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Abstract: The distribution side of the traditional power grid is changing as the users (known as
prosumers) can inject power to the grid. However, uncontrollable injection of power can destabilize
the grid. Thus, the stability of the grid must be maintained. Since the prosumers are self-interested
entities, they will take their actions to maximize their own pay-offs. We formulate the problem
as a non-cooperative game theoretic problem where the magnitude of the voltage must be within
an acceptable limit at each node of the power network. Since the power-flow equations must be
satisfied at each node, it becomes a coupled constrained game where the constraints are the same
across the prosumers. We propose a distributed penalty based algorithm which converges to an
equilibrium. In this mechanism, the prosumers are quoted a price based on the active and reactive
power drawn or injected to the power grid. The algorithm is easy to implement and it converges to
an efficient solution which maximizes the sum of the utilities of the prosumers while maintaining the
grid’s stability.

Keywords: power flow model; primal-dual algorithm; coupled constrained game; Nash equilibrium;
convex optimization

1. Introduction

The proliferation of the distributed energy resources (e.g., Photo voltaic (PV) arrays, solar rooftops,
energy storage units) have transformed the notion of traditional consumers of energy. The consumers
can now also produce and supply power to the grid. We denote the consumers with the capability of
producing energies as prosumers. The users are also using electric vehicles (EVs) which require energy for
charging, but can also provide energy back to the grid by discharging. However, as the distribution
network is going through rapid transformation it may create instabilities into the grid. It is worthwhile
to remember that a centralized solution is not implementable in a system of thousands of household
entities and their controllable devices since the homeowners or prosumers take their decision which
will benefit them. Thus, each prosumer takes its own decision which will maximize its own objective
without coordinating with other prosumers. Thus, the question is how to control different self-interested
entities while maintaining the stability of the grid?

In order to answer the above question, we consider a system where prosumers can sell and
buy energies from the grid. For each time period, each prosumer decides how much to buy and
how much to sell depending on its own utility function, selling and buying price. The power drawn
from or injected into the grid must follow the Kirchoff’s current and voltage laws. We consider
a radial distribution network where each node consists of a subset of prosumers. At each node,
the magnitude of the voltage must be maintained within an acceptable range to maintain stability of
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the grid. The voltage magnitude is obtained by solving a set of non-linear active and reactive power
flow equations which are very difficult to solve. Note that the active and reactive powers injected or
drawn are decided by the prosumers. Thus, each prosumer needs to decide how much to buy or sell
while maintaining the stability of the grid.

Since the non-linear AC power flow equations are non-convex, we consider a linearized power
flow equations which are reasonable and considered in the literature [1,2]. However, each prosumer
only solves its own optimization problem, hence, we consider a game theoretic setting to characterize
the strategic interactions among multiple prosumers. The prosumers have the same constraint that the
voltage magnitude must be within an acceptable range at each node. Hence, this leads to a coupled
constrained game [3]. We seek to obtain a generalized Nash equilibrium (GNE) which is the relevant
equilibrium concept for a coupled constrained game. The coupled constrained game is difficult to solve
as the strategy space depends on the strategies of the other players and the power system parameters
such as line impedances. However, a prosumer is unaware of the power network (the reactance,
resistance, and the number of nodes) and is also unaware of the decisions of other prosumers.

We propose a distributed algorithm to obtain a GNE. GNE is not unique in general, however,
the GNE obtained using the distributed algorithm is an efficient solution i.e., it maximizes the sum of
the utilities of the prosumers. In the distributed algorithm, a controller which has knowledge of the
power network and its parameters quotes a penalty price to the prosumers if the voltage magnitude
constraint is not satisfied at a node. For example, if the voltage magnitude is lower than a specified
value, then, the prosumers are penalized for selling energies and vice versa. Note that prosumers may
also sell reactive power since the distributed energy resources are converted to the AC power using
inverter. Excessive reactive power is also penalized if the voltage magnitude becomes small because
supply exceeds the demand.

When the voltage magnitude exceeds the upper limit, the penalty for drawing power is increased
till the voltage magnitude remains within an acceptable limit. We show that such an iterative price
algorithm converges to a GNE. The convergence is also very fast and thus, can readily be implemented
in practice. Numerically, we show that the utility of our algorithm in maintaining the stability of the
grid. The penalty parameters depends on the number of links a node has and the impedance values
between those links since power needs to be rerouted to the neighboring nodes if the supply and
demand does not match at a given node.

We summarize our contributions in the following:

• We mathematically model strategic prosumers who take their decisions in order to maximize
their own objectives without coordinating with other prosumers while maintaining the voltage
stability in the grid using a game theoretic setting.

• We propose a practically implementable algorithm which converges to the efficient GNE.
• We show that there exists a distributed algorithm where a controller at each node selects penalty

prices for violating a constraint.

The rest of the paper is organized as the following: Section 2 compares our work with the existing
literature. Section 3 describes the system parameters, and the objective each prosumer tries to optimize.
In Section 4 we propose a distributed algorithm which converges to a GNE. Section 5 empirically
demonstrates the strength of our algorithm in mitigating the voltage constraint violation. We conclude
and provide future research direction in Section 6.

2. Related Literature

Demand response pricing has already been studied [4–9]. Real time pricing has also been
considered [10–16]. However, these papers did not consider that the users can also sell energies back
to the grid. Naturally, they did not consider the AC power flow equations while coming up with
the prices. Energy exchange among the users in a micro-grid setting has been considered [3,17–20].
Though these papers considered that the users can sell back energies, they did not consider non-linear
AC power flow equations and the power network structure.
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Recent papers [1,2,21–23] have considered the control of power of prosumers in order to maintain
the voltage stability. These papers assumed a centralized optimization problem with a distributed
algorithm for maintaining the stability. However, in a smart grid, each prosumer takes its own
decision. Hence, it is difficult to control each prosumer. Thus, game theoretic notion is better adapted
to study the strategic interaction among prosumers. In a game theoretic setting, it is not apriori
clear whether an equilibrium exists and whether an equilibrium can be implemented in practice (if
exists). Articles [24–26] considered a game theoretic setting to study the interaction among multiple
prosumers. However, these papers did not consider any distributed algorithm which can implement
the equilibrium strategy. We provide a distributed algorithm which can be implemented in practice.
The distributed algorithm converges to a generalized NE, and we show that the GNE is efficient.

The article [27] considered a distributed energy management system for a cooperative multi-agent
system. In contrast, we consider a non co-operative game where each prosumer takes its own
decision without coordinating others. We also considered the stability of the grid unlike in [27].
The papers [28,29] proposed a distributed algorithm for controlling agents. However, in the game
theoretic setting each agent takes its own decision. Further, the stability constraint where the
voltage magnitude must be within the acceptable limit has not been considered in the above papers.
[30,31] consider incentive mechanisms for promoting sharing of energies among different consumers.
However, the stability of the grid is not considered. Further, we formulate the problem as a game
theoretic setting and propose distributed algorithm which converges to an equilibrium strategy.

3. System Model and Problem Formulation

In this section, we first, describe the prosumers and their decision variables in Section 3.1.
Subsequently, we describe the power flow equations as the prosoumers inject/draw power from
the grid in Section 3.2. In Section 3.3, we describe the utilities of the prosumers. Finally, in Section 3.4
we describe the optimization problem that each prosumer tries to solve.

3.1. Prosumer’s Decision

Each prosumer j decides the power bj,t it will buy during time period [t, t + δt). The duration δt
is chosen depending on how fast the prosumers can update their decisions. Most often in the real time
setting δt varies between 5 min to 15-min. However, δt can be easily adapted to a much granular level.
Note that the prosumer can also sell sj,t amount of power during time period [t, t + δt). A prosumer
can sell its power by discharging from its battery or from the renewable energy resources. Note that a
prosumer also represents one who does not have any distributed resources or storage unit.

Some users may have a deferrable load. The demand for those load only need to be fulfilled
within a certain deadline. For example, the EV needs to be ready before 8 am (e.g., if the user is going
to work). However, the individual load may vary over time. We denote the set of deferrable appliances
as Ai. Suppose the load assigned to appliance j of user i is xi,j,t for the time duration [t, δt). Hence,
we have

Tj

∑
t=1

xi,j,tδt ≥ Xj∀i, ∀j ∈ Ai (1)

where Xj is the amount of energy required for appliance j before its deadline Tj.
The power demand of prosumer i during time [t, t + δt), di,t must satisfy the following–

di,t,max ≥ di,t ≥ di,t,min (2)

where di,t,max, and di,t,min are known beforehand.
Each prosumer has a renewable energy harvesting device which harvests Ēi,t amount of power

(A prosumer may not have any renewable energy harvesting device. In that case, the renewable energy
will be 0.) during time [t, t + δt). The prosumer i may also have a battery with capacity Bi,max. If the
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prosumer does not have any battery then Bi,max is 0. The state of the battery is Bi,t. The amount of
energy discharged from the battery is ei,t, and charged to the battery is li,t. Thus, we have

Bi,t+1 = Bi,t + Ēi,tδt− ei,tδt + li,tδt (3)

Note that the renewable energy generation is a random process. Hence, a prosumer will only
have the estimate of Ēi,t, rather than the exact realized value. Note that we assume that during the
time interval [t, t + δt) Ēi,t is constant. If δt is small, it is a reasonable assumption.

The state of the battery can not be less than 0. The state of the battery is also required to be a
specific value at the end of the horizon. Most often, the state of the battery is kept to be same as the
start of the day. Thus, we have

Bi,T+1 = Bi,1, 0 ≤ Bi,t ≤ Bmax (4)

Thus, the total power consumption of prosumer i during time [t, t + δt) is given by

di,t = ∑
j

xi,j,t + bi,t − si,t − li,t/ηd + ei,tηc, (5)

where ηd ≤ 1 and ηc ≤ 1 are respectively the discharging, and charging efficiency from the battery.
Note that only a portion of energy bought by the prosumer can be used because of the transmission loss.

3.2. Power Flow Constraint

When a prosumer injects or draws power, the power flow equations must be satisfied at every
time instance. We also characterize the active and reactive power flow equations as DC power is
converted to AC power when battery is discharged.

3.2.1. Inverter

The distributed energy resources are converted in AC power via an inverter. The reactive power
provided by the inverter is qi,t and the power capacity of the inverter is ri. Hence, we must have

e2
i,t + q2

i,t ≤ r2
i (6)

Recall that ei,t is the real power discharged from the Battery or distributed energy resources (if
there is no battery).

3.2.2. Power Flow Equations

We, now, describe the power flow equations which must be satisfied. The power flow network
consists of nodes N and edges E . An edge or link exists between two nodes if the two nodes
are connected.

Let us assume that the set Ni of prosumers belong to the node i in the power network. Note that
in general, the cardinality of the setNi can be 1 which denotes that each prosumer’s end can be treated
as a node. The root of the tree is the feeder with a fixed voltage and power injection, and is denoted by
bus 0. We denote the other buses as n = 1, . . . , N. For each link (i, j) ∈ E , let zi,j = yi,j + iwi,j be the
complex impedance. Let Ii,j,t be the complex current flowing during time [t.t + δt) and Pi,j,t, Qi,j,t be
the real and passive power respectively flowing through edge (i, j) during time [t, t + δt).
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Let pj,t and qj,t be the total real load and passive load of all the prosumers at node j. Then,

pj,t = ∑
i∈Nj

pi,t

qj,t = ∑
i∈Nj

qi,t. (7)

We are now ready to represent the power flow model. For all links (i, j) we must have

pj,t = Pi,j,t − yi,j|Ii,j,t|2 − ∑
k:(j,k)∈E

Pj,k,t

qj,t = Qi,j,t − wi,j|Ii,j,t|2 − ∑
k:(j,k)∈E

Qj,k,t

vj,t = vi,t − 2(yi,jPi,j,t + wi,jQi,j,t) + (y2
i,j + w2

i,j)|Ii,j,t|2

|Ii,j,t|2 =
P2

i,j,t + Q2
i,j,t

vi,t
(8)

where vi,t = |Vi,t|2. The equality constraints in the system of equations in (8) describe the
physical power flow models. Because of the non-linearity, the values of the voltage may not be
uniquely determined even when the power load pj,t, qj,t are specified. There can be no solution or
multiple solutions.

The following voltage constraint must be satisfied at each node

v̄i ≥ vi,t ≥ vi (9)

where v̄i and vi correspond to the maximum and minimum voltage limit respectively at node i.
Though the constraints specified in system of equations in (8) are non-linear, we consider a

linearized version (i.e. |Ii,j| = 0) specified by the following equation

vt = Ypt + Wqt + 1v0,t (10)

where vt = [v1,t, v2,t, . . . , vN,t]
T , pt = [p1,t, p2,t, . . . , pN,t]

T , qt = [q1,t, . . . , qN,t]
T , and

Yi,j = 2 ∑
(h,k)∈Pi∩Pj

yh,k

Wi,j = 2 ∑
(h,k)∈Pi∩Pj

wh,k (11)

where Pi is the set of edges in the path between Bus 0 and Bus i. Linearized model is a good
representation of the radial distribution network. It also has another advantage– unlike the non-linear
model, for a given p and q the voltage equations can be solved accurately. Though we do not consider any
limit on the power flow explicitly, the constraint on the magnitude of the voltage implicitly limits the
amount of active and reactive power flow. We can add constraints on the power magnitude without
losing the complexity of the problem. For example, constraint such as pmin ≤ pt ≤ pmax is linear and
convex. Thus, the problem will remain convex and our proposed algorithm can be adapted to handle
the above constraint.

3.3. Prosumer’s Utility

Each prosumer i attains an utility Ui(·) depending on the amount of power consumed. The utility
of the user depends on the the consumption di,t. The utility of a prosumer/user is the economic value
obtained by consuming or availing a service. If a prosumer/user consumes more energy, the utility
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will increase. The utility of a prosumer inherently depends on its willingness to consume. For example,
if a prosumer consumes significantly less amount of energy compared to its desired value, its utility
will be smaller. Similarly, if a prosumer wants to set its temperature at a certain value, the utility will
be smaller if it is set at a value different from its preferred value.

The prosumer also has to pay ctbi,tδ amount for buying energy as the price charged by the utility
company is in $/kwh. Note that a prosumer is charged depending on the energy consumption, not on
the power consumption. Similarly, the prosumer also gets gtsi,tδt amount for selling energy. We assume
that gt < ct to avoid trivial solutions.

Note that the utility can have time correlated component which can easily be incorporated in the
model. Those utility functions can be represented as Ui(∑T

t=1 di,t). On the other hand the utility may
be separable across the time. Without loss of generality, we consider that the utility function is given
by Ūi(∑T

t=1 di,t).

Assumption 1. We assume that Ui(·) is increasing and concave function.

The concavity assumption stems from the fact that if a prosumer consumes more energy the rate
of change of valuation decreases.

3.4. Optimization Problem of Prosumer

Each prosumer is a selfish entity which only wants to optimize its own payoff. Thus, each
prosumer solves the following problem

maximize Ui(
T

∑
t=1

di,t)−
T

∑
t=1

ctbi,t +
T

∑
t=1

gtsi,t

subject to (1)–(5), (6), (10).

var : di,t, bi,t, si,t, pi,t, qi,t, ei,t, ri,t, xi,j,t ≥ 0 (12)

Note that it is a coupled constrained game since the constraint in (10) is common to all
the prosumers.

3.5. Strategic Interactions

Each prosumer tries to solve its own optimization problem in (12). Thus, we consider a non
co-operative game theoretic setting where each prosumer takes its own decision. The constraint in (10)
is the same across the prosumers. Thus, the feasible strategy space of a prosumer inherently depends
on the actions of others. However, the game is a coupled-constrained game since the constraints are
common to the prosumers. We, thus, seek to obtain a generalized Nash equilibrium.

Before defining the generalized Nash equilibrium formally, we introduce some notations. We
denote the objective function of each prosumer i as Fi(·). We also represent the decision variable
of prosumer i as Si. Suppose [S∗1 , . . . , S∗i , . . . , S∗n] ∈ S is a strategy profile where S is the set of
feasible strategies.

Definition 1. The strategy profile [S∗1 , . . . , S∗i , . . . , S∗n] is a generalized Nash equilibrium if Fi(S∗i ) ≥ Fi(Si)

∀i, ∀[S∗1 , . . . , Si, . . . , S∗n] ∈ S .

Thus in a generalized Nash equilibrium a prosumer can not find another feasible strategy which
can give a better utility if the strategies of the other prosumers remain fixed.

4. Algorithm

In this section, we describe the algorithm DIST-OPT which converges to the generalized
Nash equilibrium.
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We propose a distributed algorithm which converges to the generalized Nash equilibrium.

1. Initialize λ̄i,t = 0, λi,t = 0, ζ i,t = 0 for i = 1, . . . , N.
2. Each prosumer i ∈ Ni solves the following problem

maximize Fi(Si)−
T

∑
t=1

λ̄i,tbi,t − ζ i,tqi,t − λi,tsi,t

subject to (1)–(5), (6)

var : di,t, bi,t, si,t, pi,t, qi,t, ei,t, ri,t, xi,j,t ≥ 0 (13)

3. Prosumers inform their latest strategy Sk
i at k-th iteration. If ||Sk

i − Sk−1
i || < ε, the algorithm

terminates. Otherwise, it proceeds in the following.
4. Controller at bus i measures the voltage at node i.
5. Controller at bus i updates λ̄i,t, and λi,t according to the following

λ̄i,t = [λ̄i,t + γ(v− v̄)]+
N

∑
j=1

Yi,j

λi,t = [λi,t + γ(v− v)]+
N

∑
j=1

Yi,j

ζ i,t = [ζ i,t + γ(v− v)]+
N

∑
j=1

Wi,j, (14)

where γ is the step parameter.

A controller is located at each node, it knows the local information such as the neighboring nodes,
the resistance and reactance values between its neighbors. These is the only information required
for the controller to implement the algorithm DIST-OPT. We assume that a controller at the bus will
communicate with the prosumers.

Note that a prosumer i pays a penalty λi,t ζ i,t if it injects too much active power si,t and reactive
power qi,t respectively. On the other hand, if it draws too much active power bi,t it also pays the penalty
λ̄i,t. One key difference with the traditional price is that such a price is charged based on the power.
It is not based on the energy unlike the real time prices for the energy consumption.

Note that the penalty parameter is not the same for all the prosumers, rather it depends on the
node set it belongs. It also depends on the impedances between the neighboring links. Since prosumers
always inject reactive power, thus, reactive power is not penalized when the voltage magnitude is
higher than the threshold. However, when the voltage magnitude is smaller than the acceptable value,
reactive power is also penalized.

The following theorem entails that even though each prosumer takes its own decision, it converges
to the generalized Nash equilibrium.

Theorem 1. The algorithm DIST-OPT converges to a generalized Nash equilibrium.

Outline of Proof: The algorithm DIST-OPT is a primal-dual gradient algorithm. The penalty prices
correspond to the dual variables. Thus, the proof follows from the theory of convex optimization [32].

Since the optimization problem at each prosumer’s end is a convex optimization problem, thus,
the algorithm can be implemented in practice even when there are large number of nodes.

Note that there can be multiple generalized NE. For example, suppose that there are two
prosumers and one node, the cost of energy is zero, and the minimum amount of energy requirement
for each of the prosumers is zero. Now, one of the prosumers can draw a lot of power till the point the
voltage magnitude becomes equal to the maximum limit. The other prosumer can not draw any power
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as it will make the voltage exceeds the maximum limit. Thus, there can be multiple equilibria. We,
thus, want a generalized NE which is close to an efficient solution (if any), i.e., the strategy is closer to
the optimal solution of the problem where sum of the prosumers’ objectives are maximized subject
to the set of constraints. The generalized NE obtained from the Algorithm DIST-OPT is indeed an
efficient solution which is formally stated in the following.

Theorem 2. Suppose the Algorithm DIST-OPT converges to a generalized NE (S∗1 , . . . , S∗n) then the above
strategy is also a solution of the following problem

maximize ∑
i

Fi(Si)

subject to (1)–(5), (6), (10).

(S1, . . . , Sn) ∈ S (15)

Proof: Note that the optimization problem in (15) is exactly equal to the optimization problem
in (12). Since GNE obtained using the algorithm DIST-OPT is an optimal solution of (12), thus, it is
also an optimal solution of (15).

Thus, the generalized NE attained also maximizes the sum of the utilities of the prosumers. Hence,
the generalized NE attained by the algorithm DIST-OPT is efficient.

Execution Time: Note that DIST-OPT algorithm gives an optimal solution of a strictly convex
optimization problem. DIST-OPT is a primal dual gradient algorithm. Thus, the convergence is fast

and polynomial in
1
ε

and polynomial in the dimension of the decision variables. Thus, even when the
number of nodes increases, the run time only scales in a polynomial order. In our simulations, we also
show that the convergence is fast.

5. Numerical Results

In this section, we demonstrate our proposed architecture on a simulated power grid system. We,
first, describe our set-up. Subsequently, we describe the insights we obtain from the simulated system.

5.1. Simulation Set-Up

We run the proposed algorithm in 5-min interval for 24 h. So, there are 288-time intervals.
We assume that the renewable energy is harvested according to a truncated Gaussian distribution with
mean 5 kwh and variance 2 kwh. The storage unit is assumed to be of capacity uniformly distributed in
the interval [0, 5] kwh across the users. Initial battery level is assumed to be 0 i.e., it is fully discharged.
The prices for the conventional energy is assumed to be governed by Time-of-Use (ToU) time scale.
Thus, the cost of buying energy varies over time. Currently, the selling price to the grid is assumed to
be the same as the buying price in the net-metering scheme. However, when the renewable energy
will have higher penetration net metering scheme is not profitable to the retailers. Thus, we consider
that the selling price at time t, gt is a random variable uniformly distributed between [ct/2, ct] where
ct is the real-time buying price.

Similar to [33], the user’s utility for energy x is taken to be of the form min{−ax2 + bx,
b2

4a
}.

The parameter
b

2a
is the maximum demand of the users. We vary

b
2a

over time for each user.

Specifically, during peak time (time between 9 am to 6 pm) we consider
b

2a
is uniformly distributed

between [7.5, 15] kwh. On the other hand, during the off-peak hours, we consider it as uniformly
distributed in the interval [1, 10]-kwh. The acceptable voltage range is assumed to be between
[0.95, 1.05] volt p.u. The resistance and reactance of the edges are assumed to be 0.09-ohm/km.
We also consider a 14-node distribution system with radial network. The distribution network setup is
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exactly equal to one considered in [1], we have also shown in Figure 1. The number of prosumers are
considered to be 1000 which are uniformly distributed over the network.234 IEEE TRANSACTIONS ON SMART GRID, VOL. 8, NO. 1, JANUARY 2017

Fig. 3. Topology of the microgrid [6].

Fig. 4. Renewable generation profiles, load profile, and real-time price.

with hourly mean values from [6] and choose the percentage
of load that can be shed (p̄l(t) −

¯
pl(t)/p̄l(t)) randomly from

[30%, 50%]. The reactive power requests q̄l(t) and
¯
ql(t) are

generated based on the active power requests p̄l(t) and
¯
pl(t)

using a power factor chosen randomly from [0.8, 0.9]. The
parameters αl and βl are chosen to be 0.5 and 500, respec-
tively for each load. We use the 5-min real-time pricing data
from CAISO [35] in the simulation. We set the cost function of
diesel generation as Cg( pg(t)) ! 40( pg(t)#t)2 + 60( pg(t)#t)
and the ramping parameter as rg = 0.3. The capacity of the
BESS Ēb is 3 MWh and ¯Eb is chosen to be 0.1 MWh. The
initial battery energy level is set to be Eb(0) = 1.5 MWh. The
parameters in the battery cost function are chosen as αb = 1
and cb = 0.

B. Benchmarks

In order to evaluate the performance of the proposed online
EMS, we use two benchmarks: 1) an optimal offline algorithm

Fig. 5. Real-time cost.

that optimizes the objective over the entire time horizon T ;
and 2) a greedy algorithm that optimizes the cost at each time
independently.

The offline algorithm solves the following optimization
problem over the entire time horizon T .

Offline:

min
{u(t)}

1
T

T−1∑

t=0

C(t)

s.t. (1)–(3), (5)–(8), (10), (11), and (14)–(20)

1
T

T−1∑

t=0

p̄l(t) − pl(t)
p̄l(t) −

¯
pl(t)

≤ αl, ∀l.

The offline algorithm provides a lower bound on any online
algorithms, assuming that all system states over time (i.e., the
output power of the renewables, the demand requests, and
the energy prices) are known a priori, which is difficult to
achieve in practice due to the stochastic nature of the prob-
lem. Although the optimal solution to the offline problem is
not achievable in practice, it gives us the best performance to
compare with any online algorithms.

Another benchmark we consider is a greedy algorithm that
aims to minimize the cost at each time t ∈ T independently.

Greedy:

min
u(t)

C(t)

s.t. (1)–(3), (5)–(8), (10), (11), (14)–(20)
p̄l(t) − pl(t)
p̄l(t) −

¯
pl(t)

≤ αl, ∀l.

The greedy algorithm is shortsighted as it optimizes the cost
at each time without taking the future into account.

C. Case Study

We apply the proposed online EMS to the microgrid using
the setup described above. The voltage tolerances are set to
be [0.95 and 1.05 p.u.]. The parameters in the algorithm are
chosen as β = 1300, V = 20, ξg = 1, ξb = 1, ξl = 1,
ξ0 = 1, and ξp = 1. The optimization problem is solved using
the CVX package [36] in MATLAB on an Intel CORE i7 3.4
GHz machine with 12 GB RAM.

Fig. 5 shows the real-time cost by using the proposed EMS.
It can be seen from the figure there are some significant cost

Figure 1. The distribution network configuration we consider [1] for a certain realization of load
and supply.

Note that each prosumer solves its own optimization problem which we have solved using
CVX toolbox of MATLAB. The algorithm converges very fast with mostly within 20–25 iterations.
The algorithm converges within 3.2 s on an average where the average is taken over 25 runs.
We consider ε as 10−6.

5.2. Results

5.2.1. Voltage Variation

We have compared our algorithm (Figure 2 compared to the one where there is no control
mechanism. It shows how our algorithm DIST-OPT maintains the voltage magnitude compared to the
setting where there is no control mechanism. As it is evident from the Figures 2 and 3 that our algorithm
maintains the voltage stability compared to the setting where there is no control mechanism. Note that
during the peak time (off-peak, respv.) the voltage tends to exceed (go below, respv.) the upper (lower,
respv.) limit without the control mechanism.
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Figure 2. The blue line shows the variation of the magnitude of voltage when we implement our
algorithm. The red lines show the acceptable limits.
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Figure 3. The blue line shows the variation of the magnitude of voltage where there is no control
mechanism. The red lines show the acceptable limits.

5.2.2. Penalty Prices

Figure 4 shows the variation of the total penalty prices to implement DIST-OPT algorithm at a
node. Note that during the peak period, the penalty is imposed for drawing power. On the other hand
during the off-peak period, the penalty is imposed for injecting power. Hence, it shows that we need
to implement penalties both for drawing and injecting power. The prices are the highest at nodes 3
and 12 since the resistances are higher between those nodes and neighbours.
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Figure 4. The solid line shows the total penalty price ($ per MW) for drawing power and the broken
line shows the total penalty price ($ per MW) for injecting power.

5.2.3. Impact of Storage Units

Figure 5 shows the impact of an increase in the household storage unit on the prices. Note that
the average price for injecting power as well as the price for drawing power decreases. Intuitively, as
the capacity increases, prosumers can optimize more efficiently, thus, the average penalty reduces.

Though the average penalty price reduces overall, prices at individual time period may increase.
Note that the price for power drawn during the off-peak increases since prosumers now want to store
more energies during the off-peak periods. Similarly, the prosumers can also supply excess energies to
the other prosumers during the peak period. Thus, the prices for injecting power increases during
the peak time. It also shows that if the storage has a higher penetration level, the prices need to be
computed carefully.
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Figure 5. The solid line shows the penalty price ($ per MW) for drawing power and the broken line
shows the penalty price ($ per MW) for injecting power. The storage unit of household is now uniformly
distributed between [0,10] kwh.

5.2.4. Penalty Price for Reactive Power Injection

Figure 6 depicts the total penalty prices for the reactive power injected into the network. It shows
that the prices are positive mostly during the off-peak time. Intuitively, during the off-peak period the
demand is lower, thus, the voltage magnitude is small. Thus, if prosumers inject power, it is penalized
in order to maintain the voltage magnitude above the acceptable limit. On the other hand, during
the peak period the demand is large, thus, the penalty price for injecting power decreases in order
to incentivize the prosumers to inject more power. The prices are higher at nodes 3 and 12 since the
reactances are higher.
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Figure 6. The total penalties ($ per MW) for reactive power across the network at different times.

5.2.5. Energy Injected from the Prosumers

Figure 7 depicts the total amount of energies injected from the prosumers to the grid. Note that the
prosumers inject a larger amount of energy to the grid during the peak period. Intuitively, the prices
are higher during the peak period, thus, the prosumers tend to inject a larger amount of energy during
the peak period in order achieve a larger profit. Figure 7 also shows that when the storage capacities of
the prosumers are larger, more energy is injected into the grid during the peak period. This is because
prosumers can also store energy during the off-peak period and give back energy during the peak
period. Hence, the energy given back during the off-peak period decreases and the energy given back
during the peak period increases.
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Figure 7. The total amount of Energy given back to the Utility as a function of time. The solid line
represents the total amount of energy given back when Bmax = 5 kWh and the broken line represents
the total amount of energy given back when Bmax = 15 kWh. Recall that each prosumer’s capacity is
uniformly distributed between [0, Bmax].

6. Conclusions and Future Work

We consider a scenario where the prosumers inject or draw power from the grid. The solution of
power flow equations may violate the acceptable voltage magnitudes at various nodes of the power
system if the prosumers draw or inject too much power. Thus, we consider a distributed control
mechanism to maintain the voltage stabilities. However, the voltage stability constraint depends
on the decisions of all the prosumers. Each prosumer takes its own decision without coordinating
with others. Thus, developing an optimal distributed control mechanism is inherently challenging.
We formulate the problem as a coupled constrained game where each prosumer maximizes its own
payoff subject to the common constraint of non-linear power flow equations. We seek to obtain a
generalized Nash equilibrium,. We linearize the power flow equations and propose a distributed
iterative algorithm which converges to a generalized Nash equilibrium. It induces a penalty price
(negative or positive) based on the power if the power flow equations violate the voltage magnitude.
Our proposed algorithm converges to an efficient solution i.e. it is an optimal solution of the joint
optimization problem of maximizing the sum of the objectives of the prosumers. Our numerical
analysis shows that such a mechanism can maintain the stability of the grid and can be implemented
in practice.

Our work can be extended in several directions. The characterization of algorithm for AC power
flow model is left for the future. We expect that the tools which we have developed will provide
the basis for the AC power flow model. The uncertainties of the renewable energies have not been
considered as we consider a real-time market. However, the energy market operates in day-ahead
setting as well as real-time setting. Hence, the characterization of an equilibrium in a day-ahead setting
is also left for the future.
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