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Abstract: A twenty-four-year on-going project of acid gas sequestration in a deep geological structure
was subject to detailed modelling based upon a large set of geological, geophysical, and petrophysical
data. The model was calibrated against available operational and monitoring data and used to
determine basic characteristics of the sequestration process, such as fluid saturations and compositions,
their variation in time due to fluid migrations, and the gas transition between free and aqueous phases.
The simulation results were analysed with respect to various gas leakage risks. The contribution
of various trapping mechanisms to the total sequestrated amount of injected gas was estimated.
The observation evidence of no acid gas leakage from the structure was confirmed and explained
by the simulation results of the sequestration process. The constructed and calibrated model of the
structure was also used to predict the capacity of the analysed structure for increased sequestration
by finding the optimum scenario of the risk-free sequestration performance.

Keywords: gas sequestration; geological structure; reservoir modelling; leakage risk; trapping
mechanisms; sequestration capacity

1. Introduction

The long-term acid gas sequestration project has been carried out in the Borzęcin structure in
western Poland since 1996 [1]. Several other projects of acid gas (mainly CO2) sequestration in deep
geological structures were performed at that time, as described below.

The Salah Project [2] was started in 2004 and suspended in 2011 due to concerns about the integrity
of the seal. During the project lifetime 3.8 MT of CO2 was successfully stored in a depleted gas
reservoir located near the gas processing plant. The storage formation was a 1.9 km deep Carboniferous
sandstone unit at the Krechba field, and three long-reach horizontal injection wells were used to inject
the CO2 into the down-dip aquifer leg of the gas reservoir.

GDF K12-B Offshore CO2 Injection Project [3] re-injects the extracted CO2 into the offshore gas
field. Prior to transport to shore, CO2 is removed from the natural gas, and since 2004, it is partly
injected into the gas field, at a depth of approximately 4000 m. Up till 2010 approximately 80,000 t CO2

has been re-injected.
Utsira Sand CO2 Storage Project [4] consists in the injection of CO2 from the Sleipner gas condensate

field into the Utsira Sand—a major saline aquifer of late Miocene or early Pliocene age. CO2 is injected
with a deviated well, near-horizontal at the injection point 3000 m from the platform at a depth of 1012
m bellow msl about 200 m below the reservoir top. The injection started in 1996 with a yearly rate of
approximately 0.9 MT during the first years.

The IEA GHG Weyburn–Midale CO2 Monitoring and Storage Project [5] launched in 2000 and
continued through to 2012 examined carbon dioxide (CO2) injection and storage into two depleted
oilfields in south-eastern Saskatchewan. During the life of the project, approximately 8500 tonnes per
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day of CO2 were captured from a coal gasification facility. The gas was compressed to a liquid phase
and transported via a 320 km pipeline to the Weyburn and Midale fields for injection.

Rotterdam Capture and Storage Demonstration Project [6] was planned as one of the first
large-scale, integrated Carbon Capture and Storage (CCS) demonstration projects on power generation
in the world. The main objective of the project was to demonstrate the technical and economic feasibility
of a large-scale, integrated CCS chain on power generation. The project capture plant was planned
to have a capacity of 250 MWe equivalent. The project was to show that it can be adapted to the
requirements of a coal-fired power plant with the use of ‘post combustion’ technology. The project was
called off in 2017.

Snøhvit CO2 storage project [7] is realized in Snøhvit Unit Area located offshore in the northern
Norwegian Sea. It consists of three gas fields which were discovered between 1981 and 1984. The natural
gas contains 5–8% of CO2. CO2 is separated from the natural gas and piped back to a formation at
the edge of the reservoir, where it is stored 2700 m beneath the seabed. Project started at 2007 and
assumed the injection rate about 700 KT per year.

The Borzęcin case is distinguished not only by its duration (above 24 years) but also by a specific
operational scheme: the natural gas reservoir localized at the structure top produces hydrocarbon
gas contaminated with CO2 (0.3%) and H2S (0.1%) components; this gas is subject to the sweetening
process (using MEA technology) and the resulting by-product of acid gas (ca. 78% of CO2, 20% of
H2S) is injected back to the underlying, water-bearing zone influencing the original gas reservoir cap.
This reinjection has become the key and unique element of the Borzęcin project [8].

The operational activities of the project include concomitant monitoring of the process: regular
measurements of the composition of gas and brine produced by the reservoir producing wells,
composition of the soil gas at the reservoir surface, corrosion processes in well piping, in addition to
conventional monitoring of a gas reservoir. As a consequence, a large set of data was acquired that
provides valuable input information to characterize processes taking place in the Borzęcin structure
during the sequestration project.

The only practical way to quantitatively characterize various reservoir processes is numerical
modelling [9–13] of the geological structure and simulations of their development with the constructed
model. In particular, effective numerical simulations are essential to understanding the implications
of long-term geological storage, evolution of the injected gas plume under storage conditions,
storage integrity, risk analyses of injected gas leakage, and other operational aspects of the project.
The cross-validation between numerical model results and monitoring data play a major role in the
development of storage future performance and updated site characteristics.

This paper briefly describes the modelling procedure of the Borzęcin project including the model
construction, its calibration, discussion of the simulation results with special attention paid to analysis
of various risk events and conclusions of significant characteristics of the storage site.

2. Geological Setting and Model Construction

2.1. Geological Setting

The Borzęcin natural gas field was discovered in 1969 in the region of the Zielona Góra basin in
the southern part of the Pre-Sudetian Monocline [14]. The Borzęcin structure includes an anticline
with two local uprisings. The portions of the Borzęcin reservoir composed of the Basal limestone and
Rotliegend sandstone formations. The accumulation of gas was discovered at the depth of 1380 m in
intervals which included Rotliegend and carbonate horizons of the Zechstein. Both pay horizons are
hydrodynamically connected. The top of the reservoir is confined by overlying Zechstein strata and
the bottom by underlying water.
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2.2. Geological Modelling

A geological model of the Borzęcin structure was generated based on the broad set of data
including a set of structural maps of main structure horizons: the Basal limestone and the Rotliegend
sandstone formations. The map of Basal limestone top together with line A–A’, defining the position
of a vertical cross section, is shown in Figure 1.

Figure 1. Structural map of the Basal limestone top. Vertical cross section line A–A’.

In order to generate a basic parametric model of the structure, well survey data were used that
included: geophysical log profiles, core sample measurements, well test results, etc. Those data
resulted in lithological, stratigraphic, and geophysical detailed structures for all tested wells. In order
to generate spatial distributions of basic geological parameters (porosity, permeability, net-to-gross
ratio [NTG]), a 3D variographic analysis was performed for each of those parameters.

Resulting anisotropic variogram coefficients (sill, range values along main directions) together
with parameter values determined at well positions were input parameters to generate stochastic
realizations of corresponding spatial distributions. The averaging of such realizations resulted in
the final distributions constituting a parameter model of the structure. Figure 2 presents vertical
distributions of the main parameters: porosity and permeability along A–A’ vertical cross section.

Figure 2. Geological parameter distributions along the vertical cross section (A–A’).

3. Dynamic Simulation Model

3.1. Model Construction

The geological model was used as an input to construct the dynamic simulation model of the
Borzęcin structure [15]. The model grid in its basic part consists of nine layers with their thickness
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varying between 5 and 13 m. Lateral sizes of the grid blocks equal to 80 × 80 m and enumerate up to
77 × 128 blocks. The 3D view of the model is shown in Figure 3. Its top view is shown in Figure 4.
The cross section of the model structure is shown in Figure 5. The water–gas contact at the structure top
defines reservoir contour and divide the model into the inner reservoir part and the outer surrounding
aquifer part, as shown in Figure 6. In addition, the bottom layer of the model connects to underlying
aquifers represented by analytical models of the Carter –Tracy type.

Figure 3. 3D view of the reservoir simulation model.

Figure 4. Top view of the reservoir simulation model. Localization of additional well W40.

Figure 5. Vertical cross section of the reservoir simulation model along line A–A’.

Figure 6. Top view of the reservoir simulation model including surrounding aquifer. Definitions of
partially isolated reservoir regions—see Section 3 for details.
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Next, well data (well localizations, trajectories, diameters, completion intervals) were implemented
into the model.

Model properties are supplemented with water saturation, Sw, and gas saturation, Sg = 1 − Sw,
functions of capillary pressure, Pc, and relative permeabilities for water, krw, and gas, krg, in the
water–gas system. The former was assumed of the following type (1, 2):

Pc = Pa
1

(Sw∗)
λ

(1)

where : Sw
∗ =

Sw − Swir
1− Swir

(2)

Parameters: end-point capillary pressure, Pa, power law exponent, λ, irreducible water saturation,
Swir of these formula were determined to reconstruct (average) initial water saturation depth profiles
measured in the wells of the reservoir as the functions of the height above the gas–water contact,
and their values were found to be: Pa = 0.5 bar, λ = 0.1 in the Basal limestone, Pa = 0.5 bar, λ = 0.5 in
the Rotliegend sandstone, Swir = 0.1.

The resultant initial gas saturation distribution in the reservoir was presented in Figures 7–9 along
A–A’ vertical cross section and at various layers of the model, respectively.

Figure 7. Initial gas saturation along vertical cross section (A–A’).

Figure 8. Initial gas saturation at the Basal limestone top.

Figure 9. Initial gas saturation at the Rotliegend top.



Energies 2020, 13, 4701 6 of 24

As no measurements were performed for relative permeabilities of samples from the Borzęcin
structure, then their dependences of fluid saturations were assumed to be those of the neighbouring
reservoirs located in the same formations [16]. They accept the following form (3, 4, 5):

krw = (S∗w)
3+2α1 (3)

krg =
(
S∗g
)2[

1−
(
S∗g
)1+α2

]
(4)

where : S∗g =
Sg − Sgr

1− Swir − Sgr
(5)

with: α1 = 0.5 for the Basal limestone, α1 = 1.0 for the Rotliegend sandstone, α2 = −1, Sgr = 0.1.
In order to take into account varying composition of the gas within the structure and, consequently,

its varying properties, a compositional model of the structure was constructed that adopted the
Peng–Robinson equation of state. Six components (N2, CO2, H2S, C1, C2, C3+) of that gas were assumed
with their standard equation of state (EOS) parameters. The composition of original gas is presented in
Table 1. Viscosity properties of the gas were given by the standard Lorentz–Bray–Clark model. All the
basic properties of the gas with varying composition under reservoir conditions were determined
using the above EOS and viscosity model.

Table 1. Composition of original fluid (gas) in the Borzęcin reservoir.

Component Mole Fraction

N2 0.36300
CO2 0.00284
H2S 0.00129
C1 0.61100
C2 0.01970

C3+ 0.00461

Assumed reservoir brine properties from the obtained data are: density: ρw = 1100 kg/m3, salinity:
s = 150 g/l, formation volume factor: Bw = 1.011 Rm3/Sm3 @ P = 154.8 bar, T = 46.8 ◦C, compressibility:
cw = 4.5 × 10−5 1/bar, viscosity: µw = 0.66 cP, @ P = 154.8 bar, T = 46.8 ◦C, and viscosibility: 1/µw

dµw/dp = 6 × 10−5 1/bar.
In order to take into account effects of CO2 and H2S solubility in the reservoir brine, appropriate

dependences of those solubilities upon varying reservoir pressures at the reservoir temperature were
determined based on the laboratory measurements [17]. The measurement results were found to be
best matched by the power-like correlations of CO2/H2S solubility, RS (CO2/H2S) vs. pressure, P (6):

log[Rs(CO2/H2S)] = a0 + a1
∗log(P) + a2

∗[log(P)]2 (6)

as shown in Figures 10 and 11 for CO2 and H2S, respectively. Here, the coefficients a0, a1, a2 were
found to be: a0 = −0.5604/−1.1126, a1 = 1.1871/1.1871, a2 = −0.2685/−0.2685 for CO2/H2S, respectively.
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Figure 10. Solution of CO2 in reservoir brine under reservoir conditions vs. pressure.

Figure 11. Solution of H2S in reservoir brine under reservoir conditions vs. pressure.

3.2. Model Calibration

The simulation model of the Borzęcin structure of which construction was described above was
subsequently calibrated against the complete set of the gas reservoir operational data [18]. The Borzęcin
project operation includes two phases:

1. production phase (1972–1995): production of the original natural gas,
2. injection phase (1996–present): continuation of the gas production concomitant with acid

gas reinjection.

The data of the production phase include gas and water production rates by all the active wells
and regular bottom-hole pressures of those wells. The data of the injection phase include the amount
(Figure 12) and composition (Figure 13) of the injected gas and composition of the produced gas
(Figure 14) with varying contribution of the injecting gas components (CO2, H2S) in addition to the
conventional data of the production wells (Figures 15 and 16).
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Figure 12. Reservoir monthly gas injection. Fraction of total gas injection by 31.08.2019.

Figure 13. Composition of injected gas.

Figure 14. CO2 concentration, CCO2, in gas produced by wells: W4, W21, W22, W24, W27, W31.

Figure 15. Total gas production/injection relative to original gas in place. Total water production/

injection relative to original water in place.
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Figure 16. Bottom-hole pressure of producing wells. Three trends identified as indicated by: (1). W1,
(2). W30, (3). The other wells: W4, W6, W7, W10–W12, W21–W27, W29, W31.

The exemplary results of the calibration process for selected well W4 are given in: Figures 17–19
for bottom-hole pressures, water–gas ratios, and CO2 concentrations of the produced gas, respectively.

Figure 17. Model calibration. Comparison of measured bottom-hole pressure and simulation results.
Well W4.

Figure 18. Model calibration. Comparison of measured water–gas ratio and simulation results.
Well W4.
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Figure 19. Model calibration. Comparison of measured CO2 concentration and simulation results in
gas produced by well W4.

The calibration process concluded with satisfactory match of the model results to the measured
data. In order to obtain this match, several modifications of model parameters were introduced.
The main modification divided the model into three partially separated regions (western, central,
and eastern ones), as shown in Figure 6. This division was necessary due to three different measured
pressure trends, as can be seen in Figure 16. As no faults, macro-fractures, or other structure barriers
were recognized in the structural geological setting; lithological barriers were assumed to separate the
regions. In order to precisely match the pressure trends in this regions, transmissibility properties of
those barriers were determined by multiplying original transmissibility values by the factor of 0.01/0.5
for the barrier between western–central/central–eastern regions, respectively. Effective pore volumes
of those regions were modified by the factor of 0.75/0.80 for the western/central region, respectively.

Other global parameters of the model, that were determined in the calibration process, include
characteristic parameters (Time constant, Tc, Influx constant, β) of the analytical Carter–Tracy models
of aquifers underlying three previously identified regions of the reservoir. Values of these parameters
are given in Table 2.

Table 2. Parameters of aquifer models.

Region
Time Constant, Tc Influx Constant, β

[d] [m3/bar]

Western 0.65 1.89
Central 0.41 1.89
Eastern 0.03 0.25

The global vertical to horizontal permeability anisotropy was found to be kz/kx,y = 0.1 with the
exceptions given in Table 3 where modifications of local transport properties in several well drainage
zones, as found in the calibration process, are presented.

Table 3. Modifications of model parameters from the calibration process.

Drainage Zone of Well Depth Interval Modified Parameter Multiplicative Factor

W1 total reservoir thickness horizontal permeability, kx 0.10
W4 top layers horizontal permeabilities, kx, ky 0.25
W4 total reservoir thickness vertical permeability, kz 0.50

W11 total reservoir thickness Swcr 2.00
W21 top layers horizontal permeabilities, kx, ky 0.10
W21 total reservoir thickness vertical permeability, kz 1.50
W22 total reservoir thickness horizontal permeability, ky 0.10
W24 top layers horizontal permeabilities, kx, ky 0.10
W25 top layers horizontal permeabilities, kx, ky 0.03
W25 total reservoir thickness vertical permeability, kz 1.50
W27 top layers horizontal permeabilities, kx, ky 0.10
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4. Analysis of Simulation Results—Detailed Description of the On-Going Sequestration Process

4.1. Process Basic Parameters

The calibrated model of the Borzęcin structure is used for the detailed analysis of processes taking
place during the sequestration project. Basic analysis refers to the pore pressure evolution within the
Borzęcin structure. As indicated above in Section 3, three partially separated regions are identified
within the Borzęcin structure. Average pressures of those regions significantly decline (as shown in
Figure 20), and presently, they assume a small fraction of the initial value.

Figure 20. Evolution of relative average regional pressures.

These reductions take place despite the behaviour of the surrounding and underlying aquifers.
The amount of total water encroachment is minor compared to the original water in place
(see Figures 21 and 22), yet it cannot be neglected, as it is relevant when considering the pressure and
water-to-gas ratio reconstructions of the producing wells.

Figure 21. Relative water encroachment from underlying aquifer to reservoir regions.

Figure 22. Relative water encroachment from surrounding aquifer to reservoir regions.
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Detailed pressure distributions within the structure volume are shown in Figures 23–25 along the
vertical cross section, at the structure top and bottom, respectively.

Figure 23. Relative pressure distribution along the vertical cross section connecting wells: W29,
W22, W11.

Figure 24. Relative pressure distribution at the structure top.

Figure 25. Relative pressure distribution at the structure bottom.

A local maximum pressure is observed along the completion interval of the injecting well W28.
Its time evolution is shown in Figure 26 for all layers of the well completion. That pressure does not
exceed 40% of the reservoir initial pressure.
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Figure 26. Relative pressure at the completion interval of well W28.

Other interesting results of the simulations concern the reservoir fluid migrations and
consequent mechanisms of CO2 trapping. Figure 27 shows the contributions of various trapping
mechanisms—structural trapping related to the mobile CO2 gas phase, capillary trapping related
to the immobile CO2 gas phase, solution trapping related to the CO2 aqueous phase—to the total
sequestration process.

Figure 27. Contribution of various phases to total CO2 in reservoir.

4.2. Leakage Risk Factor Analysis

The simulation results presented in the above section were used to analyse various gas leakage [19]
risk factors. The maximum pressure is compared with the formation breakdown (fracturing) pressure,
Pbd [20], as calculated from the geomechanical model simulations [21]. The calculated breakdown
pressure distribution within the Borzęcin structure is shown in Figure 28. The maximum pore pressure
during the injection phase of the acid gas sequestration project is much lower than the formation
breakdown pressure. Consequently, there is no risk of any induced fractures to be generated and no
leakage risk due to fracture pathways.

Figure 28. Distribution of the formation breakdown pressure within the Borzęcin structure.
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Another potential leakage pathway may occur through the caprock above the reservoir rock.
Its sealing properties are, first of all, determined by threshold displacement pressure [22,23].
This pressure for the Borzęcin structure can be estimated by analysing initial pressure profile across
gas zone vs. hydrostatic pressure profile in the caprock at the highest point of the caprock–reservoir
rock boundary and by taking into account the complete sealing properties of the caprock under
those conditions. This pressure profile is shown in Figure 29, and the lower limit of the threshold
displacement pressure is found to be 9.2 bars.

Figure 29. Diagram for the estimation of the threshold displacement pressure at the caprock–reservoir
rock boundary under initial conditions.

As the maximum pressure at the structure caprock–reservoir rock boundary is much reduced
compared to the initial pressure, the pressure step across the boundary never exceeds the estimated
threshold displacement pressure. Consequently, there is no leakage risk due to pathways developed in
the caprock.

Another significant characteristic of the acid gas sequestration project is the extension of the gas
plume containing the injected acid gases [24]. As the acid gases are injected into the water-bearing
zone, their presence in the water phase also requires closer examination. The distributions of
relevant quantities are shown in Figures 30–33 for gas saturation, CO2 concentration in the gas phase,
brine saturation, and CO2 solution in the brine phase, respectively.

Figure 30. Distribution of gas saturation in 2019.
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Figure 31. Distribution of CO2 concentration in the gas phase in 2019.

Figure 32. Distribution of brine saturation in 2019.

As seen in the above figures, the extension of the gas plume containing CO2 as well as the CO2

dissolved in the brine are confined within the initial gas cap extension (Figure 8) being the original
reservoir contour. Consequently, there is no leakage risk due to either gas containing CO2 or brine
with dissolved CO2 to spill out beyond the structural trap of the Borzęcin structure.

These results also follow the basic phenomena of multiphase flow of reservoir fluids including
buoyance effects, as can be observed in Figures 30–33 vs. Figures 9 and 10.

Another potential leakage risk is related to the variation of geomechanical status along the existing
wells and, consequently, the bond of the cement to reservoir rock and well casing. This issue will be
the subject of a separate publication concerning geomechanical model of the Borzęcin structure [21].

Figure 33. Distribution of CO2 solution in brine (immobile at Sw < 0.1, mobile otherwise) in 2019.
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To summarise, in the analysed case of the Borzęcin project, results of its simulation modelling
clearly show no leakage risk—a conclusion consistent with the monitoring results [17]. However,
in general, it should be emphasized that lack of measuring evidences during the project operation is
not a sufficient condition for leakage-free sequestration process. This is caused by typically prolonged
migration processes of the gas to leak upwards all the way from the sequestration site to the surface,
where it can be detected. Therefore, the long-term simulation modelling of sequestration projects
proves to be a unique method for the quantitative leakage risk analysis. An example of such long-term
simulations is presented in the next section.

5. Storage Capacity Analysis for a Full-Scale CO2 Sequestration Scenario at Borzęcin

5.1. Simulation Forecast Assumptions

At present, the reservoir properties of the Borzęcin structure are characterized by the following:

– the amount of gas in place is reduced to 85% of the original gas in place (Figure 15),
– the average reservoir pressure is also significantly reduced, in particular, it reaches less than 30%

of the initial pressure in the dominant eastern region of the structure (Figure 20),
– most of the producing wells can be converted to injection wells at relatively low cost,
– in addition, other elements of the existing surface installation can be converted for the purposes

of an alternative sequestration project.

All the above points suggest that the Borzęcin facility can be considered as a potential site of
a large-scale CO2 sequestration project. In the following, reservoir characteristics of such a project
are presented as the results of simulation studies including estimation of the structure sequestration
capacity [25,26].

The existing system of wells does not cover the whole area of the Borzęcin reservoir. In particular,
the western region of the reservoir does not include any operating well. Therefore, one additional well
(W40) is assumed to complete the existing system of wells in the location shown in Figure 4.

As a result, 17 wells (W4, W6, W7, W10, W11, W12, W21, W23, W22, W24, W25, W26, W27, W28,
W29, W30, W31) cover the eastern region, a single well (W30) covers the central regions, and two wells
(W1, W40) cover the western region.

All the wells are assumed to be completed in the water-bearing layers below the gas cap.
The nominal, maximum injection rate is set at 400,000 Sm3/d, and the bottom-hole injection pressure is
limited to 200 bars—the value consistent with the formation breakdown pressure.

Multiple scenarios of the CO2 injection project were performed with the calibrated model of the
Borzęcin structure and tested against the following risk determining factors:

– no spill-out of the injected CO2 beyond the structural trap,
– maximum pressure in the structure volume below the fracturing pressure,
– maximum pressure step across the caprock–reservoir rock boundary below the threshold

displacement pressure.

It should be noted that all the above factors are directly dependent upon the degree of the structure
filling with the sequestrated gas and, thus, uniquely determine its capacity. Another leakages risk
factor—deteriorated well integrity—is not studied here. Its influence upon the structure sequestration
capacity is more complex and depends on various factors not necessarily related to the overall
project characteristics.

The optimum scenario that fulfils the above criteria and maximizes the injected CO2 amount was
calculated. The characteristics of the optimum scenario are presented below.

5.2. Simulation Forecast Results and Analysis

The injection time interval lasts for 113 months (from January 2020 until May 2029). Then the
simulation forecast is extended for the next one hundred years of relaxation the total injection rate is
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constant for 96 months of the gas injection (from January 2020 until December 2027) and is slightly
reduced afterwards while most of the injected CO2 moves to the eastern region of the structure
(Figure 34). The total volume of the injected CO2 exceeds that of the original gas in place (OGIP) and
amounts to 135% of OGIP (Figure 35). The average sequestration capacity coefficients are found to be:
53.20 kg of gaseous CO2 per 1 m3 of pore volume saturated with gas and 3.54 kg of dissolved CO2 per
1 m3 of pore volume saturated with brine. The analysis of various trapping mechanisms [27] results in
the following: most of the sequestrated CO2 (79%) becomes a mobile gas, approximately 20% is in the
immobile gas saturation, and the rest is dissolved in the reservoir brine (Figure 36).

Figure 34. Regional monthly CO2 injection.

Figure 35. Evolution of total CO2 injection.

Figure 36. Contribution of trapping mechanisms to the total sequestration.
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The average reservoir pressures in the three structure regions significantly increase during the
injection phase of the project and slightly decline during the relaxation phase (Figure 37). This pressure
behaviour results not only from the injection schedule but also from the aquifer activities. During the
sequestration project the reservoir water is pushed back to the aquifers (Figures 38 and 39), and this
process effectively increases the reservoir volume available to the injected CO2. The maximum pressure
in the structure volume is observed at the end of the injection phase. Its values at that time are presented
in Figure 40. The maximum local pressure is found along the injecting well trajectories, and its absolute
maximum amounts to 108% of the initial reservoir pressure (Figure 41). This value is much below the
formation breakdown pressure of the corresponding reservoir rock (Figure 28). Hence, there is no risk
of the gas leakage via a fracture pathway as required for the leakage-free sequestration project.

Figure 37. Average reservoir pressure.

Figure 38. Relative water encroachment from surrounding aquifer to reservoir regions.

Figure 39. Relative water encroachment from underlying aquifer to reservoir regions.
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Figure 40. Reservoir pressure distribution at the end of the injection phase (2029).

Figure 41. Maximum pressures along well trajectories. Maximum pressures among all well trajectories.

The next factor of the leakage risk refers to the pressure step across the caprock–reservoir rock
boundary. That step, as a function of time, reaches its maximum value at the end of the injection phase
(2029). The distribution of the step pressure at that time is shown in Figure 42. The maximum value
of the step takes place in the neighbourhood of W22, which is the highest structure point, and its
evolution with time is shown in Figure 43.

Hence, the criterion of the pressure step across the caprock–reservoir rock boundary not exceeding
the threshold displacement pressure (9.2 bars in Figure 29) is fulfilled. This is relevant, as it is among
the risk factors that effectively limits the amount of the injected CO2 and, hence, determines the
sequestration capacity of the structure.

Figure 42. Distribution of pressure step across the caprock–reservoir rock boundary in 2029.
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Figure 43. Pressure step across the caprock–reservoir rock boundary at the high structure point.

Another important factor to ensure the effectiveness of the sequestration process is the extension
of the injected gas plume [24] that should fill out the structural trap to the maximum degree and
avoid the injected gas spill-out beyond the trap. The same comment applies to the brine with the
dissolved gas. In addition, the homogeneity of the injected gas distribution across the structure volume
guarantees the maximum of the sequestration capacity. The corresponding results of the significant
parameters for the analysed case are shown in the following figures:

– gas saturation—Figures 44 and 45,
– CO2 concentration in the gas phase—Figures 46 and 47,
– brine saturation—Figures 48 and 49,
– CO2 dissolved in the brine—Figures 50 and 51.

Figure 44. Distribution of gas saturation along the vertical cross section (A–A’).

Figure 45. Distribution of gas saturation at the structure top.
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Figure 46. Distribution of CO2 concentration in the gas phase along the vertical cross section (A–A’).

Figure 47. Distribution of CO2 concentration in the gas phase at the structure top.

It should be noted that in order to determine the key parameters of the sequestration process, it is
required to extend the examination of the project beyond the end of the injection phase. This allows
for the elongated relaxation phase that typically results in redistribution of fluid saturations and
compositions as well as reservoir pressure variation to be included in modelling.

The scenario presented above maximizes the sequestration capacity of the structure while
maintaining a leakage-free operation of the sequestration process. The scenario of maximum
sequestration capacity is a result of the optimization procedure using multiple simulation forecasts.
Capability of performing the optimization procedure proves to be another significant advantage of the
numerical modelling tool applied to the sequestration project assessment.

Figure 48. Distribution of brine saturation along the vertical cross section (A–A’).
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Figure 49. Distribution of brine saturation at the structure top.

Figure 50. Distribution of CO2 solution in brine along the vertical cross section (A–A’).

Figure 51. Distribution of CO2 solution in brine at the structure top.

6. Summary and Conclusions

This paper presents a study on the quantitative description and analysis of the acid gas (CO2 and
H2S) sequestration in a deep geological structure, where the gas is injected to the water-bearing zone
underlying the natural gas reservoir. The study employs a 3D, compositional reservoir model of the
structure that includes all the significant mechanisms taking place during the sequestration process:
multiphase flow of reservoir fluids, buoyance effects, gas dissolution in reservoir water, gas trapping
by capillary forces.

Due to the large set of operational and monitoring data acquired during 24 years of continuous
project operation, the model undergoes a detailed calibration procedure and provides reliable results of
reservoir fluid migration, redistribution of their saturations and compositions, as well as pore pressure
distributions at various stages of project advancement. These results are also input data to assess
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various risk factors of the stored gas leakage, in particular, leakage due to injected gas spill-out beyond
the structural trap, leakage along induced fractures, or leakage through the caprock.

Although the monitoring data provide hard and direct information about leakage presence or
absence, these data are limited by their space extent and, obviously, to the past and present time.
However, it should be emphasized that lack of measuring evidences during the project operation is not
a sufficient condition for leakage-free sequestration process. This is caused by typically prolonged
migration processes of the gas to leak upwards all the way from the sequestration site to the surface
where it can be detected. Therefore, the long-term simulation modelling of sequestration projects
proves to be a unique method for the complete leakage risk analysis.

Another advantage of a reliable model of the sequestration process is its capability to assess the
future consequences of the sequestration project and to make their analyses. It should be emphasized
that the forecast should include a long-time relaxation period extending beyond the injection schedule of
the project. During the relaxation period, a significant redistribution of pressures and fluid saturations
may occur and usually does occur, which affects leakage risk factors. Therefore, performing project
simulation forecasts comprising relaxation period of sufficient duration is a key requirement for
a thorough analysis of the sequestration project. Again, the application of the project numerical
modelling proved to be a necessary tool of the project assessment. All the above points as referred to
the analysed case were discussed in the paper.

In addition, the reservoir model of the case was applied to determine the maximum sequestration
capacity of the structure while maintaining a leakage risk-free operation of the sequestration process.
The scenario of maximum sequestration capacity was found as a result of the optimization procedure
using multiple simulation forecasts. Capability of performing the optimization procedure proved
to be another significant advantage of the numerical modelling tool applied to the sequestration
project assessment.

Author Contributions: Conceptualization, W.S.; methodology, A.G. and P.Ł.; software, K.M.; validation, W.S.;
formal analysis, W.S.; investigation, A.G., P.Ł. and K.M.; resources, A.G. and K.M.; data curation, P.Ł. and
K.M.; writing—original draft preparation, W.S.; writing—review and editing, W.S.; visualization, A.G. and K.M.;
supervision, W.S.; project administration, W.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This report is part of a project that has received funding by the European Union’s Horizon 2020
research and innovation programme under grant agreement number 764531. Project acronym and title:
SECURe—Subsurface Evaluation of Carbon capture and storage and Unconventional Risks. D2.2 Report
on effects of long-term sequestration process in the Borzęcin structure—observation evidence of the injected gas
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and Gas Company (POGC)—various reports in free format 1972–2019. Personal communication, 2019.
19. Mortezaei, K.; Amirlatifi, A.; Ghazanfari, E.; Vahedifard, F. Potential CO2 Leakage from Geological Storage

Sites: Advances and Challenges. J. Environ. Geotech. 2018. [CrossRef]
20. Jin, X.; Shah, S.N.; Roegiers, J.-C.; Hou, B. Breakdown Pressure Determination—A Fracture Mechanics

Approach. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA,
30 September–2 October 2013; SPE 166434.
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