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Abstract: Many embedded systems are implemented for healthcare, and smart homes and spaces.
These devices are generally designed for elderly care, for monitoring, surveillance, and collection
information. As embedded systems are ubiquitous and pervasive in a smart home, office, or space,
different layout affects not only reduce the implementation cost but also the power density of
electromagnetic waves. This study aimed to develop a multiple-embedded-system optimization
layout to consume less electromagnetic wave power density and gain better communication strength.
For smart offices, we analyzed the layout topology of n-shaped and n-shaped with door layout
categories. On the basis of the location of each embedded system in a communication center via an
n-shaped layout, we investigated the electromagnetic wave effect to the local, direct, and semidirect
effects. Indirect and subindirect effects were also studied in the n-shaped layout with a door.
In addition, we derived a set of formulas from the scope for the diverse effects to help users to
quickly identify the scope of each effect. To verify the multiple-embedded-system optimization layout,
16 cooperating embedded systems with four test cases in a smart office were used to evaluate the
diverse effects of electromagnetic wave power density and communication strength. Experiment
results showed that the optimization layout consumed 3950 × 10−6 W/m2 electromagnetic wave
power density.

Keywords: embedded system; optimization layout; electromagnetic wave power density

1. Introduction

An embedded system is a unique, specific, and highly customized computer system. It consists
of a microcontroller and a few input/output devices. Inside the microcontroller are the central
processing unit (CPU), program and data memory, and input/output peripheral components.
Those components provide simple architectures for a program to execute unique and specific
tasks. Additionally, an embedded system has the characteristics of high reliability, less power
consumption, easier implementation, being lightweight, and lower cost. Simple architectures with
many characteristics attract developers to develop diverse applications for consumer electronics,
communication and control industry, and smart appliances.

Simple architectures and characteristics, and diverse peripherals and input/output devices,
create various embedded systems such as for temperature, humidity, or light control. Frequently used
peripherals have a universal asynchronous receiver/transmitter (UART), serial peripheral interface
(SPI), interintegrated circuit (I2C), or secure digital-input/-output (SDIO) interface. They can be used to
develop infrared-distance photoelectric data collection, collision-event avoidance, light on/off control,
or object-tracking devices [1]. Each embedded system combines one, two, or more peripherals into
its design, corresponding to the design specifications. One real-life embedded system is presented
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in [2] that comprises a processor, memory, touch screen, display, and UART. It is an embedded e-book
system with ARM9 CPU, 32 MB flash memory, a 3.5-inch touch screen, and audio UART. It reduced the
design size and cost to smaller and cheaper than those of a personal computer. That is, each component
in an embedded system is necessary while tasks are being executed. Consequently, one embedded
system does not have any redundant components unless the function of a component is integrated into
a microcontroller.

Figure 1 shows diverse embedded systems with various peripherals to connect to miscellaneous
sensors. One embedded system is demonstrated in Figure 1a that consists of a microcontroller with
UART and I2C peripherals. The UART peripheral is generally used to implement RS-232 to connect
two devices. It limits scalability due to merely connecting two devices. If an embedded system needs
to connect more devices, a solution is adopting the I2C peripheral. Another embedded system is
presented in Figure 1b that comprises a microcontroller, and UART and SPI peripherals. The SPI
interface is faster than I2C is. Another embedded system is illustrated in Figure 1c that is composed of
a microcontroller, UART, SPI, and SDIO. The SDIO interface can not only connect more devices. It also
extends communication by wired or wireless protocols. Figure 2 shows four applications adopting the
aforementioned embedded systems in a smart home, office, or space.
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There is a rising number of embedded systems that integrate sensors to work in a smart home.
According to sensor market trends, it is expected that a massive number of sensors will be deployed
in future households. Therefore, Klemenjak and Elmenreich [3] aimed to analyze user behavior and
energy consumption. They presented an open-hardware energy measurement approach to reflect the
power consumption of a certain appliance and impact on the environment. Visutsak and Daoudi [4]
addressed smart home technology for the elderly, and proposed a specific smart home model with
a selection of passive and active-intervention devices. In order for devices to communicate with
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each other, the Internet of Things is usually adopted as the network technology. Florea et al. [5]
addressed several standardized protocols with diverse networking levels on embedded devices to
achieve low memory, processing power, and data rate. Chen et al. [6] also applied the Internet of
Things to interconnect and have embedded systems and smart devices to collaborate in cyber–physical
systems. In the smart-sensory-furniture (SSF) project of ambient assisted living, Bleda et al. [7]
presented an SSF sensor layer for sensing massively distributed objects with energy limitations
and other factors. Researchers such as Chen et al. [6], and Bleda et al. [7] expressed a need to
process the awareness information from pervasive sensors because they adopted Internet of Things
technology. Lalanda et al. [8] defined a self-aware solution relationship mechanism and proposed
context-management software in a service-oriented pervasive environment. As opposed to software,
Adiono et al. [9] presented prototyping for controlling devices in smart homes. Considering the shift
from the smart home to an overall smart space, issues relating to interconnectedness, collaboration,
monitoring, management, control, or power consumption have become more complex. Zeng et al. [10]
proposed a system-level design approach for smart spaces that constrained cost and power consumption.
Regarding it as a multiobjective issue, Deuri and Sathya [11] proposed the cricket-chirping algorithm,
and validated their solution using multiobjective test functions. It was used to solve the disc brake
and weld beam design problems. As a problem from multiple object functions evolves to multiple
levels, Dutta and Datta [12] applied a combine-and-transform method to combine both levels of a
multiobjective optimization problem to a single level. Zhou [13] presented a decomposition-based
multiobjective tabu search algorithm for multiobjective unconstrained binary quadratic programming
problems. The procedures included uniform weight-vector collection decomposed into an aggregation
function set and tabu search. Experiment results showed that the proposed solution was effective in
meeting its benchmarks.

2. Problem Formulation

A smart office usually splits spaces into business, work, or meeting room areas. A smart home
has a few spaces, such as the living room, kitchen, bedroom, and dining room. These spaces generally
have some embedded systems set up for collecting data, detecting smoke, or tracking objects for
office protection or home care. From an architecture viewpoint, those embedded systems form
distributed embedded systems with wireless services in different spaces to the communication
center for transferring data. However, interfering substances such as walls, doors, furniture,
beam columns, and electromagnetic radiation implicitly or explicitly affect communication strength
between embedded systems and the communication center, resulting in each embedded system needing
more electromagnetic wave power density for data transfer. Consequently, locations in different
spaces of distributed embedded systems and the communication center, called the embedded system
layout, require a good arrangement for better electromagnetic signal strength and less electromagnetic
wave energy consumption. Moreover, in focusing on an embedded system layout, we assumed the
following. First, due to electromagnetic radiation, electromagnetic wave power density through walls
is classified into semidirect, indirect, or/and subindirect effects. Second, wall reflection and absorption
were ignored because they are hard to identify. Third, electromagnetic wave power density was
generated by the communication center and embedded systems. Lastly, the measured electromagnetic
wave power density included the transmitter and received data.

3. Multiple-Embedded-System Optimization Layout

3.1. Initial Measurement for Electromagnetic Wave Power Density

This work studies the embedded system-layout approach for better electromagnetic signal strength
and less electromagnetic wave power density at smart offices. Figure 3 demonstrates an example of a
multiple-embedded-system layout at a smart office with business, work, and meeting room areas for an
indoor floor plane. Each embedded system was named S0, S1, . . . , and S15, respectively. The location
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and distance layout considered electromagnetic wave strength and power density. Electromagnetic
waves are ubiquitous and they propagate energy through space. Two expressions, -dBm and power
density, are frequently used to assess the electromagnetic wave effect.
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The former is used to define electromagnetic signal strength in the microwave (MW) or
radio-frequency (RF) field. It is generally represented as negative. The range from 0 to 80-dBm
represents electromagnetic wave strength. Being nearer to zero indicates better electromagnetic
strength. The latter is used to evaluate the power consumption per transmitter area between source
and receiver.

Electromagnetic waves are ubiquitous in any environment. In order to investigate the original data
of electromagnetic signal strength and power density, shown in Figure 3, we measured electromagnetic
wave strength and power consumption per area at S0, S1, . . . , and S15 with a Wi-Fi analyzer [14],
multiple-route optimization layout (MROL) applications, and a Tenmars TM-196 instrument [15].
We measured 16 different locations for two reasons: (a) each location was a candidate for setting
up an embedded system, and (b) to analyze the effect of locations and distances for various layouts.
On the one hand, the Wi-Fi analyzer, downloaded for free from the Google app store, could be used
to detect the electromagnetic wave strength of a wireless access point in space. On the other hand,
we developed the multiple-route optimization layout (MROL) application to obtain a better layout with
better electromagnetic signal strength and less electromagnetic power density of embedded systems.
Both applications were executed in an Android operating system of a mobile platform. Table 1 shows
the results of the original data from Figure 3. The Location column represents the site of embedded
systems. The Dist. column represents the distance between the communication center and embedded
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system. The -dBm column indicates the electromagnetic signal strength, and the Power Density column
shows power consumption per area. Figure 4 shows the original data of electromagnetic wave power
density for S0, S1, . . . , and S15.

Table 1. Original data of signal strength and total electromagnetic wave power density for S0, S1, . . . ,
and S15. Note: MROL, multiple-route optimization layout.

Wi-Fi
Analyzer MROL Wi-Fi

Analyzer MROL

Location Dist. -dBm -dBm Power Density Location Dist. -dBm -dBm Power Density

m (10−6 W/m2) m (10−6 W/m2)

S0 0 78 80 55 S8 9.28 84 87 35
S1 1 79 79 70 S9 13.28 87 85 21
S2 5 79 80 50 S10 17.28 83 81 30
S3 10 87 83 40 S11 21.28 83 81 35
S4 15 95 94 95 S12 25.28 92 88 100
S5 15.03 96 94 120 S13 15.5 86 89 20
S6 4 76 78 70 S14 22 87 88 20
S7 5.66 77 79 20 S15 26 94 94 60

Minor total 667 667 520 Minor total 696 693 321

Total 1363 1360 841
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3.2. Layout Topology

According to the results in Table 1, the location and distance layout affects -dBm and electromagnetic
wave power density. Figure 5 demonstrates layout examples with many embedded systems,
a communication center, and obstacles. Sign 0 in Figure 5a represents a communication center
providing a wireless network service for all embedded systems. Sign 1 represents an embedded system
that works for detecting, monitoring, or collecting data. In reality, location, distance, and also doors
and walls may interfere with or block the communication path between Signs 0 and 1. The white
square under the graph represents interference factors between Signs 0 and 1 such as air, temperature,
humidity, and obstacles. While an embedded system transfers data through white squares via a green
path, it may consume more power density than the red path does. Otherwise, to rearrange the layout
of the communication center with a dotted line, and to a route with a red gain, less power consumption
per area and better communication strength among embedded systems are needed. Rearranging a
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layout results in changes in the locations, distances, and obstacle paths between the communication
center and embedded systems. Either-dBm or power density is affected. As an increasing number
of embedded systems are deployed into smart homes or offices, the layout becomes more complex
for locations, distances, and obstacles between the communication center and embedded systems.
For example, Figure 5b–d illustrates the layout topology for three, six, and nine embedded systems in
smart homes, offices, or other complex environments. Each layout shows two kinds of topologies in
red and green. In fact, there are various layout topologies for each space. One can have multiobjective
optimization with obstacles, better electromagnetic wave strength, and less electromagnetic effect.
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3.3. n-Shaped Layout

Figure 3 shows a business area where some embedded systems were set up. The business area
had three side walls, as shown in Figure 6, which we called an n-shaped layout. In practice, most
designers set the location of a communication center at the center or near-center of an n-shaped space
as shown in Figure 6a–c. For such a space, we analyzed the effect factors of electromagnetic waves as
l1, l2, R, r1, r2, L, and W, which are depicted in Figure 7. For Figure 7a, l1 and l2 represent the length
from the communication center to the edge of the left and the right side, respectively. R is the circle
radius for electromagnetic waves. r1 and r2 are the lengths from the edge of the left and the right
side, respectively, to the circumference. L and W are the length and width for the n-shaped layout,
respectively. There were also five limitations. One was the floor that was limited in the same plane
because the smart office only had two floors in this study. That is, either the upper or the lower floor
did not need to be considered. Another limitation regards the entrance. Both the left and right walls of
the n-shaped layout had an entrance to set up embedded systems, shown with a red circle. The front
wall was not a way in or out, shown by the grid symbol. The other limitations were l1 < W, l2 < W,
and l1 = l2 because the communication center was set at the center or near-center. Either l1 or l2 was
variant, and they were the values corresponding to the location of the communication center.
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Figure 7a presents a six-embedded-system layout in an n-shaped space. According to the results
of the original data measurement in Table 1, we categorized electromagnetic signal strength and power
density distribution into local, direct, and semidirect effects, shown in Figure 7b–d, respectively. First,
the local effect is shown in Figure 7b, and it has three characteristics. (a) The embedded systems
and communication center were located inside the n shape. Therefore, each embedded system could
communicate with the communication center inside the n shape. (b) It was without obstacles between
the communication center and embedded systems, obtaining better electromagnetic signal strength.
(c) This regarded the electromagnetic signal coverage that was dependent on radiation angle a0

between embedded systems and the communication center. On the basis of the aforementioned
characteristics, embedded systems in a local effect could gain the best electromagnetic signal and
the least electromagnetic wave power density. The scope of the local effect can be seen in formula
form below: (

L×W −
L× h

2

)
(1)

where h represents the height of triangle a1a0a2.
Electromagnetic wave power density for embedded systems in a local effect can be evaluated

with the sum of the number of embedded systems as follows:∑
i

Si (2)

where i represents the number of embedded systems.
Second, the direct effect that is illustrated in Figure 7c has three characteristics: (a) The location

of the embedded systems. Embedded systems can directly transmit electromagnetic signals to the
communication center because their locations have better electromagnetic signal strength. (b) It is
without obstacles between the communication center and embedded systems. These two features
are the same as those of the local effect, but the difference is in terms of location and distance.
(c) The electromagnetic signal coverage is determined by the radiation angle from a0 to a2. As shown
in Figure 7c, the area shape of the direct effect can be seen in formula form as follows:
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(R2π×
∠a1a0a2

360◦
) (3)

where R represents the radius of circle X.
Additionally, electromagnetic wave power density for embedded systems can be evaluated with

the sum of the number of embedded systems as follows:∑
j

S j (4)

where j represents the number of embedded systems in direct effect.
Third, the semidirect effect is displayed in Figure 7d, which is the specific location in the

neighborhood of r1 and r2, respectively. It is called semidirect because the electromagnetic signal is
interfered with by wall obstacles. In addition, the effect source may originate from either a local or a
direct effect. Consequently, the area of the semidirect effect consisted of two scopes, as follows:

(R− l1)
2
π×
∠b0a1b1

360◦
(5)

(R− l2)
2
π×
∠c0a2c1

360◦
(6)

where b0a1b1 and c0a2c1 represent the left and right sector, respectively. In addition, the electromagnetic
wave power density of embedded systems can be evaluated with the sum of the number of embedded
systems as follows: ∑

k

Sk (7)

where k represents the number of embedded systems in semidirect effect.
In summary, the optimization power density of the electromagnetic waves of embedded systems

for an n-shaped layout is calculated using

MinP(i, j, k) =
∑

i

Si +
∑

j

S j +
∑

k

Sk (8)

3.4. n Shape with Door Layout

Except for needing to discuss the n-shaped space, another n-shaped space with a door is frequently
seen in smart homes or offices. Figure 8 exhibits five kinds of n-shaped layouts with a door. Figure 8a–c
demonstrates three kinds of n-shaped communication center layouts with a wider door. Figure 8d,e
displays two kinds of communication center layouts in an n shape with a narrower door. We analyzed
the effect factors for n-shaped layouts with a wider and narrower door, shown in Figure 9. Those effect
parameters consisted of l1, l2, R, d1, d2, L, and W, depicted in Figure 9a. l1 and l2 are the lengths from
the center of a circle to the edge of the left and right sides, respectively. R is the radius of the circle for
electromagnetic waves. d1 and d2 represent the length of the left and right door, respectively. L and W
are the length and width, respectively. There were also four limitations. The first is the same as that of
the n-shaped layout that was addressed in Section 3.3. Second, it had an entrance to set up embedded
systems behind the front wall. Third, either a wider or a narrower door was in the way of obstacles
that could interfere with -dBm and power density. The fourth limitation was the communication center
being set at the center or near-center.

Figure 9a presents an n-shaped eight-embedded-system layout with a door space. We categorized
electromagnetic signal strength and power density distribution into local, direct, semidirect, indirect,
and subindirect effects. Figure 9b displays the local effect, whose characteristics were the same as those
of the local effect of the n-shaped layout that was addressed in Section 3.3. According to Figure 9b,
the scope of the local effect can be formulated as follows:
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L×W −
[L− (d1 + d2)] × h

2
(9)

where h represents the triangle height. In addition, electromagnetic wave power density for embedded
systems could be evaluated with the sum of the number of embedded systems as follows:∑

i

Si (10)

where i represents the number of embedded systems.
Figure 9c demonstrates the direct effect with the same characteristics as those of the direct effect of

the n-shaped layout. The scope is in formula form below.

R2π×
∠a1a0a2

360◦
(11)

where R represents the radius of circle X. In addition, electromagnetic wave power density for
embedded systems can be evaluated with the sum of the number of embedded systems as follows.∑

j

S j (12)

where j represents the number of embedded systems in direct effect.
Figure 9d demonstrates the semidirect effect that was located in the neighborhood of the direct

effect. It consisted of the left and right sectors, respectively. Therefore, the scope could be formulated
as follows:

{[(R− l1)
2
π×
∠b01b00b02

360◦
]}+ {[(R− l2)

2
π×
∠b11b10b12

360◦
]} (13)

where b01b00b02 and b11b10b12 represent the left and right sectors, respectively. If d1 = d2 and l1 = l2,
the scope can be formulated as follows:

{[(R− l1)
2
π×
∠b01b00b02

360◦
]} × 2 (14)

In addition, electromagnetic wave power density for embedded systems can be evaluated with
the sum of the number of embedded systems as follows:∑

k

Sk (15)

where k represents the number of embedded systems in semidirect effect.
Figure 9e demonstrates the indirect effect that was located in the neighborhood of the local effect.

It consisted of the left and right sectors, respectively. Therefore, the scope could be formulated as
follows:

{[(R− l1 − d1)
2
π×
∠c01c00c02

360◦
]}+ {[(R− l2 − d2)

2
π×
∠c11c10c12

360◦
]} (16)

where c01c00c02 and c11c10c12 represent the left and right sector, respectively. If d1 = d2 and l1 = l2,
the scope is as follows:

{[(R− l1 − d1)
2
π×
∠c01c00c02

360◦
]} × 2 (17)

In addition, electromagnetic wave power density for embedded systems can be evaluated with
the sum of the number of embedded systems as follows:∑

m
Sm (18)
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where m represents the number of embedded systems in indirect effect.
Figure 9f demonstrates the subindirect effect that was located at L. It consisted of the left and right

sectors, respectively. Therefore, the scope could be formulated as follows:

{[(R− l1 − d1 −W)2
π×
∠e01e00e02

360◦
]}+ {[(R− l2 − d2 −W)2

π×
∠e11e10e12

360◦
]} (19)

where e01e00e02 and e11e10e12 represent the left and right sector, respectively. If d1 = d2 and l1 = l2,
the scope could be formulated as follows:

{[(R− l1 − d1 −W)2
π×
∠e01e00e02

360◦
]} × 2 (20)

In addition, electromagnetic wave power density for embedded systems can be evaluated with
the sum of the number of embedded systems as follows:∑

n
Sn (21)

where n represents the number of embedded systems in subindirect effect.
The optimization power density of electromagnetic waves for an n-shaped layout with a door is

calculated with

MinP(i, j, k, m, n) =
∑

i

Si +
∑

j

S j +
∑

k

Sk +
∑

m
Sm +

∑
n

Sn (22)
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4. Experiment Results

Figure 3 illustrates the smart office with business, work, and meeting room areas where a
communication center C and 16 embedded systems S0, S1, . . . , and S15 were set up. We implemented
embedded systems with a wireless function in an Arduino WeMos D1 miniplatform [16]. The evaluation
tools included hardware and software. Hardware was the Tenmars TM-196 instrument [15],
Fortinet FortiAP-221C [17], and mobile power bank [18], which were used to measure electromagnetic
wave power density, serve wireless service, and supply power for Arduino embedded systems,
respectively. We developed MROL application software to detect and assess the communication quality
among the communication center and embedded systems.

According to the locations of the 16 kinds of embedded systems in Figure 3, four candidates of the
communication center, namely, C1, C2, C3, and C4, were used to assess the proposed multiobjective
optimization embedded system layout. Figure 10 exhibits the first test case C1 at the business area.
The measured results of electromagnetic wave power density and signal strength are shown in Figure 11
and Table 2, respectively. The Dist. column represents the Euclidean distance from C1 to the embedded
system. The -dBm column represents the communication strength between C1 to the embedded
system. The P.D. column represents electromagnetic wave power density. The first test case was
mainly used to assess the n-shaped layout effect. For S0, it was set at local effect. Consequently, it had
the best communication strength, but consumed the highest electromagnetic wave power density.
The measured data for communication strength and electromagnetic wave power density in Table 2
were 34-dBm and 2500 × 10−6 W/m2, respectively. The significant value of 2500 × 10−6 W/m2 was
because the location was the nearest to C1. S1, S2, S3, S6, and S7 were located in the direct-effect area.
Those embedded systems had better communication strength and electromagnetic wave power density.
The measured results were between 39 and 49-dbm for the former, and 30 and 55 × 10−6 W/m2 for the
latter. S8, S9–S12, and S14 worked in the semidirect-effect area. Communication strength progressively
decreased, corresponding to the distance. According to the experiment, communication quality was
worse while the communication strength value was greater than 65-dBm. As a result, S10–S12 were
the candidates to rearrange the locations. S12 measured electromagnetic wave power density to be
40 × 10−6 W/m2. This was different from S10 or S11, perhaps because another unknown communication
center was located in another building close to S12. Other embedded systems S4, S5, S13, and S15

were classified into an n-shaped layout with a door. In order to distinguish the effects from n-shaped
layout, the effect column in Table 2 was labeled in lowercase. S4 worked in the direct-effect area to
gain better communication strength than that of S5. However, it had higher electromagnetic wave
power density than that of S5 due to the direct path of the electromagnetic wave through the door. S5

was located in the semidirect-effect area with weaker communication strength than that of S4. S13 was
located in the indirect effect area with a communication strength of 60-dBm. S15 was located in the
subindirect-effect area with weak communication strength because of a value greater than 65-dBm.
Considering electromagnetic wave power density, all embedded systems consumed 3116 × 10−6 W/m2.

The second test case is demonstrated in Figure 12, where C2 was set as the work area. The measured
results of electromagnetic wave power density are demonstrated in Figure 13. This test case was used
to evaluate the n-shaped layout with a door. In order to distinguish the effect from that of the n-shaped
layout, the effect column in Table 2 was labeled in lowercase. S4 and S5 were located in the local
effect area, resulting in the best communication strength gained, with 33 and 32-dBm, respectively. S5

consumed the most electromagnetic wave power density, 7000 × 10−6 W/m2, in comparison to other
embedded systems due to its location being the nearest to C2. S1 was located in the direct-effect area that
had better communication strength than that of S0. In comparison, with electromagnetic wave power
density to S0, S1, and S0 consumed 50 and 100 × 10−6 W/m2, respectively. S0, S2, S3, S6, S7 to S12, and S14

were located in the semidirect-effect area with values of communication strength from 57 to 74-dBm.
According to the experiment, communication quality was worse while the value of communication
strength was greater than 65-dBm. Therefore, S11, S12, and S14 were the candidates to rearrange the
locations. S13 and S15 were located in the subindirect-effect area with worse communication quality,



Energies 2020, 13, 4758 12 of 17

resulting in them becoming candidates to rearrange the locations. Considering electromagnetic wave
power density, all embedded systems consumed 7800 × 10−6 W/m2.
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Figure 11. Electromagnetic wave power density for C1 to S0, S1, . . . , and S15.

Because the first and second test cases had few candidates for rearrangement, the third and
fourth test cases aimed to decrease the number of rearrangement candidates to improve the embedded
system layout. Figure 14 shows the third test case that set up C3 at the S6 location. Embedded
systems except for S4, S5, S13, and S15 are discussed with regard to the n-shaped layout. From the
viewpoint of -dBm in MROL in Table 3, values from 33 to 56 indicated that those embedded systems had
better communication strength. On the other hand, considering S4, S5, S13, and S15 with an n-shaped
layout with a door, only S15 had worse communication quality. Only one embedded system needed
rearrangement. Considering electromagnetic wave power density, it consumed 3950 × 10−6 W/m2 for
all embedded systems; measured results are illustrated in Figure 15. The final test case set C4 at the
S3 location. Embedded systems except for S4, S5, and S13 are discussed with regard to the n-shaped
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layout. The values of -dBm in MROL ranged from 35 to 73. There were three embedded systems,
S10–S12, with worse communication strength that needed to be rearranged. Embedded systems with
an n-shaped layout with a door had efficient enough communication strength to work.

Table 2. Comparison of electromagnetic wave signal strength and total electromagnetic wave power
density for S0, S1, . . . , and S15 to C1 and C2.

Test Case 1 C1 Test Case 2 C2

Wi-Fi
Analyzer MROL Wi-Fi

Analyzer MROL

E.S. Dist. -dBm Effect -dBm P. D. E.S. Dist. -dBm Effect -dBm P. D.

m (10–6 W/m2) m (10–6 W/m2)

S0 0 31 L 34 2500 S0 15.1 65 sd 65 100
S1 1 36 D 39 55 S1 14.4 55 d 55 50
S2 5 45 D 49 30 S2 14.1 66 sd 66 50
S3 10 43 D 41 50 S3 11.4 59 sd 59 50
S4 15 62 d 56 190 S4 1 33 L 33 200
S5 15 56 sd 60 60 S5 0 32 L 32 7000
S6 4 43 D 39 45 S6 11.1 57 sd 57 60
S7 5.7 45 D 45 30 S7 15.1 60 sd 60 50
S8 9.3 54 SD 54 30 S8 19.1 61 sd 61 20
S9 13.3 61 SD 58 6 S9 23.1 63 sd 63 12
S10 17.3 70 SD 70 0 S10 27.1 65 sd 63 18
S11 21.3 73 SD 73 0 S11 31.1 73 sd 73 20
S12 25.3 76 SD 76 40 S12 35.1 74 sd 74 100
S13 15.5 51 i. 60 25 S13 16.9 67 si 67 30
S14 22 70 SD 65 25 S14 23.4 67 sd 71 20
S15 26 77 si 77 30 S15 27.4 79 si 85 20

Total 893 896 3116 Total 976 984 7800
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Table 3. Comparison of electromagnetic wave signal strength and total electromagnetic wave power
density for S0, S1, . . . , and S15 to C3 and C4.

Test Case 3 C3 Test Case 4 C4

Wi-Fi
Analyzer MROL Wi-Fi

Analyzer MROL

E.S. Dist. -dBm Effect -dBm P. D. E.S. Dist. -dBm Effect -dBm P. D.

m (10–6 W/m2) m (10–6 W/m2)

S0 4 44 L 43 100 S0 10 53 L 53 100
S1 3.4 43 L 41 80 S1 9 49 L 48 80
S2 3.1 38 L 41 80 S2 5 42 L 40 60
S3 8.3 53 SD 51 60 S3 0 35 L 35 3000
S4 11 47 sd 47 200 S4 19.3 52 sd 55 180
S5 11.1 52 i 56 100 S5 19.4 57 sd 54 130
S6 0 35 L 33 3000 S6 8.3 42 L 45 100
S7 4 38 L 40 100 S7 12.3 56 D 53 80
S8 8 49 D 44 30 S8 16.3 64 D 56 20
S9 12 43 D 50 20 S9 20.3 69 D 63 30
S10 16 45 D 49 25 S10 24.3 68 D 68 30
S11 20 52 D 54 35 S11 28.3 80 D 66 35
S12 24 63 D 51 50 S12 32.3 71 D 73 70
S13 13.8 63 sd 55 20 S13 5.5 43 sd 48 20
S14 20.3 61 SD 56 20 S14 12 55 D 41 20
S15 24.3 60 si 71 30 S15 16 64 SD 62 40

Total 786 782 3950 Total 900 860 3995

Considering electromagnetic wave power density, all embedded systems consumed
3995 × 10–6 W/m2; measured results are illustrated in Figure 16. On the basis of all test case results,
the third test case had better electromagnetic wave strength and less of an electromagnetic effect.
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5. Conclusions

Embedded systems with smaller, cheaper, and easier-to-implement characteristics are more
popular for designing smart objects, devices, applications, or services. Recently, there has been an
increasing number of functions, such as wired, wireless, or/and sensor peripherals that are integrated
into embedded systems to provide interconnected and collaborating services. As diverse embedded
systems are continually set and joined up to smart offices, either electromagnetic wave power density
or the communication strength is a significant issue considering energy-saving or cooperation work for
all embedded systems. This work studied the layout of multiple embedded systems for communication
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strength and electromagnetic wave power density optimization. Our prior works measured the original
data of electromagnetic signal strength and power density for smart offices, shown in Figure 3. For the
issue of electromagnetic signal strength, we analyzed deployment topology into an n-shaped layout and
an n-shaped layout with a door in smart offices. In the n-shaped layout, we classified electromagnetic
signal strength into local, direct, and semidirect effects, and their scope. Then, we defined a set of
formulas to determine the effect of each embedded system. We presented local, direct, semidirect,
indirect, and subindirect effects for an n-shaped layout with a door. Each effect was derived from the
scope, and then defined a set of formulas. Those formulas can help users to quickly identify the scope
of each effect while the communication center is set up. In the experiments, we measured each effect in
either the n-shaped layout or the n-shaped layout with a door for four test cases. Experiment results
indicated that the local effect had the best communication strength, but electromagnetic wave power
density was critical. The direct effect had better communication strength and less consumption of
electromagnetic wave power density than the semidirect effect did. By comparing the semidirect
and indirect effects, the former generally had better communication strength than that of the latter.
Regarding the subindirect effect, it consumed the least electromagnetic wave power density, but
communication strength was the weakest among all effects. Lastly, a summary of the experiment
results pointed to diverse effects with the optimization layout for embedded systems.
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