship
between coal structure and fracturing curve was analysed. Most coal seams are composed of many
different coal structures, so it is generally unreasonable to conduct fracturing of the whole coal seam.
For a complex coal seam containing different coal structures, the vertical distribution of coal structure
needs to be analysed precisely to determine the reasonable fracturing parameters.

Based on the above issues, this paper mainly introduces the GSI to conduct continuous and
quantitative characterisation of the deformation of coal. A multiple regression model is established
between GSI and logging parameters and the coal structure is identified from 100 CBM wells using this
model. Based on the identification of coal structure, coal reservoir types are classified with the proportion
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of thickness and spatial combination of different coal structures. The types of fracturing curves are
divided according to the characteristics of their pressure curves, and the pre- and post-fracturing
permeability of coal reservoir and their differences are used to analyse the fracturing effects of different
fracturing curve types. Finally, the paper statistically summarises the relationship between the types
of the fracture curves and coal reservoir types with different coal structure combinations to assess
the fracturing effects in different types of coal reservoir. The research results can provide ideas and
guidance for advancing hydraulic fracturing technology and parameter optimisation under multi-coal
structure combinations and lay a foundation for efficient exploration and development of CBM in the
No. 3 coal seam in Shizhuangnan Block in the Qinshui Basin in China.

2. Geological Setting

The Shizhuangnan Block lies in the south of Qinshui Basin and is classified as a secondary tectonic
unit of the Qinshui block depression in the Taihang uplift belt of the North China plate. The block
is generally a monocline structure plunging towards the north-west, and is with a series of axial
near-east-west folds in the south-east as arranged in arcuate form therein. The strata include Ordovician,
upper Carboniferous Benxi Formation, Carboniferous-Permian Taiyuan Formation, Lower Permian
Shanxi Formation, Middle Permian Shihezi Formation, Upper Permian Shiqianfeng Formation,
and Quaternary from bottom to top [52,53]. The No. 3 and No. 15 coal seams are distributed therein,
among which the No. 3 coal seam is the target seam in the study area. The No.3 coal seam has a
stable distribution: the thickness ranges from 3.5 m to 11 m, with an average of 6.35 m; there are
one of two layers of dirt and the thickness thereof is about 0.2 to 0.3 m. The gas content is 4.5 to
23.5 m3/t and is relatively low in the fault development area. The coal structure is mainly cataclastic
and granulated coal. The coal is relatively broken and has strong heterogeneity on the horizontal and
vertical direction in the cores of multi-structural movement and near-fault zones. The permeability is
between 0.015 × 10−3 to 1.35 × 10−3 µm2 and is generally low [54]. In this study, data from 100 wells
were collected for analysis. The specific well locations and elevation isoline of the bottom of No. 3 coal
seam are shown in Figure 1.
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Figure 1. Location of the study area and wells. (a) Location of the study area in China. (b) Location of
the Shizhuangnan Block in southern Qinshui Basin. (c) Topography of the study area and location of
the wells. (d) Stratigraphic column of the coal-bearing strata.
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3. Research Methods

Coal samples were observed after collection from core samples taken when drilling CBM wells
in the study area and were calibrated for different coal structure by GSI, including undeformed coal,
cataclastic coal, granulated coal, and mylonite coal. The GSI and multiple parameters of logging
response were fitted and the fitting formula thus obtained; this was used to calculate the GSI at intervals
of 0.2 m in the coal seam segment of 100 CBM wells. The distribution of coal structure was obtained
from the GSI interval value in the coal seam segment. The reservoirs were classified into nine types by
the proportion of coal thickness and spatial combination with different coal structures.

According to the characteristics of coal reservoir types and hydraulic fracturing curves,
four categories and eight sub-categories fracturing curves were established. The permeability was
measured on different coal structures and the relationship between GSI and original permeability
of coal reservoirs obtained. The original permeability of coal reservoirs is calculated by using “GSI
chart + multi-parameter fitting of well logging data + permeability testing” methods. The filter
loss of fracturing fluid, measurement of pressure-drop, and injection rate of total fracturing fluid
volume were analysed in the fracturing process. Combined with the injection/pressure-drop test theory,
the prediction model of post-fracturing permeability was established. Based on the predictive model
of pre-fracturing and post-fracturing permeability, their permeability and difference were calculated.
The fracturing effects with different fracturing curve types were evaluated by their difference and
gas production. Finally, the fracturing curves of different coal reservoir types were analysed and
the fracturing effects were deduced for a coal reservoir with different coal structure combinations.
The workflow is shown in Figure 2.
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3.1. Quantitative Characterisation of Coal Structure

Traditionally, according to the degree of deformation of coal, coal structures are classified into
four types: undeformed coal, cataclastic coal, granulated coal, and mylonite coal [55]. It is difficult to
combine this classification methodology with logging curves [56]. To establish the relationship between
the logging response value and the four types of coal structures, some researchers have replaced the
structural weathering of the traditional GSI diagram with the width and filling of fractures in the coal
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and use GSI to quantify the four types of coal structures in combination with drilling coring data [43,44].
The same goes for the present work: the GSI of typical coal structures is shown in Shizhuangnan Block
in Figure 3.
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Figure 3. GSI quantisation of coal showing typical deformation in the study area. 70–100 is undeformed
coal; 50–70 is cataclastic coal; 25–50 is granulated coal; 0–25 is mylonite coal.

Representative coring samples were selected for observation in Shizhuangnan Block. According to
the GSI classification standard, the coal structure of the sample is quantitatively characterised.
Correlation analysis is conducted between GSI and typical parameters of the logging curve (Figure 4).

Due to the logging curve’s susceptibility to drilling, well completion, and geological conditions,
there is a certain correlation between GSI value and DEN, GR, CALX, and CALY, but the correlation
is weak. To improve prediction accuracy and practical production application, a multiple regression
model is established by using multiple logging parameters from 39 core samples from 10 stratigraphic
wells. The multi-parameter formula is as follows for the GSI:

GSI = aDEN + bGR + cCALX + dCALY + e (1)

The coefficients are calculated by fitting: a = 50.40, b = 0.222, c = −0.42, d = −0.407, e = 0.539,
R2 = 0.856, and sig = 0.000 < 0.005. The prediction accuracy is thus improved.

According to (1), the GSI value of coal seam segment is judged and the accuracy of the model is
further verified in terms of CBM well coring. GSI values are calculated in the coal seam segments of a
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typical well (Figure 5). The comparison of coal identification by calculating GSI values and coring
shows slight differences.Energies 2020, 13, x FOR PEER REVIEW  6 of 24 
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Figure 5. (a) Well SZ-001 Coring and GSI values for the coal seam section of typical CBM wells.
(b) Vertical distribution of coal textures in a cross-sections in the Shizhuangnan Block. The results were
inferred from the GSI model.
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3.2. Hydraulic Fracturing Effects

3.2.1. Prediction of the Original Permeability of a Coal Reservoir

Representative coal samples of different coal structures were selected and compared with a GSI
chart to obtain GSI values of the samples. The initial permeability of coal samples was measured;
furthermore, previous research results were collected [57]. Based on these data, the GSI value and
initial permeability of coal structure were fitted, and the relationship between them established.
The permeability reaches its maximum when the GSI is 53.70 (Figure 6). The permeability decreases
when the coal reservoir remains either quite intact or severely broken. The smaller the GSI value is,
the more broken, or even powdered, the coal. The resulting fractures transected each other in the
early stage, which led to the decrease of permeability. With increasing GSI value, the coal structure
transitioned to that of a cataclastic coal. When the stress increased, the coal would yield and be
destroyed. The internal cracks in the coal would further expand and connect, and macroscopic cracks
formed, thus increasing the permeability. When the GSI increased continuously, the coal structure
would transition to an undeformed structure (this was intact). With increasing stress, the pores and
fractures were closed and the permeability decreased. According to the relationship between GSI and
permeability, the original permeability of selected well was calculated in the Shizhuangnan Block.
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3.2.2. Permeability Prediction Model for Coal Reservoirs Post Hydraulic Fracturing

(1) The concept

The fracturing of reservoir should, as a process, follow three assumptions: first, artificial fractures
can be represented by the Khristianovic-Geertsma de Klerk (KGD) model [58,59]; second, the flow
of fracturing fluid obeys Darcy’s law in the coal reservoir; third, the fracturing fluid does not break
through the top or bottom of the coal seam during fracturing [60]. Based on the above assumptions,
the steps of establishing the post-fracturing permeability prediction model are as follows: firstly,
according to the KGD model, fracturing curve and percolation theory, the filter loss of fracturing fluid
is calculated during fracturing. Secondly, the relationship between the pressure drop and the time of
instantaneous shut-in is analysed as per Horner’s method and pressure drop curves when pumping is
stopped. Finally, through coupling analysis of filter loss, pressure-drop curves, and total fracturing
fluid volumes, a predictive model of post-fracturing permeability is established [61].
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(2) Filter loss of fracturing fluid during fracturing

Generally, the following assumptions should be followed: the fracturing fluid is filtered from
top to bottom during fracturing and the fracturing fluid follows the rule of parallel flow in the plane
of the flat-plate model during filtration. The permeability is equal within the range of fracturing.
When following these assumptions, the seepage velocity υ can be obtained from Darcy’s law:

υ =
Q1

At1
= −

kdp
µdx

(2)

In Equation (2): υ is the seepage velocity of fracturing fluid, m/s; Q1 is the filtration loss of
fracturing fluid during fracturing, m3; A is the area of fracturing cracks, m2; k is the post-fracturing
permeability, µm2; t1 is fracturing time, s; µ is the liquid viscosity, MPa·s; p is the flow pressure at filter
flow distance x in the fracturing fluid, MPa.

According to the KGD model, the width can be expressed during fracturing by Equation (3):

w(x) =
4σ
E
(1− ν2)

√

L2 − x2 (3)

In Equation (3): σ is the net pressure, MPa; E is the Young’s modulus, MPa; ν is Poisson’s ratio;
L is the half-length of the crack, m; w(x) is the crack width at x, m.

According to the law of volume conservation during fracturing, it can be concluded that:

Qt = 2

L∫
0

hw(x)dx + Q1 (4)

In Equation (4): Qt is the amount of fracturing fluid during fracturing, m3; h is the thickness of the
coal seam, m.

By combining Equations (3) and (4), the half-length of the crack can be obtained as follows:

L =

√
E(Qt −Q1)

2hσπ(1− ν2)
(5)

Combined with Equations (2) and (5), the filter loss of fracturing fluid can be obtained during
fracturing as follows:

Q1 =
2k(σ− pe)t1

[2k(σ− pe)t1 + µh2]
Qt (6)

In Equation (6): pe is the reservoir pressure, MPa.

(3) Pressure and time upon pressure-drop

According to the fracturing curves, the instantaneous shut-in pressure was obtained. In the case
of no connection with existing geological faults, the reservoir pressure generally starts to drop after
pumping is stopped to extend the crack post-fracturing. Therefore, based on the Horner curve and the
principle of injection/pressure-drop testing of permeability, the relationship between reservoir pressure
and time after cessation of pumping is as follows:

p(t) = −
2.12× 10−3Q2µB

∆tkh
lgt +

[
pi −

2.12× 10−3Q2µB
∆tkh

×

(
lg

k
ϕµCtr2

w
+ 0.9077 + 0.8686S

)]
(7)
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To:
a = − 2.12×10−3Q2µB

∆tkh ,

b = pi −
2.12×10−3Q2µB

∆tkh ×

(
lg k
ϕµCtr2

w
+ 0.9077 + 0.8686S

)
p(t) = algt + b

(8)

In Equation (7), Q2 is the amount of fracturing fluid at the beginning of filtration after the pump
is stopped, m3. ϕ is the porosity, %; ∆t refers to the time taken to reduce the reservoir pressure after
cessation of pumping on the ground, s; rw is the wellbore radius, m; Ct is the volume comprehensive
compression coefficient; S is the epidermal coefficient; B is the formation volume coefficient of water.

The pressure and time of the cessation of pumping are pt and t2. When the pressure drops to the
reservoir pressure, substituting pt and t2 into Equation (8), we obtain the time of filtration stopping t3,
∆t = t3 − t2, namely:

∆t =
(
10−

pt−pe
a − 1

)
t2 (9)

(4) Prediction of post-fracturing permeability

According to the Horner curve:

hk = −
2.12× 10−3Q2µB

a∆t
(10)

According to the conservation of volume:

Q1 + Q2 = Qt (11)

Combining Equations (6) and (11):

Q2 = Qt −Q1 =
µh2

[2k(σ− pe)t1 + µh2]
Qt (12)

Combining Equations (10)–(12), the prediction model of post-fracturing permeability can be
obtained as follows:

k =
−µ

{
a∆th2 +

[
h4a2∆t2

− 16.96× 10−3aBht1 × ∆tQt(σ− pe)
]1/2

}
4at1∆t(σ− pe)

(13)

4. Results and Discussion

4.1. Classification of Reservoir Types with Different Coal Structures

4.1.1. Identification of Different Coal Structures

The complete set of logging data were collected from 100 CBM wells, but most of them have no
drilling coring record. According to the method of GSI quantitative characterisation of coal structure,
the coal structure is identified and stratified on the No. 3 coal seam. Each coal structure represents
one layer coal. For SZ-68 well: it has one layer undeformed coal, two layers cataclastic coal and two
layers soft coal, for a total of five layers of coal. The total thickness proportion of coal structure is 100%.
The stratification, thickness and proportion of different coal structures of the selected wells are listed
in Table 1.
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Table 1. Thickness and proportion of different coal structure in coal seam.

Wells

UC CC UC + CC GC +MC

Stratification
Gross

Thickness
(m)

Proportion
(%) Stratification

Gross
Thickness

(m)

Proportion
(%)

Proportion
(%) Stratification

Gross
Thickness

(m)

Proportion
(%)

SZ-68 1 0.35 5 2 3.15 49 54 2 2.95 46
SZ-63 2 2.70 43 2 2.10 33 76 2 1.50 24
SZ-39 1 1.00 16 2 0.90 15 31 2 4.20 69
SZ-48 1 0.33 5 2 2.80 44 49 2 3.20 51
SZ-37 1 0.10 2 2 6.25 98 100 0 0.00 0
SZ-78 1 0.84 12 1 0.75 11 23 2 5.21 77
SZ-79 1 2.06 32 1 1.26 19 51 2 3.21 49
SZ-71 1 0.30 5 2 3.60 63 68 2 1.80 32
SZ-38 1 1.02 16 1 0.98 15 31 3 4.50 69
SZ-94 1 0.30 5 2 2.80 43 48 3 3.40 52
SZ-33 2 1.14 18 2 2.90 45 63 2 2.40 37
SZ-64 1 0.05 1 2 2.60 34 35 3 4.95 65
SZ-98 1 0.70 12 2 3.50 58 70 1 1.80 30
SZ-29 2 1.81 30 2 3.10 51 81 2 1.20 19
SZ-12 1 0.60 10 2 4.20 67 77 1 1.50 23
SZ-21 0 0.00 0 2 4.40 67 67 2 2.15 33
SZ-26 1 0.20 3 2 3.50 53 56 3 2.90 44
SZ-75 1 0.20 4 1 2.30 43 47 3 2.90 53
SZ-16 2 2.25 33 1 3.21 47 80 2 1.34 20
SZ-25 1 0.80 14 1 2.40 40 54 2 2.70 46
SZ-31 1 0.36 6 1 3.40 58 64 2 2.10 36
SZ-69 1 0.60 10 1 1.60 27 37 2 3.70 63
SZ-90 1 0.74 11 1 0.40 6 17 2 5.30 83
SZ-45 1 0.03 1 0 0.00 0 1 3 5.85 99
SZ-32 2 0.48 8 2 3.63 59 67 2 2.00 33
SZ-28 1 0.37 6 1 1.55 24 30 2 4.60 70
SZ-55 1 0.25 4 2 4.95 80 84 1 0.96 16
SZ-04 1 0.10 1 2 3.10 45 46 2 3.70 54
SZ-89 0 0.00 0 2 0.00 0 0 2 6.55 100
SZ-66 2 2.41 39 2 2.70 43 82 1 1.10 18
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Table 1. Cont.

Wells

UC CC UC + CC GC +MC

Stratification
Gross

Thickness
(m)

Proportion
(%) Stratification

Gross
Thickness

(m)

Proportion
(%)

Proportion
(%) Stratification

Gross
Thickness

(m)

Proportion
(%)

SZ-05 2 1.56 28 2 3.80 67 95 1 0.30 5
SZ-44 1 0.97 17 1 1.90 34 51 1 2.80 49
SZ-11 1 0.20 4 2 3.57 67 71 2 1.57 29
SZ-22 1 0.18 3 2 5.30 93 96 1 0.20 4
SZ-60 0 0.00 0 1 3.60 61 61 2 2.30 39
SZ-88 1 0.60 10 1 4.70 77 87 1 0.80 13
SZ-06 1 1.10 15 2 2.15 30 45 2 3.85 55
SZ-34 1 0.15 2 1 4.70 63 65 2 2.65 35
SZ-83 1 0.25 4 2 3.55 60 64 2 2.10 36
SZ-07 1 1.50 23 2 4.80 73 96 1 0.30 4
SZ-80 1 1.50 23 3 4.80 73 96 1 0.30 4
SZ-73 1 0.15 2 1 0.10 1 3 2 6.55 97
SZ-91 1 1.21 20 2 1.54 26 46 2 3.25 54
SZ-54 1 0.94 16 1 0.56 9 25 3 4.50 75
SZ-92 0 0.00 0 0 0.00 0 0 1 6.90 100
SZ-65 1 0.80 12 2 2.10 31 43 3 3.80 57
SZ-19 1 0.53 8 1 1.21 19 27 2 4.66 73
SZ-08 2 1.89 27 2 4.25 61 88 1 0.85 12
SZ-84 1 0.60 9 1 1.40 21 30 2 4.70 70
SZ-14 0 0.00 0 1 2.70 44 44 2 3.50 56
SZ-95 1 0.50 8 1 2.10 35 43 2 3.40 57
SZ-74 1 0.25 4 2 1.60 24 28 2 4.75 72
SZ-93 1 0.43 7 2 5.63 89 96 1 0.25 4
SZ-20 1 2.25 34 2 3.52 53 87 1 0.93 13
SZ-87 1 1.70 26 2 3.50 53 79 1 1.40 21
SZ-67 1 0.35 5 1 4.80 73 78 2 1.45 22
SZ-10 1 2.55 42 2 0.59 10 52 3 2.96 48
SZ-24 1 2.60 38 1 3.70 54 92 1 0.50 8
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Table 1. Cont.

Wells

UC CC UC + CC GC +MC

Stratification
Gross

Thickness
(m)

Proportion
(%) Stratification

Gross
Thickness

(m)

Proportion
(%)

Proportion
(%) Stratification

Gross
Thickness

(m)

Proportion
(%)

SZ-42 1 0.25 4 1 0.15 2 6 1 6.10 94
SZ-85 1 0.25 4 2 3.00 45 49 2 3.45 51
SZ-15 2 2.78 43 1 1.63 25 68 2 2.00 32
SZ-97 1 1.30 19 2 3.83 56 75 2 1.67 25
SZ-02 1 1.76 23 1 1.30 17 40 2 4.50 60
SZ-01 1 0.43 7 1 0.90 15 22 2 4.60 78
SZ-81 1 0.80 11 1 1.90 27 38 1 4.30 62
SZ-96 2 2.54 40 1 1.31 20 60 2 2.55 40
SZ-17 1 1.25 18 3 4.20 60 78 2 1.50 22
SZ-86 1 0.79 12 2 2.17 34 46 2 3.36 54
SZ-40 1 0.78 12 2 2.65 41 53 2 3.10 47
SZ-18 1 0.55 9 1 2.67 43 52 2 2.98 48
SZ-47 1 0.10 2 2 3.65 73 75 1 1.25 25
SZ-03 1 1.09 17 2 4.04 64 81 2 1.20 19
SZ-100 1 0.78 12 1 4.38 68 80 2 1.25 20
SZ-35 1 1.30 23 2 1.90 34 57 1 2.40 43
SZ-82 1 1.30 21 1 1.54 25 46 2 3.25 54
SZ-27 0 0.00 0 1 1.20 19 19 2 5.25 81
SZ-76 1 0.61 10 2 3.15 50 60 1 2.50 40
SZ-61 1 1.26 19 2 3.22 47 66 2 2.31 34
SZ-36 1 0.15 2 1 3.80 54 56 2 3.05 44
SZ-77 1 1.11 17 2 4.22 64 81 1 1.22 19
SZ-09 1 0.28 5 2 3.21 56 61 3 2.21 39
SZ-70 1 0.93 16 2 3.88 67 83 2 1.00 17
SZ-62 1 1.47 23 1 0.32 5 28 2 4.51 72
SZ-23 2 1.35 20 1 0.21 3 23 3 5.33 77
SZ-72 2 3.10 45 2 1.25 18 63 2 2.55 37
SZ-13 0 0.00 0 1 1.75 27 27 3 4.75 73
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Table 1. Cont.

Wells

UC CC UC + CC GC +MC

Stratification
Gross

Thickness
(m)

Proportion
(%) Stratification

Gross
Thickness

(m)

Proportion
(%)

Proportion
(%) Stratification

Gross
Thickness

(m)

Proportion
(%)

SZ-99 1 2.58 37 1 0.21 3 40 2 4.26 60
SZ-30 1 0.15 2 1 0.65 9 11 2 6.20 89
SZ-56 0 0.00 0 0 0.00 0 0 1 6.00 100
SZ-43 1 1.70 30 2 3.40 60 90 1 0.60 10
SZ-41 1 2.00 30 1 3.40 52 82 1 1.20 18
SZ-46 1 1.55 24 2 3.85 60 84 1 1.00 16
SZ-49 2 3.79 60 1 0.25 4 64 2 2.31 36
SZ-52 1 4.60 63 2 2.41 33 96 1 0.33 4
SZ-53 1 1.80 27 2 2.80 42 69 1 2.10 31
SZ-57 1 1.44 21 2 4.54 65 86 1 1.03 14
SZ-50 1 1.45 22 2 3.38 50 72 2 1.88 28
SZ-58 1 1.39 24 1 0.90 16 40 2 3.50 60
SZ-51 1 1.20 18 2 4.10 61 79 1 1.40 21
SZ-59 1 1.04 18 2 3.14 54 72 2 1.68 28

(Note: UC = undeformd coal; CC = cataclastic coal; GC = granulated coal; MC = mylonite coal.)
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4.1.2. Classification of Reservoir Type by Proportion and Combination of Different Coal Structures

Coal reservoir types are classified based on the longitudinal thickness (from the vertical direction
of coal seam), proportion, and spatial combination of different coal structures. The coal reservoirs can
generate new fractures and are beneficial to reservoir reconstruction during fracturing because of the
high strength and hardness of both the undeformed, and cataclastic, coal, while the reservoir is bad
for reservoir reconstruction because of the crushing of granulated, and mylonite, coal [62]. For the
analysis, the undeformed, and cataclastic coal are classified as hard coal and granulated, and mylonite
coal are classified as soft coal [63].

It can be seen from Table 1 that the No. 3 coal seam is generally composed of up to six coal
seams with different coal structures in the study area, and the range of the proportion of different coal
structures varies significantly within the coal seam. In the whole No.3 coal seam, the proportion of
undeformed coal ranges from 0 to 63% and the average proportion thereof is 15%. The proportion of
cataclastic coal ranges from 0 to 98% and the average proportion thereof is 40%. The total thickness
proportion of undeformed coal and cataclastic coal (hard coal) ranges from 0 to 100%, and the average
proportion thereof is 56%; the thickness proportion of granulated coal and mylonite coal (soft coal)
ranges from 0 to 100%, and the average proportion thereof is 44%.

The coal reservoir is not only subject to a large range of fluctuation in the proportion of different
coal structures, but also exhibits significant differences in the longitudinal distribution of different coal
structure combinations, indicating the strong heterogeneity of the coal seam. Based on the identification
results of coal structure, the coal reservoir spatial combination types are classified into up-down type,
intervening interval type and multi-layer superposition type by using the identification method of
hard coal and soft coal.

In consideration of the combined types and proportions of different coal structure coal, the coal
reservoir is classified into one of nine types (except 12 no-gas wells) (Figure 7). According to the
thickness proportion of hard coal, up-down type reservoirs are classified into five types, including
up-down type I, up-down type II, up-down type III, up-down type IV, and up-down type V reservoirs.
Up-down type I: the up is hard coal and its thickness proportion is 80–100%; the down is soft coal and
its thickness proportion is 20–0%. Up-down type II: the up is hard coal and its thickness proportion is
60–80%; the down is soft coal and its thickness proportion is 40–20%. Up-down type III: the up is hard
coal and its thickness proportion is 40–60%; the down is soft coal and its thickness proportion is 60–40%.
Up-down type IV: the up is soft coal and its thickness proportion is 60–80%; the down is hard coal and
its thickness proportion is 40–20%. Up-down type V: the up is soft coal and its thickness proportion is
80–100%; the down is hard coal and its thickness proportion is 20–0%. Similarly, intervening interval
type reservoirs are classified into three types, including intervening interval type I, intervening interval
type II, and intervening interval type III reservoirs. Intervening interval type I: the up is soft coal and
its thickness proportion is 15–0%; the middle is hard coal and its thickness proportion is 70–100%;
the down is soft coal and its thickness proportion is 15–0%. Intervening interval type II: the up and
the down are hard coal or soft coal and their thickness proportions are respectively 33%; the middle
is soft coal or hard coal and its thickness proportion is 33%. Intervening interval type III: the up is
hard coal and its thickness proportion is 15–0%; the middle is soft coal and its thickness proportion
is 70–100%; the down is hard coal and its thickness proportion is 15–0%. The coal reservoir is of
multi-layer superposition type when hard coal and soft coal appear alternately (representing a complex
coal reservoir).
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Figure 7. Classification of coal reservoirs with different coal structure combination. (a) Up-down type I
reservoir; (b) Up-down type II reservoir; (c) Up-down type III reservoir; (d) Up-down type IV reservoir;
(e) Up-down type V reservoir; (f) Intervening interval type I reservoir; (g) Intervening interval type II
reservoir; (h) Intervening interval type III reservoir; (i) Multi-layer superposition type reservoir.

4.2. Effects of Hydraulic Fracturing with Different Fracturing Curves

4.2.1. Classification of Hydraulic Fracturing Curves

The hydraulic fracture curves were from the Shizhuangnan Block. Each fracturing curve
shows the relationship between oil pressure, displacement, sand ratio, and construction time. It is
mainly composed of pressure-time, displacement-time, and sand ratio-time data. The pressure
can directly reflect the underground dynamic pressure changes arising in the construction process.
The displacement and sand ratio reflect the construction situation, and the information pertaining to
fracture propagation and fluid migration in the reservoir can be obtained by combining the pressure
curves with the displacement and sand ratio curves. According to the characteristic change of oil
pressure curves, combined with morphological characteristics of the displacement curves, sand curves
and their inter-relationship [43], fracturing curves from 100 wells were analysed and classified into
four categories (with eight sub-categories). Typical fracturing curves are shown in Figure 8.
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(1) Stable type

Stable type is classified into stable type I (stable all the time) and stable type II (down to stable).
Stable type I is described as follows: the variations of pressure are less than 0.5 MPa. then it increases
for a while and remains almost unchanged for a long time when the coal seam is fractured and the
displacement is basically unchanged. The overall pressure is very stable. The difference between
stable type II and stable type I is mainly that the pressure gradually decreases at the beginning of
construction. The pressure remains quasi-constant when it decreases to a certain value.

The reason for stable type I formation may be that the coal structure is dominated by cataclastic
coal and granulated coal, thus leading to development of many endogenous cracks and a low
fracture-initiation pressure in the coal. Such reservoirs are more conducive to fracture formation.
Additionally, with the continuous expansion of fractures, the loss of fracturing fluid also increases,
and the pressure of fracturing fluid decreases in the direction of fracture extension as well as the width
of the fracture decreasing. When filtration and crevices are in fluid flow balance, the crevice will not
expand at all and the fracturing curve is relatively ideal.

The reason for stable type II formation may be that the coal structure is dominated by cataclastic
coal and undeformed coal, which causes slight reservoir pollution near the wellbore. When the
reservoir begins to fracture, the pressure is required to break through the polluted zone. The reservoir
is mainly based on the initiation of new fractures and the artificial fractures are relatively stable with
few branch fractures thereon: the fracturing curve is then optimal.

(2) Descending type

The descending type is classified into descending type I (descending all the way) and descending
type II (fluctuating and descending). Descending type I is mainly described as follows: with a
dropping-pressure of more than 3 MPa from the beginning to cessation of pumping, the pressure keeps
dropping during fracturing. Descending type II entails a pressure rising then falling many times with
an overall decline if more than 3 MPa.

The reason for descending type I occurring may be that the coal structure is mainly of an
undeformed type. There is only a small polluted zone near the wellbore, and it is generally removed
by the fracturing fluid. When the fracturing fluid filtration volume remains the same, the crack quickly
extends outward or forms many cracks, thus causing the drop in fluid pressure. The fracturing fractures
conduct natural fractures in the coal and the fracturing curve is conducive to CBM production.

The reason for the occurrence of descending type II behaviour may be that the CBM wells have a
high enlargement rate and produce gas in inclined wells. Moreover, with a high enlargement rate,
the perforation effect is usually non-ideal and the fracturing fluid does not readily conduct natural
fractures in the coal, therefore, the fracturing effect may be moderate.

(3) Rising type

The rising type is classified into rising type I (rising all the way) and rising type II (fluctuating
and rising). Rising Type I is mainly described as follows: the pressure keeps rising during fracturing
and it rises by more than 3 MPa from the beginning to cessation of pumping. Rising type II mainly
entails many pressure cycles with an overall rising of greater than 3 MPa.

The reason for the occurrence of rising type I behaviour may be that the coal structure is mainly
of the granulated type. The reservoirs were polluted during the process of drilling, well completion,
and fracturing. To break through the damage zone, the pressure tended to increase. The fracturing
fracture was difficult to expand, hindering proppant migration and the fracturing effect may be poor.

The reason for the occurrence of rising type I may be that the coal reservoir was polluted near
the wellbore, resulting in a high fracture pressure. The coal structure was broken, which led to sand
plugging and significant fracturing fluid filtration.
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(4) Fluctuating type

Fluctuating type behaviour is classified into fluctuating type I (small fluctuations) and fluctuating
type II (large fluctuations). Fluctuating type I is described mainly by a pressure falling then rising
many times during fracturing. The construction pressure does not exceed 3 MPa and the oscillation
amplitude is less than 3 MPa throughout. The difference between fluctuating type I and fluctuating
type II is that the oscillation amplitude of the construction pressure is greater than 3 MPa.

The reason for fluctuating type I behaviour occurring may be that the coal structure is relatively
broken, and there are many cracks and pores therein. On the one hand, the pores are small and sand
plugging readily occurs; on the other, the fracturing fluid undergoes too much filtration in the reservoir,
which may eventually lead to a poor fracturing effect.

The reason for fluctuating type II behaviour arising may be that the reservoir was polluted near
the wellbore. The fracturing fluid is mainly used to make joints and extend cracks in hard coal,
the proppant effect is diminished in the fracture, and the fracturing effect may be poorer.

4.2.2. Fracturing Effect of Hydraulic Fracturing Curves

The original permeability and the post-fracturing permeability are calculated from the 88 selected
CBM wells (Figure 9). Compared with the original permeability, post-fracturing permeability generally
increased. The growth multiple of pre-fracture and post-fracture permeability can represent fracturing
effects of fracturing curves of different types, however, the post-fracturing permeability is low when
the original permeability is very low and the reservoir has a higher growth multiple of pre-fracture and
post-fracture permeability; besides, post-fracturing permeability is high when the original permeability
is very high and the reservoir has a lower growth multiple of pre-fracture and post-fracture permeability.
To some extent, the growth multiple of pre-fracture and post-fracture permeability cannot really reflect
the fracturing effect, therefore, the difference between the original permeability and post-fracturing
permeability is used to reflect fracturing effect.

From Figure 9, the permeability difference of stable type II fracturing curves is generally higher
and its average permeability difference is 8.91 × 10−3 µm2; the permeability difference of stable
type I fracturing curves is also higher and its average permeability difference is 6.40 × 10−3 µm2.
The permeability difference of descending type II fracturing curves is followed by stable fracturing
curves and its average permeability difference is 5.00 × 10−3 µm2. The permeability difference
of descending type I fracturing curves is slightly smaller than that of descending type II curves
and its average permeability difference is 4.66 × 10−3 µm2. Beginning with the fluctuating type
I fracturing curves, the permeability difference is generally small, and its average permeability
difference is 1.91 × 10−3 µm2. The average permeability difference of rising type I fracturing curves is
0.96 × 10−3 µm2. The permeability difference of fluctuating type II fracturing curves is also generally
small, and its average permeability difference is 0.61 × 10−3 µm2. Compared with fracturing curves of
other types, the permeability difference of rising type II fracturing curves is the smallest and its average
permeability difference is only 0.29 × 10−3 µm2. Combined with production data relating to drainage,
the average gas production rate is about 1000 m3/d when the difference of original permeability and
post-fracturing permeability exceeds 8 × 10−3 µm2; the average rate of gas production is about 800 m3/d
when their difference is between 5 × 10−3 and 8 × 10−3 µm2; the average rate of gas production is
about 500 m3/d when their difference is between 3 × 10−3 and 5 × 10−3 µm2; the average rate of
gas production is less than 500 m3/d when their difference is less than 3 × 10−3 µm2. In summary,
the fracturing curve of fracturing effects of different reservoir types is ranked (in descending order)
as: stable type II, stable type I, descending type II, descending type I, fluctuating type I, rising type I,
fluctuating type II, then rising type II.
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Figure 9. Original permeability and post-fracturing permeability and their difference with fracturing
curves of different types. (a) Stable type I. (b) Stable type II. (c)Descending type I. (d) Descending type
II. (e) Rising type I. (f) Rising type II. (g) Fluctuating type I. (h) Fluctuating type II.

4.3. Fracturing Effect of Reservoir Types with Different Coal Structure Combinations

The fracturing curves can directly reflect the fracturing effect in CBM wells [39,40,43]. Therefore,
the types of fracturing curves were analysed for different coal reservoir types. Then the fracturing
effects of fracturing curves of different types were used to analyse and qualitatively evaluate the
fracturing effects of different coal reservoir types.

According to Section 4.1.2, the coal reservoir is classified into nine different types,
including up-down type I, up-down type II, up-down type III, up-down type IV, up-down type
V, intervening interval type I, intervening interval type II, intervening interval type III, and multi-layer
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superposition type. Combined with morphological characteristics of the fracturing curves, the fracture
curve types with different coal reservoir types were classified (Figure 10).
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According to Figure 10, the fracturing curves of an up-down type I reservoir are mainly stable and
of descending type; the fracturing curves of an up-down type II reservoir are dominated by descending
fracturing curves, with one stable type I well and one stable type II well; the fracturing curves of an
up-down type III reservoir are mainly of the fluctuating type and ascending type and one well is of
descending type II; the fracturing curves of an up-down type IV reservoir are mainly of the descending
and fluctuating type; the fracturing curves of an up-down type V reservoir are all of the rising and
fluctuating type. The fracturing curves of an intervening interval type I reservoir are all stable and of
the descending type; the fracturing curves of an intervening interval type II reservoir include stable,
descending, rising, and fluctuating types; the fracturing curves of an intervening interval type III
reservoir are mainly of rising type II, with fluctuating and rising type I curves. The fracturing curves of
multi-layer superposition type are distributed from the stable type to the fluctuating type, but mainly
embody the fluctuating type and the rising type.

According to the fracturing curves of reservoir type with different coal structure combinations,
and the fracturing effects of different reservoir types, the fracturing effects of the reservoir are analysed
in terms of their different coal structure combinations. From Figure 10, the up-down type I and
intervening interval type I reservoir mainly have stable fracturing curves, but the former has a relatively
higher stable type II fracturing curve. This is because the two types of reservoir contain similar
proportions of hard coal. Compared with hard coal, soft coal has a lower hardness, a lower fracture
pressure, and large differences in physical properties. The interlayer effect is significant when a hard
coal and a soft coal appear in the same coal reservoir. For example, when a coal reservoir is composed
of hard coal and soft coal with the hard coal on the top and the soft coal on the bottom, the soft coal is
first to be broken, which inhibits the extension of fractures in the hard coal during hydraulic fracturing.
This affects the fracturing effect in the hard coal and the overall fracturing effect is poor. An intervening
interval type I reservoir is made up of three layers coal, soft coal, hard coal, and soft coal respectively.
Two layers of soft coal can inhibit extension fracture, to a greater extent than in an up-down type I
reservoir, therefore, the fracturing effect is slightly poorer than that in an up-down type I reservoir.
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The fracturing curves of an up-down type II reservoir are mainly of the descending type and
the fracturing effect is inferior to that of up-down type I and intervening interval type I reservoirs.
The fracturing curves of an intervening interval type II reservoir are mainly of the fluctuating and
rising types. The fracturing effects are inferior to those in up-down type I, intervening interval type
I, and up-down type II reservoirs; because such a reservoir contains either two hard coals between
one soft coal, or two soft coals between one hard coal, the coal thickness proportion of different coal
structures is approximately 1:1:1.

Although the descending curve of an up-down type IV reservoir is above than that of an up-down
type III reservoir, the thickness of hard coal in an up-down type III reservoir accounts for a higher
proportion of the total thickness and the ratio of the thickness of hard coal and soft coal is approximately
1:1. The interlayer influence is relatively small, so the fracturing effect is better than that in an up-down
type IV reservoir.

The fracturing curves of intervening interval type III and up-down type V reservoirs are all of
the rising type and fluctuating type, but the rising type II curve of the former occurs more often than
the latter, so the fracturing effect is inferior to the latter. The thickness proportion of soft coal is over
70% in both reservoirs, but the former reservoir contains soft coal between two layers of hard coal,
so is significantly affected by interlayer effect, so the fracturing effect is relatively poor. Multi-layer
superposition reservoir is dominated by fluctuating and rising curves, but other types of curves are
also distributed therein, indicating that the reservoir type is complex, and the operators should select
an appropriate fracturing technique. Therefore, the overall fracturing effect in this type of reservoir is
better than that of intervening interval type III reservoirs.

In conclusion, up-down type I and type II reservoirs (proportion of hard coal >60%) and interval
type I reservoirs (proportion of hard coal >70%) are prone to form stable and descending fracturing
curves, resulting in good fracturing effects. Interval type II (hard coal:soft coal:hard coal or soft coal:hard
coal:soft coal approximate 1:1:1) and up-down type III (hard coal:soft coal =1:1) form descending type
II, rising type I, and fluctuating type I fracturing curves, followed by good fracturing effect; up-down
type IV and V reservoirs (proportion of hard coal <40%), interval type III reservoirs (proportion of hard
coal <30%), and multi-layer type reservoirs are prone to form fluctuating and rising fracturing curves,
with poor fracturing effects. The fracturing effect is ranked (in descending order) as: up-down type I,
intervening interval type I, up-down type II, intervening interval type II, up-down type III, up-down
type IV, up-down type V, multi-layer superposition type, and intervening interval type III reservoirs.

5. Conclusions

The main conclusions are as follows:

(1) The fracturing curves are mainly of the descending or stable types when the hard coal ratio is
above 70%, and the fracturing effect is good. The fracturing curves are mainly of fluctuation,
or rising types when the soft coal ratio is above 50%, which has a negative effect on the exploitation
of coalbed methane.

(2) For coal with different coal structure combinations, hard coal often cannot be easily transformed
because of their different mechanical properties when conventional hydraulic fracturing
technology is used to fracture the whole coal segment.

(3) The hard coal is only fractured for the up-down coal reservoir. The intervening interval coal
reservoir is used to perforate the middle hard coal by staged fracturing. The multi-layer
superposition coal reservoir is reformed by top coal fracturing.
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Nomenclature

Roman Symbols
A Area of fracturing cracks, m2

Q1 Filtration loss of fracturing fluid during fracturing, m3

Q2 Amount of fracturing fluid at the beginning of filtration after cessation of pumping, m3

Qt Amount of fracturing fluid during fracturing, m3

k Post-fracturing permeability, µm2

t1 Fracturing time, s
p Flow pressure, MPa
E Young’s modulus, MPa
L Half-length of the crack, m
w(x) Crack width at x, m
∆t Time to reduce the reservoir pressure upon cessation of pumping on the ground, s
rw Wellbore radius, m
Ct Volume comprehensive compression coefficient, dimensionless
S Epidermal coefficient, dimensionless
B Formation volume coefficient of water, dimensionless
pe Reservoir pressure, MPa
Greek Symbols
υ Seepage velocity of fracturing fluid, m/s
µ Liquid viscosity, MPa·s
σ Net pressure, MPa
ν Poisson’s ratio, dimensionless
ϕ Porosity, %

Abbreviations

CBM Coalbed methane
GSI Geological strength index
DEN Density
GR Natural gamma
CALX Calliper in the X-direction
CALY Calliper in the Y-direction
IFO Injection fall-off

KGD Khristianovic-Geertsma de Klerk
UC Undeformed coal
CC Cataclastic coal
GC Granulated coal
MC Mylonite coal
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