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Abstract: Acquiring energy contained in biomass requires its prior appropriate preparation.
These treatments require some energy inputs, which significantly affect the reduction of the energy
and the environmental balance in the entire life cycle of the biomass energy processing chain. In
connection with the above, the aim of this work is to develop a methodology for the environmental
assessment of biomass grinding in the processing chain for energy purposes. The research problem
is formulated as follows: Is it possible to provide an assessment model that takes into account the
environmental inputs and benefits of the grinding process of biomass intended for further energy
use (for example, combustion)? How do the control variables of the grinding machine affect the
environmental process evaluation? In response to these research problems, an original, carbon dioxide
emission assessment index of the biomass grinding process was developed. The model was verified
by assessing the process of rice and maize grinding on a real object—a five-disc mill—with various
speed settings of the grinding disc. It was found that the carbon dioxide emission assessment model
developed provides the possibility of comparing grinding processes and identifying the grinding
process with a better CO2 emission balance, where its values depend on the control parameters of
the mill.
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1. Introduction

Grinding processes are one of the most commonly used preparatory processes for energy carriers
(fossil and alternative) intended for combustion and co-combustion [1,2] and biofuel production [3–5].
These biomass forms may include plant-based lignocellulose waste [6,7], sewage waste [8,9],
and animal-based meat processing waste [10]. To enhance the utilization of these biomass forms
for direct combustion [11,12] or as a biorefinery feedstock [1,7], size reduction approaches typically
constitute a significant pre-treatment step that must be undertaken [13]. This is because size reduction
operations serve to enhance accessibility to the stored carbon present in biomass. Such size reduction
is predominantly carried out on cylindrical mills, drum mills, ball mills, hammer mills, and disc
mills [13,14]. Hammer and disc mills yield the best results in terms of the grinding product quality,
energy consumption, and efficiency [1,13]. The main goals of grinding granular biomass, as well as
other energy materials (e.g., coal, wood), include the reduction of dimensions, the release of substances
contained in the material structure, and an increase in the material-specific surface area so that the
energy contained in its structure can be released faster [15–18]. In order to maximize the potential
of ground raw materials, energy consumption during grinding (processing) should be as low as
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possible [19]. Unfortunately, mills and grinders currently in use are still characterized by high energy
consumption and low efficiency [15,20]. Undertaking research, creating structural and technological
solutions aimed at improving the energy and environmental efficiency of grinding systems, is significant.
The key element is the implementation of eco-innovative systems, starting with assessment at the
design stage with the use of a multi-criteria analysis, as one example [21,22]. Criteria for the selection
of grinding technology and the assessment of its operation should clearly indicate solutions that meet
the assumptions of sustainable development [23–25].

Assessment criteria that refer to the concept of environmental efficiency can be interpreted as the
efficiency of innovative and environmental actions and the consequences of the environmental impact
of machines, devices, and engineering equipment [26]. The concept of a product assessment based on
the so-called eco-efficiency and related indexes is becoming more and more popular [26,27]. The major
assumption of eco-efficiency is to work out a technological solution with the best cost-to-benefit
ratio while maintaining a reduction of the environmental impacts [27,28]. Huppes and Ishikawa [29]
proposed four indexes to be used for the assessment of a technology’s (Table S1) environmental
productivity (Table S1, Equation (1)), environmental intensity of production (Table S1, Equation (2)),
environmental improvement cost (Table S1, Equation (3)) and environmental cost-effectiveness (Table
S1, Equation (4)) which is a combination of the relations between the environmental indexes and the
economic results. LCA (life cycle assessment) is a method for assessing environmental impacts [30].
LCC (life cycle costing) is used for assessing economic efficiency [31] and PSIA product impact social
assessment is a method used for assessing social impacts [32]. LCA and LCC methods for assessing the
grinding process constitute just one of many other elements to be used to assess technological biomass
processing in its entirety, either for energy or food production purposes [30,33–36]. MFA (material flow
analysis) is another assessment method that focuses on the flow of material between particular
stages of the technological process [37]. Knowledge of the quantitative demand for materials in the
manufacturing process is also used by the MAIA (material intensity analysis), which is based primarily
on determining MIPS (material input per service unit index) (Table S1, Equation (5)), which defines
the amount of natural resources needed to manufacture a product or provide a service [38]. X factor,
defined as the ratio of the eco-efficiency of the product under assessment to that of the reference product,
described in [39], can also be used for eco-efficiency assessment (Table S1, Equation (6)). X factor
makes it possible to determine how far the manufactured product is from the performance level of
the reference product. It allows one to compare different manufacturing variants of the same product
on the basis of the ratio of the product being assessed to the reference product’s ecoefficiency level
(Table S1, Equation (6)). Tahara et al. [40] have proposed the ICEICE (integrated CO2 efficiency index
for company evaluation) including indirect and direct CO2 emissions in combination with economic
effects and total CO2 efficiency, direct CO2 efficiency, and indirect CO2 efficiency calculated on the basis
of indexes (Table S1, Equations (7)–(9). Bennet et al. [41] have developed an optimization tool—Eco
Compass—which can be used to support decision making processes in business to meet the demand
according to sustainable development assumptions. Kasner [42] has proposed an integrated life cycle
index (Table S1, Equation (10)) to determine efficiency in obtaining benefits from technological costs
involved in the entire life cycle, which includes manufacturing costs, operational costs, and post-use
management costs. This index takes advantage of data regarding the environmental impact obtained
with the use of LCA [43]. The indexes and criteria presented herein can successfully be adapted for
evaluation of the grinding process through appropriate modeling. Eco-efficiency models developed for
technology make it possible to compare the technologies under consideration (products) in a scalar form
and select a technology that is best in terms of productivity, the economy, and the environment [44].

Only a few works address the environmental assessment of the grinding process exclusively in
terms of ecology [45–49]. In many works, specific energy consumption and fragmentation degree have
been indicated as two basic criteria for the assessment of this process [50–53]. Flizikowski et al. [45]
proposed an environmental efficiency index to assess the grinding process defined as a ratio of CO2

emissions produced by grinding to the biomass energy use for outlays in the form of emissions of
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equivalent CO2 in the process of grinding (Table S2, Equation (1)). Mroziński et al. [46] showed an
index of environmental non-destructivity defined as a ratio of equivalent CO2 emissions to electric
energy consistent with this equivalent (Table S2, Equation (2)). Kruszelnicka et al. [48] discussed a
material energy efficiency index, which refers to indirect emissions involved in the process of energy
of different materials (Table S2, Equation (3)). In other studies [47,49], Kruszelnicka proposed a
sustainable emissivity index for the environmental assessment of grinding, which also refers to indirect
emissions involved in grinding (Table S2, Equation (4)), making it possible to optimize the grinder disc
process parameter settings.

In view of the above, the aim of the work is to develop a methodology for the carbon dioxide
emission assessment of biomass grinding in the processing chain for energy purposes. The research
problem is formulated as follows: Is it possible to create an assessment model that takes into account
the environmental inputs and benefits of the grinding process of biomass intended for further energy
use (for example combustion)? How do the control variables (the angular velocity of the cutting edges
of working elements) of the grinding machine affect the carbon dioxide emissions of the process [54]?
To obtain an answer to the research problem, a model was developed for the carbon dioxide emission
assessment of the grinding process, including the relations between the benefits from energy biomass
grinding and the environment-related costs used for grinding. Verification of the model was carried
out on a real object—a five-disc mill. Dependences between the angular speed settings of the grinding
discs and the values of the proposed assessment model were identified to indicate parameters that
provide the assessment index with the best values. A mathematical model of the proposed sustainable
CO2 emissions indicator, the test stands and the experiment conditions are described in Section 2.
Section 3 contains the results and a discussion. The discussion has been summarized and the most
important conclusions are included in Section 4.

2. Materials and Methods

2.1. Model of a Sustainable CO2 Emissions Index

The proposed model of a sustainable CO2 emissions index is based on the assumption of
environmental assessment models of the grinding process (Table S2, Equations (1) and (2)) presented
in [45,46]. Equivalent CO2 emissions in the grinding process are closely related to its energy
consumption [45–49]. Considering a system whose aim is to reduce the process, product, machine,
and environmental impacts (e.g., by eliminating CO2) while maintaining its higher efficiency and
providing a high-quality product as well as energy efficiency, the integrated energy purpose of product
(for example, combustion) sustainable CO2 emissions index can be expressed as [54,55]

WZCO2 = ∆BCO2 /NCO2 (1)

where

∆BCO2 —environmental benefits—change in CO2 emissions,
NCO2 —environmental costs of grinding—energy consumption.

The one factor influencing the positive change in carbon dioxide balance can be described as CO2

emissions, for example, from the burnt ground energy biomass XBCO2 , because biomass is a renewable
fuel, which during the growth phase, absorbs an amount of carbon dioxide equal to the emissions from
its energy use [56]. Additionally, in industrial emission monitoring systems, CO2 emission indexes
from biomass are treated as zero [57]. These should be reduced by equivalent CO2 emissions related to
energy consumption in the grinding process XRCO2 in accordance with the equation on environmental
benefits [54]:

∆BCO2 = XBCO2 − XRCO2 (2)

where
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XBCO2 —CO2 emissions from the energy use (for example, combustion) of ground biomass, kgCO2eq,
XRCO2 —the amount of CO2 emissions associated with the use of electricity in the grinding process,
kgCO2eq.

The results of previous research show that the energy properties of biomass (especially its
digestibility, exergy) change depending on the degree of fineness (post-grinding particle size) [46,55,58];
therefore, it was accepted that emissions from the combustion of ground biomass XBCO2 are expressed
as the sum of emissions from the combustion of biomass divided into size classes, according to the
equation [54]:

XBCO2 = mB·
∑

(JACO2i·WBi·qi) (3)

where

mB—mass of ground biomass, kg,
JACO2i—unit CO2 emissions for the i-th size class of biomass, kg·kWh−1,
WBi—calorific value of the i-th size class of biomass, kWh·kg−1,
qi—mass share of the i-th size class of biomass.

The emissions involved in electricity consumption during grinding are described as follows [54]:

XRCO2 = EcM·JKCO2 (4)

where

EcM—total energy consumption of the grinding machine during the grinding of a mass of biomass
mB, kWh,
JKCO2 —emissions of carbon dioxide for the production of electric energy from coal, kgCO2eq·kWh−1.

In this case, environmental costs were assumed as total energy consumption EcM for biomass
grinding. Taking into account the above and Dependencies (3) and (4), the sustainable CO2 emissions
index will take the form [54]:

WZCO2 = (XBCO2 -XRCO2 )/EcM = (mB·
∑

(JACO2i·WBi·qi) − EcM·JKCO2 )/EcM (5)

Knowing that the mass of the ground biomass mB is related to grinding efficiency Q:

Q = mB/t⇒mB = Q·t (6)

Q—grinding efficiency, kg·h−1,
t—time, h,

and that the energy used in the grinding process EcM is equal to

EcM =
∑

Pi·t = Pc·t (7)

where

Pi—power on the i-th grinding element,
Pc—total power of the grinder.

Then Equation (5) assumes the following form:

WZCO2 = (Q·t·
∑

(JACO2i·WBi·qi) − Pc·t·JKCO2 )/Pc·t (8)
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which after being reduced by time t, gives

WZCO2 = (Q·
∑

(JACO2i·WBi·qi) − Pc·JKCO2 )/Pc (9)

In this way, Equation (9), including the most important characteristics of the grinding process,
that is, efficiency, the power of the grinding unit, and the product degree of fineness, is provided.
Both the power and the product degree of fineness depend on the angular speeds of rotating elements.
In the case of multi-disc grinders, this concerns the angular speeds of the grinding discs. Thus, it can
be supposed that the values of the sustainable emissivity index will also depend on the angular speeds
of the discs, which have been verified in this study.

For the machine idle gear, when EcM > 0 and mB = 0, the quantity of emissions from groundmass
is equal to 0, which yields:

WZCO2(min) = (−Pc·JKCO2 )/Pc = − JKCO2 (10)

Thus, the lowest value of emissions that can be assumed by the sustainable indicator is emissions
equal to unit emissions from electrical energy produced from coal (Figure 1).
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The level of emissions of CO2eq from fossil fuels to be sustained by emissions from alternative
fuels occurs at WZCO2 = 0 (Figure 1), that is, when

Q·
∑

(JACO2i·WBi·qi) − Pc·JKCO2 = 0 (11)

Q·
∑

(JACO2i·WBi·qi) = Pc·JKCO2 (12)

In order to reach energy sustainability (with an assumption that the mass to be ground will be
used for the production of electrical energy to power the grinder), the value of electric energy produced
from the combustion of biomass EB should be at least equal to that used in the grinding process:

EcM = EB (13)

The level of energy obtained from combusted biomass is

EB = Q·t·kk

∑
WBi·qi (14)

where:
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WBmin—minimal calorific value from the set of values of the i-th biomass fractions WBi,
kk = 0.4—co-generation coefficient [59].

Substituting Equations (7) and (14) for Equation (13) yields:

Pc = Q·kk

∑
WBi·qi (15)

In an associated production of electric energy from heat energy obtained from biomass combustion,
unit emissions (per 1 kWhe of generated electric energy) JACO2ie is expressed in the following way:

JACO2ie = JACO2i/kk (16)

hence, the value of the sustainable CO2 emissions index for sustainable WZCO2(e) is

WZCO2(e) = (Q·kk

∑
WBi·qi·JACO2ie − Q· kk· JKCO2

∑
WBi·qi)/Q·kk

∑
WBi·qi (17)

after reduction it is
WZCO2(e) =

∑
WBi·qi·JACO2i/

∑
WBi·qi - JKCO2 (18)

and considering Equation (16):

WZCO2(e) = (
∑

WBi·qi·JACO2i/kk)/
∑

WBi·qi − JKCO2 (19)

The minimal value of the sustainable CO2 emissions index occurs for energy sustainability when
100% (qi = 1) of the grinding product (combusted biomass) is the fraction with the lowest unit CO2

emissions, thus yielding:

WZCO2(emin) = (WB(JACO2min)·qi·JACO2min/kk)/WB(JACO2min)·qi − JKCO2 (20)

Considering that qi = 1, Equation (20) takes the form:

WZCO2(emin) = WB(JACO2min)·JACO2min/kk·WB(JACO2min) − JKCO2 (21)

and being reduced:
WZCO2(emin) = JACO2min/kk − JKCO2 (22)

Equation (22) implies that

• if JACO2min/kk > JKCO2 then WZCO2 (e) > 0,
• if JACO2min/kk < JKCO2 then WZCO2 (e) < 0.

2.2. Conditions of Experimental Model Verification

Verification of the model of the sustainable CO2 emissions index involved carrying out an
experiment with the use of a real object. Tests were performed in the following order:

1. Choice and preparation of the test stand;
2. Choice and preparation of the biomass to be tested;
3. Determination of grinding conditions and the tests program;
4. Comminution of the biomass while monitoring functional characteristics of grinding
5. Determination of calorific values and emission values for given biomass fractions

after comminution;
6. Calculation of the value of the sustainable CO2 emissions index;
7. Analysis of the relations between the emissions index and the angular speed of the working

elements cutting edges.
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2.2.1. Test Stand

A mathematical model of the sustainable CO2 emissions index for the grinding process in the
biomass processing chain has been developed to be implemented in a self-regulating control grinding
system. The tests were conducted for a five-disc mill drive. The test stand consisted of a grinding unit
(of a five-disc grinder) equipped with modules to control and monitor the functional characteristics of
the mill control unit and the feed system. Figure 2 shows a view of the test stand.Energies 2020, 13, 330 7 of 21 
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Figure 2. Test stand for monitoring the process of multi-disc grinding, 1—five-disc mill, 2—slide feeder,
3—hopper, 4—control panel, 5—product reception basket, 6—scales for the product, 7—chamber for
measuring the size of the product after grinding.

The main elements of the grinder include the housing, body, working chamber, hopper,
product reception basket, and grinding unit. The grinding unit includes five discs powered by five
electric motors which make it possible to control and monitor the grinding characteristics independently
for each disc. Table 1 provides the most important structural characteristics of the grinder discs.

Table 1. Structural characteristics of a five-disc grinder working discs RWT-KZ5.

Parameter Disc 1 Disc 2 Disc 3 Disc 4 Disc 5

Disc diameter Dn (mm) 274 274 274 274 274
Number of holes ln (psc.) 14 22 27 33 39

Diameter of holes dn (mm) 30 23 21 17.5 17.5
Radius of hole arrangement

in a row 1 (mm) 85 82.4 79.5 79.5 82

Radius of hole arrangement
in a row 2 (mm) 101.5 107.4 95.5 99.5 102

Radius of hole arrangement
in a row 3 (mm) - - 110.5 114.5 117

2.2.2. Comminuted Biomass

The study involved samples of corn and rice grains that were not suitable for food or animal feed
uses. Corn is widely used in the energy sector, especially in biogas production. In Canada, it has also
been used for direct combustion in special stoves [60,61]. Rice, as the plant with the greatest cultivation
area, has great potential to be used for energy production. It is most commonly used in the form of
briquettes [62]. Both comminuted grains can be a good substitute for coal, considering their relatively
high heating values [61,63–65].

Before grinding, the moisture of the grains was assessed on a MAC 210/NP moisture balance
(RADWAG, Radom, Poland) on the basis of the sample mass difference before and after drying,
in accordance with the weighing method given in ISO norm 1446 [66,67]. The moisture of the rice
grains was 13.47% ± 0.02%, while for corn it was 12.68% ± 0.02%, and the average dimension D80 of
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the grains was determined on the basis of granulometric analysis carried out in accordance with ISO
norm 13322-2:2006 [68], by means of a CAMSIZER device (Retsch Technology GmbH, Haan, Germany),
where the results were 2.14 ± 0.02 mm and 8.15 ± 0.02 mm, respectively. Before the grinding process,
grains were subjected to prior initial drying. The rice used in the study was deprived of its husk,
while the corn was separated from the cobs. Before being burned, pellets were made from ground
material that was divided into appropriate dimensional fractions.

2.2.3. Comminution Process Conditions

Emissivity assessment was carried out for a five-disc mill, for the comminution of two grainy
materials: rice and corn. In each case, 1 kg of the material was used; both power intake and torques
that occurred on particular discs were recorded. Data were recorded every 5 s. Grinding efficiency
was determined according to Equation (6). The biomass granulometric content after grinding was
determined by means of a CAMSIZER device (Retsch Technology GmbH, Haan, Germany), according
to ISO norm 13322-2:2006 [68]. The material was delivered by means of a slide feeder with a fixed
input equal to 112 kg·h−1. The angular speeds of the discs were accepted as process variables in order
to find out their impact on the sustainable CO2 emissions index. Summary S∆ω change in the angular
speed on all the discs, starting with the minimal level, that is, from 20 rad·s−1, was accepted as the
variable of the analysis of the relations between the emissions index values and the angular speed.

The experiment plan included five different test programs (PB) and angular speed settings
depending on the manner of the speed growth ∆ω (Table 2), accepted according to [49]. Angular speed
settings were repeatedly changed in the range from 20 to 100 rad·s−1 with a certain gradient ∆ω
(Table 2). Next, the values of the proposed sustainable CO2 emissions index were determined for
each configuration.

Table 2. Settings of the five-disc mill control parameters.

Test
Program

Configuration
No.

S∆ω ∆ω ω1 ω2 ω3 ω4 ω5

rad·s−1 rad·s−1 rad·s−1 rad·s−1 rad·s−1 rad·s−1 rad·s−1

I

1 50 5 20 25 30 35 40
2 100 10 20 30 40 50 60
3 150 15 20 35 50 65 80
4 200 20 20 40 60 80 100

II

1 200 20 100 80 60 40 20
2 150 15 80 65 50 35 20
3 100 10 60 50 40 30 20
4 50 5 40 35 30 25 20

III

1 40 20 20 40 20 40 20
2 85 20 45 25 45 25 45
3 225 25 75 50 75 50 75
4 360 20 100 80 100 80 100

IV

1 40 20 20 40 20 40 20
2 80 40 20 60 20 60 20
3 120 60 20 80 20 80 20
4 160 80 20 100 20 100 20

V

1 240 80 100 20 100 20 100
2 280 60 100 40 100 40 100
3 320 40 100 60 100 60 100
4 360 20 100 80 100 80 100

2.2.4. Determination of Calorific and Emissions Values for Given Biomass Fractions after Comminution

Rice and corn grains were comminuted and divided into dimensional fractions with the use of steel
sieves (Table 3). The division was made by means of a sieve shaker Analysette 3 PRO (Fritsch GmbH,
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Idar-Oberstein, Germany) in accordance with DIN norm 66165 [69]. After the division into fractions,
a pellet maker was used to prepare pellets. Next, 1.5 kg samples were combusted in a pellet Greń
furnace of the EG-Pellet type (GREN sp. z o.o., Pszczyna, Poland). CO2 emissions measurements were
performed by means of a dedicated exhaust fumes analyzer ULTRAMAT 23 (Siemens AG, Nürnberg,
Germany) for approximately 10 min for each sample. The analyzer measures the content of carbon
dioxide (CO2), carbon monoxide (CO), nitrogen oxide (NO), sulfur dioxide (SO2), and dioxide (O2) in
the exhaust emissions.

Table 3. Dimensions of rice and corn fractions used for pellets.

Fraction Dimension (µm)

Rice 0–630 630–1250 1250–2000 >2000
Corn 0–500 500–1250 1250–2000 >2000

Calorific values of the pellets prepared from the ground biomass with dimensions presented in
Table 3 were determined in earlier tests whose results can be found in the authors’ other publications [55].

2.2.5. Analytical Methods

Tools for statistical analysis available in MS Excel (Microsoft, Redmond, Washington, USA) and
Statistica (TIBCO Software Inc., Palo Alto, CA, USA) were used to analyze the results. Basic descriptive
statistics of sustainable emissivity were determined. Relations between angular speeds of the grinder
discs and emissivity were examined using correlation analysis with Spearman’s method and the
analysis of regression and the adequacy of the proposed models. The significance level was accepted
as p < 0.05.

3. Results and Discussion

3.1. Input Variables of the Sustainable CO2 Emissions Model

The following assumptions and limitations were adopted for this study:

• CO2 emissions involved in the production of electric energy from coal is 0.812 kgCO2·kWh−1 [70].
• In the emissions analysis of this paper, only emissions from the grinding and energy-use processes

were considered. Emissions relating to the pelletization process were excluded. The analysis
was limited to energy use in the form of pellet combustion. No other methods were considered,
such as gasification, fermentation, or digestion.

3.1.1. Power Consumption

The power input on each disc of the five-disc grinder was recorded during the experiment.
Figure 3 shows the grinder’s total power input for each configuration of the five testing programs
(Table 2).

An increase in the angular speed of the multi-disc grinder was caused by power consumption
growth (Figure 3). It can also be noted that the highest power input was found for high-speed disc
settings (setting no. 4 from PB III and setting no. 4 from PB V) and lowest for low angular speeds
(setting no. 1 from PB III and setting no. 1 from PB IV). The power input for all the settings was
higher for corn grinding. The power requirement during corn grinding is higher than that during rice
grinding, and this results from the strength properties of both types of grains, which largely depend on
their physical properties, e.g., humidity and internal structure [71]. The forces used to destroy the corn
grain should be higher than those used to permanently deform the rice grain, which translates into a
higher resistance to the movement of the working elements of the crusher (cutting discs) and results in
an increased power requirement in the case of corn grinding [47]. The above statements result from
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the different internal structures of the grains examined—differences in the structure of the endosperm
and tegument (the ground rice was deprived of its husk) [72–74].
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Figure 3. Total power input of a five-disc grinder for the analyzed angular speed settings of
working discs.

3.1.2. Grinding Efficiency

Figure 4 shows the results of monitoring the grinding process efficiency for each configuration
of the disc angular speed setting according to five research programs (Table 2). Grinding efficiency
increased along with an increase in the disc angular speeds (Figure 4). It can also be seen that the
highest efficiency was found for the disc high angular speed settings (setting no. 4 from PB III and
setting no. 4 from PB V).
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Figure 4. Grinding efficiency for the analyzed settings of the disc angular speeds.

3.1.3. Granulometric Content of Biomaterial after Grinding

Knowledge of the percentage share of the accepted dimensional fractions of biomass is needed
to determine the values of the sustainable CO2 emissions index. For this purpose, a granulometric
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analysis of the ground material was performed with the use of a CAMSIZER device (Retsch Technology
GmbH, Haan, Germany). Table 4 shows the results of this analysis for particular settings of the disc
angular speed for rice and corn. The results show that the fraction percentage share was different for
each disc angular speed setting configuration.

Table 4. Granulometric content of biomaterial after grinding for the analyzed disc angular speed settings.

Fraction Percentage Share (%)

Config. Rice Corn

0–630
µm

630–1250
µm

1250–2000
µm

>2000
µm

0–500
µm

500–1250
µm

1250–2000
µm

>2000
µm

I

1 9.4 29.3 56.4 4.9 2.4 32.2 42.3 23.1
2 3.4 13.8 67.8 15.0 2.9 38.2 40.1 18.8
3 6.9 21.0 62.4 9.7 3.0 47.5 38.3 11.2
4 5.8 18.4 63.5 12.3 2.9 44.7 39.4 13.0

II

1 5.8 18.4 63.5 12.3 1.8 26.9 42.0 29.3
2 2.9 12.7 66.6 17.8 2.2 30.9 41.0 25.9
3 2.3 10.1 66.8 20.8 2.0 30.8 37.0 30.2
4 0.9 6.4 67.1 25.6 2.4 32.2 36.3 29.1

III

1 1.7 9.0 66.4 22.9 1.9 27.9 35.8 34.4
2 2.8 11.7 65.7 19.8 2.1 31.1 37.8 29.0
3 8.9 22.5 60.3 8.3 2.0 31.3 42.3 24.4
4 13.3 35.0 48.7 3.0 2.3 39.2 44.4 14.1

IV

1 1.7 9.0 66.4 22.9 1.9 27.9 35.8 34.4
2 2.4 13.7 67.7 16.2 2.4 33.2 38.0 26.4
3 6.3 23.4 62.1 8.2 2.4 36.2 48.7 14.7
4 8.4 28.1 58.1 5.4 2.2 33.0 48.1 16.7

V

1 7.0 27.3 60.5 5.2 1.9 38.1 42.5 17.5
2 9.4 27.2 58.2 5.2 2.1 44.1 42.7 11.1
3 12.4 30.8 53.7 3.1 2.2 42.2 44.4 11.2
4 13.3 35.0 48.7 3.0 2.2 33.0 48.1 16.7

3.1.4. Unit Emissions Index JACO2i for the i-th Dimensional Fraction

A unit CO2 emissions index for a given biomass fraction was determined on the basis of the
analysis of the CO2 content in exhaust emissions. The values of the unit JACO2i index are presented
in Table 5. It can be noticed that CO2 emissions increased along with an increase in the size of the
particles of the biomass, which was used for the preparation of pellets.

Table 5. Unit index JACO2i of CO2 emissions of the i-th fraction.

Rice Corn

Fraction Dimension
(µm)

Unit Emissions Index
(kg·kWh−1)

Fraction Dimension
(µm)

Unit Emissions Index
(kg·kWh−1)

0–630 0.0453 0–500 0.04859
630–1250 0.0356 60–1250 0.05432
1250–2000 0.0745 1250–2000 0.059701

>2000 0.11428 >2000 0.068181

3.1.5. Calorific Values

Calorific values for given dimensional fractions of biomass were accepted according to [55].
Table 6 shows the calorific values calculated into kWh·kg−1.
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Table 6. Calorific values of selected fractions of rice and corn calculated based on [55].

Rice Corn

Fraction Dimension
(µm)

Calorific Value
(kWh·kg−1)

Fraction Dimension
(µm)

Calorific Value
(kWh·kg−1)

0–630 3.97 0–500 3.91
630–1250 3.93 60–1250 4.05
1250–2000 3.89 1250–2000 4.02

>2000 3.85 >2000 3.96

3.2. Carbon Dioxide Emissions Assessment of Grinding by Means of the Sustainable CO2 Emissions Index

The grinding processes carried out in particular research programs were subjected to emissions
assessment. For this purpose, the values of the sustainable CO2 emissions index were determined for
each case on the basis of both Equation (9) and the values of the variables obtained (Figures 3 and 4,
and Tables 2–6). Figure 5 shows the results of the sustainable CO2 emissions index calculation for
the tested multi-disc grinder disc angular speed configurations and the two ground materials—rice
and corn.Energies 2020, 13, 330 12 of 21 
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Figure 5. Results of the sustainable CO2 emissions index for each disc speed configuration.

When analyzing the variability of the sustainable CO2 emissions index, it should be noted that the
desired condition is to reduce the energy consumption for grinding EcM and increase the environmental
benefits ∆BCO2 , i.e., replacing CO2 emissions from coal with CO2 emissions from biomass combustion.
In this case, the value of the proposed index should increase. When comparing the grinding processes,
the more favorable in terms of emissions will be the one for which the sustainable CO2 emissions index
assumes higher values [54].

Based on the results, it was found that the best, in terms of emissivity, both for rice and corn
grinding, were settings VI1 of the angular speed of the grinder discs (Figure 5). The least advantageous
for rice grinding were settings V4, and for corn, settings IV4 (Figure 5). It was noticed that better
emissivity results were obtained for the configuration in which the disc angular speed was low
(for example, I1, II4, III1, IV1). The values of the sustainable emissions index were higher for rice
grinding than for corn grinding in all the disc angular speed configurations, which was caused
primarily by lower energy consumption during rice grinding and higher grinding efficiency. The
values of the emissions index provided sufficient grounds to state that the emissions from electric
energy used in the rice comminution process were sustainable or in fact higher than the emissions
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from combustion of the comminuted biomass for all the analyzed disc angular speed settings because
WZCO2 > WZCO2(em) = 0 (Figures 5 and 6). In the case of corn grinding, two configurations (IV4 and V1)
did not provide emissions sustainability (WZCO2 > WZCO2(em) = 0).
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Figure 6. Sustainable CO2 emissions index for rice grinding on a multi-disc grinder in a function of
power input.

The minimal value of the sustainable emissions index CO2 WZCO2(min), determined on the basis of
Equation (10), was −0.812 kgCO2eq·kWh−1 with the assumption that the electric energy used in the
process of grinding was produced from coal (Figures 6 and 7). In the case of electric energy produced
from natural gas, this would be −0.201 kgCO2eq·kWh−1, from biogas: −0.196 kgCO2eq·kWh−1,
from diesel oil: −0.276 kgCO2eq·kWh−1 [75].
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Figure 7. Sustainable CO2 emissions index for corn grinding on a multi-disc grinder in a function of
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The dependences shown in Figures 6 and 7 indicate that there is no obvious correlation between
power consumption and the sustainable CO2 emissions index when grinding corn, mainly due to the
physico-mechanical properties of the corn grains that affect the grinding process. The influence of the
working unit on the materials being ground and the mass flow phenomena in the grinding chamber are
also crucial. The results obtained clearly show that the grinding process is different for both materials,
which is influenced by differences in the physical and mechanical properties of both grains. In the case
of corn, among other things, a greater unevenness of the grinding process (transient idling phases)
was observed as a result of the material deposited in the grinding chamber as a consequence of the
phenomenon of particle agglomeration, which was not observed in the case of rice. The balanced CO2

emission rate depends, apart from power consumption, on yield and the share of fractions of different
particle sizes. The lack of an obvious relationship between power consumption and a balanced CO2

emission factor in maize grinding is due to the less clear relationship between power consumption
(angular speeds of the grinding discs) and the yield and grain size composition of the grinding product
than for rice. This, in turn, is also dictated by the difference in grain properties such as size. The ratio
between grain size and disc gap is of particular importance for the yield and granulometric composition
of the product. Rice grains are smaller so that they are crushed and drained through the inter-disc
slots more quickly than larger maize grains, which must collide with the cutting edges of the shredder
more times than rice grains before they leave the shredding chamber. The above-mentioned aspects
make less regularity in the shredding of maize, resulting in a moderate relationship between power
consumption and sustainable CO2 emissions.

The minimal value of the emissions index for energy sustainability WZCO2(emin) for rice grinding
was −0.699 kgCO2eq·kWh−1 (Figure 6), whereas for corn grinding, it was −0.690 kgCO2eq·kWh−1

(Figure 7). The value of the emissions index for energy sustainability WZCO2(e) for the analyzed
configurations of the disc angular speed settings are marked with a grey line (Figures 6 and 7). The data
show that the level of energy sustainability was exceeded for all the tested disc angular speed settings
(Figures 6 and 7), that is, the energy produced from biomass combustion was higher than the energy
used in the process of grinding (obtainment of the comminuted product).

3.3. Analysis of the Relations between the Values of the Sustainable CO2 Emissions Index and the Angular
Speed of the Working Elements of the Cutting Edges

To determine the relations between the values of the sustainable CO2 emissions index and the
variable speeds of the working discs, a statistical analysis of the variables was carried out. Table 7
presents the most important statistics that describe the variables and the results of the sustainable
CO2 emissions index. Based on the skewness and kurtosis values, it was found that the distribution
of the values of variables and the results of the sustainable CO2 emissions index differs from the
normal distribution. Therefore, Spearman’s coefficient was used in the correlation analysis to describe
monotonic relations between the variables.

Table 7. Results of the basic statistical analysis for the sustainable CO2 emissions index distribution.

Rp M S K V ¯
x s Min. Max.

WZCO2

Corn 5.96 1.83 0.54 −0.53 76.31 2.42 1.84 −0.24 5.72
Rice 8.51 4.14 0.8 −0.08 50.73 4.82 2.45 1.93 10.44

S∆ω 320 260 0.6 −0.72 63.11 165.5 104.44 40 360
ω1 80 20 0.32 −1.82 66.54 54.00 35.93 20 100
ω2 80 40 0.54 −0.72 44.03 51.75 22.78 20 100
ω3 80 25 0.51 −1.26 57.83 54.00 31.23 20 100
ω4 80 40 0.54 −0.72 44.03 51.75 22.78 20 100
ω5 80 20 0.32 −1.82 66.54 54.00 35.93 20 100

¯
x—mean value, s—standard deviation, M—median, Max—maximal value, Min—minima value, Rp—range,
V—variability coefficient, S—skewness, K—kurtosis.
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Correlation analysis using Spearman’s method revealed that the values of the sustainable CO2

emissions index are negatively correlated with speed increase S∆ω (Table 8). For rice grinding, negative
correlations between the sustainable CO2 emissions index and the first, third, and fifth disc angular
speeds were found as well as the summary increase in angular speeds S∆ω. The results show that
along with an increase in the multi-disc grinder angular speeds the values of the sustainable CO2

emissions index decrease. This results, among others, from the dependence of power consumption and
efficiency on angular speeds (of the rotating elements) as demonstrated in [25,47,76,77], which show
that power consumption and efficiency increase along with an increase in grinder disc angular speeds,
which, in the case of the sustainable CO2 emissions index, means a decrease in its value.

Table 8. Analysis of sustainable CO2 emissions index correlation with independent variables.

ω1 ω2 ω3 ω4 ω5 S∆ω

Corn
Rho Spearman’s −0.107 −0.258 −0.307 −0.557 −0.480 −0.617 *

p-value 0.653 0.272 0.188 0.011 0.032 0.004

Rice
Rho Spearman’s −0.609 * −0.232 −0.855 * −0.434 −0.853 * −0.946 *

p-value 0.004 0.325 0.000 0.056 0.000 0.000

* Significant correlations: Rho Spearman’s >0.6, p-value <0.05; ω1, ω2, ω3, ω4, ω5—disc angular speeds, rad·s−1,
S∆ω—summary increase in angular speeds, rad·s−1.

Multiple regression analysis was carried out for the analyzed variables of the rice grinding process
using the backward stepwise method. A simple linear regression analysis was carried out for corn
due to its correlation with S∆ω only. Table 9 shows the results of the regression analysis. The only
model with significant coefficients for rice was a linear model of variable S∆ω, which demonstrated a
74.6% variability of the sustainable emissions index. With regard to corn grinding, the linear model of
variable S∆ω explained merely 32.7% of the sustainable emissions index.

Table 9. Results of regression analysis for the sustainable CO2 emissions index.

Coefficients t-stat. p-Value * F Significance R2

Corn
Constant 4.09 6.16 8.08 × 10−6

8.75 0.008 0.3271S∆ω −0.01 −2.96 0.008

Rice
Constant 8.17 15.13 1.11 ×

10−11 53.00 9.13 × 10−7 0.7464
S∆ω −0.02 −7.28 9.13 × 10−7

S∆ω—summary angular speed increase, * results p > 0.5 were accepted as significant.

Bearing in mind that linear models account for less than 80% of the variability of the sustainable
emissions, the adequacy of nonlinear models was checked. The non-linear model which best described
the changes in the sustainable emissions index of rice grinding on a five-disc grinder depending on
the total increase in angular velocity on the discs S∆ω was an exponential model and its coefficient
of determination was R2 = 0.889 (Figure 8). For corn grinding, the best model was a logarithmic
one (Figure 9). The dependencies provided indicate that the sustainable emissions index of grinding
decreases along with an increase in the grinder disc angular speed.

The dependencies presented in Figures 8 and 9 can be used to determine the CO2 emissions level
predicted for the analyzed five-disc grinder, for the other materials and for emissivity control of the
grinding process—establishing optimal values for the settings of the grinding process parameters
(angular velocities), providing a reduction in CO2 emissions from alternative fuels while decreasing
energy use.
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The sustainable CO2 emissions index, in accordance with Equation (9), depends on power
consumption. The power consumption, in turn, depends on the speed of the angular discs (in this
case, on the total speed increase) and the moments associated with this, as well as the moments and
movement resistance from the grinding of the material. Since angular speeds and power consumption
are interrelated, as is the case with the relationship between power consumption and the sustainable
CO2 emissions index, the absence of a clear relationship between the summary velocity gain in the
case of corn grinding (Figure 9) is due to its physico-mechanical properties and a different grinding
process than in the case of rice, as described in Section 3.2.

The index presented in this paper can be designated for other types of materials besides grain and
wood biomass. It can be used to compare the emissions parameters during the processing of materials
for energy purposes and to indicate the parameters of the grinding process that will ensure the highest
possible increase in environmental benefits in the form of a change in CO2 emissions per unit of
grinding machine power. If other materials, e.g., lignocellulose biomass, are ground, it can be expected
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that the results would be different from those presented in this paper, which is of course related both
to the different specificity of the grinding process itself and to the fact that the physico-mechanical
properties of the cellulose materials differ significantly from those of grains used in this study.

4. Conclusions

The aim of the work—to develop a mathematical model of the sustainable CO2 emissions
index for the carbon dioxide emissions assessment of the biomass grinding process—was achieved.
The methodology for evaluating the emissivity of grinding made it possible to provide a measurable
assessment of the process with a focus on energy consumption and emissivity. An analysis of the
sustainable CO2 emissions index allows the authors to state that

• the sustainable CO2 emissions index of rice and corn grinding on a five-disc mill, depending
on the disc angular speed increase S∆ω, can be described with high accuracy using a nonlinear
model (Figures 8 and 9);

• it was observed that the sustainable CO2 emissions index decreases with an increase in the value
of S∆ω;

• from the point of view of emissivity, it is better to grind at lower disc angular speeds;
• higher values of the emissions index were obtained for rice, and from the point of view of

emissivity, rice is better than corn in energy applications.

The values of the sustainable CO2 emissions index will vary depending on the source of energy
fueling the grinding processes. The minimal value of the sustainable emissions index WZCO2(min)

was −0.812 kgCO2eq·kWh−1 with the assumption that the electric energy used in the process of
grinding was produced from coal (Figures 6 and 7). In the case of electric energy produced from
natural gas, it would be −0.201 kgCO2eq·kWh−1, from biogas: −0.196 kgCO2eq·kWh−1, from diesel oil:
−0.276 kgCO2eq·kWh−1. The best emissions balance would occur if the electricity fueling the grinding
process came from a biogas plant. Different index values would also occur if biomass energy use from
non-combustion methods were considered.

The index presented in this paper can be designated for other types of materials besides grain and
wood biomass. It can be used to compare the emissions parameters during the processing of materials
for energy purposes and to indicate the parameters of the grinding process, which would ensure the
highest possible increase in environmental benefits in the form of a change in CO2 emissions per unit
of grinding machine power.

The model proposed in this study is dedicated strictly for industrial applications for real-time
assessment of CO2 emissions. The model implemented in the monitoring end control system of biomass
pretreatment processes can, in a short time (using the input of real-time data from industrial sensors,
counters, and meters), calculate the balance of emissions. This offers the possibility of indicating the
best process parameters, for example, disc speed, which makes it possible to reduce the emissions of
carbon dioxide from fossil fuels. In general, the proposed model can be part of an industrial control
system because it is easy to calculate its values, depending on real-time data from sensors.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/2/330/s1,
Table S1: Eco efficiency indexes of technology presented in the literature, Table S2: Environmental assessment
indexes for grinding according to the literature.
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